This is arguably a little contrived, but in the case of CUDA interop,
we have to track additional state on the cuda side for each exported
buffer. If we want to be able to manage buffers with an ra_buf_pool,
we need some way to keep that CUDA state associated with each created
buffer. The easiest way to do that is to attach it directly to the
buffers.
The CUDA/Vulkan interop works on the basis of memory being exported
from Vulkan and then imported by CUDA. To enable this, we add a way
to declare a buffer as being intended for export, and then add a
function to do the export.
For now, we support the fd and Handle based exports on Linux and
Windows respectively. There are others, which we can support when
a need arises.
Also note that this is just for exporting buffers, rather than
textures (VkImages). Image import on the CUDA side is supposed to
work, but it is currently buggy and waiting for a new driver release.
Finally, at least with my nvidia hardware and drivers, everything
seems to work even if we don't initialise the buffer with the right
exportability options. Nevertheless I'm enforcing it so that we're
following the spec.
Instead of being submitted immediately, commands are appended into an
internal submission queue, and the actual submission is done once per
frame (at the same time as queue cycling). Again, the benefits are not
immediately obvious because nothing benefits from this yet, but it will
make more sense for an upcoming vk_signal mechanism.
This also cleans up the way the ra_vk submission interacts with the
synchronization/callbacks from the ra_vk_ctx. Although currently, the
way the dependency is signalled is a bit hacky: normally it would be
associated with the ra_tex itself and waited on in the appropriate stage
implicitly. But that code is just temporary, so I'm keeping it in there
for a better commit order.
Instead of associating a single VkSemaphore with every command buffer
and allowing the user to ad-hoc wait on it during submission, make the
raw semaphores-to-signal array work like the raw semaphores-to-wait-on
array. Doesn't really provide a clear benefit yet, but it's required for
upcoming modifications.
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.