The ra_gl_ctx_test_version() helper is quite clunky, in that it pushes a
simple check too deep into the call chain. As such it makes it hard to
reason, let alone have the GLX and EGL code paths symmetrical.
Introduce a simple helper ra_gl_ctx_get_glesmode() which returns the
current glesmode, so the platforms can clearly reason about should and
should not be executed.
v2:
- mpgl_preferred_gl_versions -> mpgl_min_required_gl_versions
- 320 -> 300 (in glx code path)
Signed-off-by: Emil Velikov <emil.l.velikov@gmail.com>
Currently mpv requires a bare minimum of GL 2.1, although it tries to
use 3.2+ core contexts when possible.
The GLX and EGL spec effectively guarantee that the implementation will
give you the highest compatible version possible. In other words:
Requesting 3.2 core profile will always give you core profile and the
version will be in the 3.2 .. 4.6 range - as supported by the drivers.
Similarly for 2.1 - implementation will give you either:
- 2.1 .. 3.1, or
- 3.2 .. 4.6 compat profile
This has been verified against the Mesa drivers (i965, iris, swrast) and
Nvidia binary drivers.
As such, drop the list to 320, 210 and terminating 0.
v2:
- mpgl_preferred_gl_versions -> mpgl_min_required_gl_versions
- update ^^ comment
Signed-off-by: Emil Velikov <emil.l.velikov@gmail.com>
Surprisingly, we've managed to get this far without context_glx ever
adding the X11 display as a native resource. But with the recent change
to attempt to enable vdpau when using EGL, the hwdec now requires the
display to be added. So let's add it.
Originally, vo_gpu/vo_opengl considered the case of Nvidia proprietary
drivers, which required vdpau/GLX, and Intel open source drivers, which
require vaapi/EGL. Since window creation and GPU context creation are
inseparable in mpv's internal API, it had to pick the correct API very
early, or hardware decoding wouldn't work. "x11probe" was introduced for
this reason. It created a GLX context (without showing the window yet),
and checked whether vdpau was available. If yes, it used GLX, if not, it
continued probing x11/EGL. (Obviously it couldn't always fail on GLX
without vdpau, which is why it was a separate "probe" backend.)
Years passed, and now the situation is different. Vdpau is dead. Nvidia
drivers and libavcodec now provide CUDA interop, which requires EGL, and
fixes some of the vdpau problems. AMD drivers now provide vaapi, which
generally works better than vdpau. Intel didn't change.
In particular, vaapi provides working HEVC Main10 support. In theory, it
should work on vdpau too, with quality reduction (no 10 bit surfaces),
but I couldn't get it to work.
So always prefer EGL. And suddenly hardware decoding works. This is
actually rather important, because HEVC is unfortunately on the rise,
despite shitty encoders and unoptimized decoders. The latter may mean
that hardware decoding works better than libavcodec.
This should have been done a long, long time ago.
So the next commit can make EGL use it. EGL has a quite similar
function, that practically works the same. Although it's relatively
trivial, it's still tricky, and probably shouldn't end up as duplicated
code.
There are no functional changes, except initialization, and how failure
of the glXGetSyncValues call is handled. Also, some comments mention the
EGL extension.
Note that there's no intention for this code to handle anything else
than the very specific OML sync extension (and its EGL equivalent). This
is just too weirdly specific to the weird idiosyncrasies of the
extension, and it makes no sense to extend it to handle anything else.
(Such as Wayland or DXGI presentation feedback.)
I misunderstood how this extension works. If I understand it correctly
now, it's worse than I thought. They key thing is that the (ust, msc,
sbc) tripple is not for a single swap event. Instead, (ust, msc) run
independently from sbc. Assuming a CFR display/compositor, this means
you can at best know the vsync phase and frequency, but not the exact
time a sbc changed value.
There is GLX_INTEL_swap_event, which might work as expected, but it has
no EGL equivalent (while GLX_OML_sync_control does, in theory).
Redo the context_glx sync code. Now it's either more correct or less
correct. I wanted to add proper skip detection (if a vsync gets skipped
due to rendering taking too long and other problems), but it turned out
to be too complex, so only some unused fields in vo.h are left of it.
The "generic" skip detection has to do.
The vsync_duration field is also unused by vo.c.
Actually this seems to be an improvement. In cases where the flip call
timing is off, but the real driver-level timing apparently still works,
this will not report vsync skips or higher vsync jitter anymore. I could
observe this with screenshots and fullscreen switching. On the other
hand, maybe it just introduces an A/V offset or so.
Why the fuck can't there be a proper API for retrieving these
statistics? I'm not even asking for much.
Use the extension to compute the (hopefully correct) video delay and
vsync phase.
This is very fuzzy, because the latency will suddenly be applied after
some frames have already been shown. This means there _will_ be "jumps"
in the time accounting, which can lead to strange effects at start of
playback (such as making initial "dropped" etc. frames worse). The only
reasonable way to fix this would be running a few dummy frame swaps at
start of playback until the latency is known. The same happens when
unpausing.
This only affects display-sync mode.
Correct function was not confirmed. It only "looks right". I don't have
the equipment to make scientifically correct measurements.
A potentially bad thing is that we trust the timestamps we're receiving.
Out of bounds timestamps could wreak havoc. On the other hand, this will
probably cause the higher level code to panic and just disable DS.
As a further caveat, this makes a bunch of assumptions about UST
timestamps. If there are delayed frames (i.e. we skipped one or more
vsyncs), the latency logic is mostly reset. There is no attempt to make
the vo.c skipped vsync logic to use this. Also, the latency computation
determines a vsync duration, and there's no effort to reconcile or share
the vo.c logic for determining vsync duration.
This is done in several steps:
1. refactor MPGLContext -> struct ra_ctx
2. move GL-specific stuff in vo_opengl into opengl/context.c
3. generalize context creation to support other APIs, and add --gpu-api
4. rename all of the --opengl- options that are no longer opengl-specific
5. move all of the stuff from opengl/* that isn't GL-specific into gpu/
(note: opengl/gl_utils.h became opengl/utils.h)
6. rename vo_opengl to vo_gpu
7. to handle window screenshots, the short-term approach was to just add
it to ra_swchain_fns. Long term (and for vulkan) this has to be moved to
ra itself (and vo_gpu altered to compensate), but this was a stop-gap
measure to prevent this commit from getting too big
8. move ra->fns->flush to ra_gl_ctx instead
9. some other minor changes that I've probably already forgotten
Note: This is one half of a major refactor, the other half of which is
provided by rossy's following commit. This commit enables support for
all linux platforms, while his version enables support for all non-linux
platforms.
Note 2: vo_opengl_cb.c also re-uses ra_gl_ctx so it benefits from the
--opengl- options like --opengl-early-flush, --opengl-finish etc. Should
be a strict superset of the old functionality.
Disclaimer: Since I have no way of compiling mpv on all platforms, some
of these ports were done blindly. Specifically, the blind ports included
context_mali_fbdev.c and context_rpi.c. Since they're both based on
egl_helpers, the port should have gone smoothly without any major
changes required. But if somebody complains about a compile error on
those platforms (assuming anybody actually uses them), you know where to
complain.