We've got an ungodly amount of OPT_REPLACED and OPT_REMOVED sitting
around in the code. This is harmless, but the vast majority of these are
ancient. 26f4f18c06 is the last commit
that touched the majority of these and of course that only changed how
options were declared so all of this stuff was deprecated even before
that. No use in keeping these, so just delete them all. As an aside,
there was actually a cocoa_opts but it had only a single option which
was replaced by something else and empty otherwise. So that entire thing
was just simply removed. OPT_REPLACED/OPT_REMOVED declarations that were
added in 0.35 or later were kept as is.
This is motivated by a need to access it from vo_gpu_next's opengl
wrapping code, and justified by it being an inherent property of the GL
context itself,
c784820454 introduced a bool option type
as a replacement for the flag type, but didn't actually transition and
remove the flag type because it would have been too much mundane work.
A bit of a personal pet peeve. vulkan, opengl, and wlshm all had
different methods for doing wayland's "check for visibility before
drawing" thing. The specific backend doesn't matter in this case and the
logic should all be shared. Additionally, the external swapchain that
the opengl code on wayland uses is done away with and it instead copies
vulkan by using a param. This keeps things looking more uniform across
backends and also makes it easier to extend to other platforms (see the
next couple of commits).
nvidia follow the OpenGL spec very strictly, with two particular
consequences:
* They will give you the exact context version that you ask for,
rather than the highest possible version that meets your request.
* They will hide extensions that the specs say require a higher
version than you request, even if it's technically possible to
provide the extension at lower versions.
In our case, we really want a variety of extensions, particularly
compute shaders that are only available in 4.2 or higher. That means
that we must explicitly include a high enough version in our list of
versions to check for us to be able to get a 'good' enough context.
As for which version? We restore the 4.4 version that we had in the
old version selection logic. This is the highest version we ever asked
for, and we have separate logic that clamps the GLSL version to 4.4,
so anything newer wouldn't make a difference.
This case was added in 662c793a55
for use in vo_gpu_next as a visibility test before rendering a frame.
The OpenGL context doesn't have this so it just returns true.
The ra_gl_ctx_test_version() helper is quite clunky, in that it pushes a
simple check too deep into the call chain. As such it makes it hard to
reason, let alone have the GLX and EGL code paths symmetrical.
Introduce a simple helper ra_gl_ctx_get_glesmode() which returns the
current glesmode, so the platforms can clearly reason about should and
should not be executed.
v2:
- mpgl_preferred_gl_versions -> mpgl_min_required_gl_versions
- 320 -> 300 (in glx code path)
Signed-off-by: Emil Velikov <emil.l.velikov@gmail.com>
As the documentation of the toggle says - the implementation can (and
will actually if they follow the GLX/EGL spec) return context version
greater than the one requested.
This happens with all Mesa drivers that I've tested as well as the
Nvidia binary drivers.
This toggle seems like a workaround for buggy drivers, yet it's lacking
context about the vendor and version.
Remove it for now - I'll be happy to reinstate it (partially or in full)
as we get concrete details.
This allows us to simplify ra_gl_ctx_test_version() making the whole
context creation business easier to follow by mere mortals.
Signed-off-by: Emil Velikov <emil.l.velikov@gmail.com>
Currently mpv requires a bare minimum of GL 2.1, although it tries to
use 3.2+ core contexts when possible.
The GLX and EGL spec effectively guarantee that the implementation will
give you the highest compatible version possible. In other words:
Requesting 3.2 core profile will always give you core profile and the
version will be in the 3.2 .. 4.6 range - as supported by the drivers.
Similarly for 2.1 - implementation will give you either:
- 2.1 .. 3.1, or
- 3.2 .. 4.6 compat profile
This has been verified against the Mesa drivers (i965, iris, swrast) and
Nvidia binary drivers.
As such, drop the list to 320, 210 and terminating 0.
v2:
- mpgl_preferred_gl_versions -> mpgl_min_required_gl_versions
- update ^^ comment
Signed-off-by: Emil Velikov <emil.l.velikov@gmail.com>
In theory this mostly happens automatically, especially after the 5
vsync limit disables this already. But if we uninit before 5 vsyncs are
rendered, this can get left in a dangling 'enabled' state, which leaks a
debug report callback.
Always explicitly disable it just to be on the safe side.
Change all OPT_* macros such that they don't define the entire m_option
initializer, and instead expand only to a part of it, which sets certain
fields. This requires changing almost every option declaration, because
they all use these macros. A declaration now always starts with
{"name", ...
followed by designated initializers only (possibly wrapped in macros).
The OPT_* macros now initialize the .offset and .type fields only,
sometimes also .priv and others.
I think this change makes the option macros less tricky. The old code
had to stuff everything into macro arguments (and attempted to allow
setting arbitrary fields by letting the user pass designated
initializers in the vararg parts). Some of this was made messy due to
C99 and C11 not allowing 0-sized varargs with ',' removal. It's also
possible that this change is pointless, other than cosmetic preferences.
Not too happy about some things. For example, the OPT_CHOICE()
indentation I applied looks a bit ugly.
Much of this change was done with regex search&replace, but some places
required manual editing. In particular, code in "obscure" areas (which I
didn't include in compilation) might be broken now.
In wayland_common.c the author of some option declarations confused the
flags parameter with the default value (though the default value was
also properly set below). I fixed this with this change.
This was mostly unused, and has certain problems. Just get rid of it.
It was still used in CDDA (--cdda-span) and a debug option for OpenGL
(--opengl-check-pattern). Replace both of these with 2 options, where
each sets the start/end values of the former span. Both were
undocumented somehow (normally we require all options to be documented),
so I'm not caring about compatibility, and not bothering to add it to
the API changelog.
Use the extension to compute the (hopefully correct) video delay and
vsync phase.
This is very fuzzy, because the latency will suddenly be applied after
some frames have already been shown. This means there _will_ be "jumps"
in the time accounting, which can lead to strange effects at start of
playback (such as making initial "dropped" etc. frames worse). The only
reasonable way to fix this would be running a few dummy frame swaps at
start of playback until the latency is known. The same happens when
unpausing.
This only affects display-sync mode.
Correct function was not confirmed. It only "looks right". I don't have
the equipment to make scientifically correct measurements.
A potentially bad thing is that we trust the timestamps we're receiving.
Out of bounds timestamps could wreak havoc. On the other hand, this will
probably cause the higher level code to panic and just disable DS.
As a further caveat, this makes a bunch of assumptions about UST
timestamps. If there are delayed frames (i.e. we skipped one or more
vsyncs), the latency logic is mostly reset. There is no attempt to make
the vo.c skipped vsync logic to use this. Also, the latency computation
determines a vsync duration, and there's no effort to reconcile or share
the vo.c logic for determining vsync duration.
Hardware decoding things often need access to additional handles from
the windowing system, such as the X11 or Wayland display when using
vaapi. The opengl-cb had nothing dedicated for this, and used the weird
GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not
officially registered with OpenGL).
This was awkward, and a pain due to having to emulate GL context
behavior (like needing a TLS variable to store context for the pseudo GL
extension function). In addition (and not inherently due to this), we
could pass only one resource from mpv builtin context backends to
hwdecs. It was also all GL specific.
Replace this with a newer mechanism. It works for all RA backends, not
just GL. the API user can explicitly pass the objects at init time via
mpv_render_context_create(). Multiple resources are naturally possible.
The API uses MPV_RENDER_PARAM_* defines, but internally we use strings.
This is done for 2 reasons: 1. trying to leave libmpv and internal
mechanisms decoupled, 2. not having to add public API for some of the
internal resource types (especially D3D/GL interop stuff).
To remain sane, drop support for obscure half-working opengl-cb things,
like the DRM interop (was missing necessary things), the RPI window
thing (nobody used it), and obscure D3D interop things (not needed with
ANGLE, others were undocumented). In order not to break ABI and the C
API, we don't remove the associated structs from opengl_cb.h.
The parts which are still needed (in particular DRM interop) needs to be
ported to the render API.
There is now a better way. Reading the font framebuffer was always a
hack. The new code via VOCTRL_SCREENSHOT renders it into a FBO, which
does not come with the disadvantages of reading the front buffer (like
not being supported by GLES, possibly black regions due to overlapping
windows on some systems).
For now keep VOCTRL_SCREENSHOT_WIN on the VO level, because there are
still some lesser VOs and backends that use it.
Using the GL renderer for color conversion will make sure screenshots
will use the same conversion as normal video rendering. It can do this
for all types of screenshots.
The logic when to write 16 bit PNGs changes. To approximate the old
behavior, we decide by looking whether the source video format has more
than 8 bits per component. We apply this logic even for window
screenshots. Also, 16 bit PNGs now always include an unused alpha
channel. The reason is that FFmpeg has RGB48 and RGBA64 formats, but no
RGB064. RGB48 is 3 bytes and usually not supported by GPUs for
rendering, so we have to use RGBA64, which forces an alpha channel.
Will break for users who use --target-trc and similar options.
I considered creating a new gl_video context, but it could double GPU
memory use, so I didn't.
This uses FBOs instead of glGetTexImage(), because that increases the
chance it could work on GLES (e.g. ANGLE). Untested. No support for the
Vulkan and D3D11 backends yet.
Fixes#5498. Also fixes#5240, because the code for reading back is not
used with the new code path.
Due to the plethora of historical baggage from different eras getting
confusing, I decided to simplify and unify the struct organization and
naming scheme.
Structs that got renamed:
1. fbodst -> ra_fbo (and moved to gpu/context.h)
2. fbotex -> removed (redundant after 2af2fa7a)
3. fbosurface -> surface
4. img_tex -> image
In addition to these structs being renamed, all of the names have been
made consistent. The new scheme is as follows:
struct image img;
struct ra_tex *tex;
struct ra_fbo fbo;
This also affects derived names, e.g. indirect_fbo -> indirect_tex.
Notably also, finish_pass_fbo -> finish_pass_tex and finish_pass_direct
-> finish_pass_fbo.
The new equivalent of fbotex_change() is called ra_tex_resize().
This commit (should) contain no logic changes, just renaming a bunch of
crap.
This is done in several steps:
1. refactor MPGLContext -> struct ra_ctx
2. move GL-specific stuff in vo_opengl into opengl/context.c
3. generalize context creation to support other APIs, and add --gpu-api
4. rename all of the --opengl- options that are no longer opengl-specific
5. move all of the stuff from opengl/* that isn't GL-specific into gpu/
(note: opengl/gl_utils.h became opengl/utils.h)
6. rename vo_opengl to vo_gpu
7. to handle window screenshots, the short-term approach was to just add
it to ra_swchain_fns. Long term (and for vulkan) this has to be moved to
ra itself (and vo_gpu altered to compensate), but this was a stop-gap
measure to prevent this commit from getting too big
8. move ra->fns->flush to ra_gl_ctx instead
9. some other minor changes that I've probably already forgotten
Note: This is one half of a major refactor, the other half of which is
provided by rossy's following commit. This commit enables support for
all linux platforms, while his version enables support for all non-linux
platforms.
Note 2: vo_opengl_cb.c also re-uses ra_gl_ctx so it benefits from the
--opengl- options like --opengl-early-flush, --opengl-finish etc. Should
be a strict superset of the old functionality.
Disclaimer: Since I have no way of compiling mpv on all platforms, some
of these ports were done blindly. Specifically, the blind ports included
context_mali_fbdev.c and context_rpi.c. Since they're both based on
egl_helpers, the port should have gone smoothly without any major
changes required. But if somebody complains about a compile error on
those platforms (assuming anybody actually uses them), you know where to
complain.
These can either be invoked as dispatch_compute to do a single
computation, or finish_pass_fbo (after setting compute_size_minimum) to
render to a new texture using a compute shader. To make this stuff all
work transparently, we try really, really hard to make compute shaders
as identical to fragment shaders as possible in their behavior.
Can be enabled via --vd-lavc-dr=yes. See manpage additions for what it
does.
This reminds of the MPlayer -dr flag, but the implementation is
completely different. It's the same basic concept: letting the decoder
render into a GPU buffer to avoid a copy. Unlike MPlayer, this doesn't
try to go through filters (libavfilter doesn't support this anyway).
Unless a filter can work in-place, DR will be silently disabled. MPlayer
had very complex semantics about buffer types and management (which
apparently nobody ever understood) and weird restrictions that mostly
limited it to mpeg2 style codecs. The mpv code does not do any of this,
and just lets the decoder allocate an arbitrary number of untyped
images. (No MPlayer code was used.)
Parts of the code based on work by atomnuker (starting point for the
generic code) and haasn (some GL definitions, some basic PBO code, and
correct fencing).
This is more efficient on my machine (nvidia), but only when applied to
groups of exactly 4 texels. So we switch to the more efficient
textureGather for groups of 4. Some notes:
- textureGatherOffset seems to be faster than textureGather by a
non-negligible amount, but for some reason, textureOffset is still
slower than a straight-up texture
- textureGather* requires GLSL 400; and at least on nvidia, this
requires actually allocating a GL 4.0 context.
- the code in opengl/common.c that clamped the GLSL version to 330 is
deprecated, because the old user shader style has been removed
completely in the meantime
- To combat the growing complexity of the polar sampling code, we drop
the antiringing functionality from EWA shaders completely, since it
never really worked well for EWA to begin with. (Horrific artifacting)
This partially reverts the change from a longer time ago to always build
DXVA2 and D3D11VA together.
To make it simpler, we change the following:
- building with ANGLE headers is now required to build D3D hwaccels
- if DXVA2 is enabled, D3D11VA is still forcibly built
- the CLI vo_opengl ANGLE backend is now under --egl-angle-win32
This is done to reduce the dependency mess slightly.
TLS is a headache. We should avoid it if we can.
The involved mechanism is unfortunately entangled with the unfortunate
libmpv API for returning pointers to host API objects. This has to be
kept until we change the API somehow.
Practically untested out of pure laziness. I'm sure I'll get a bunch of
reports if it's broken.
Wayland is still too amateurish, and multiple features don't work,
including critical ones. There is no solution in sight, so prefer X11.
(Which seems to mostly work ok via xwayland.)
Once all problems are solved, the defaults can be switched back.
Might be useful for other backends too. For context_vdpau, resize
handling, presentation, and handling the mapping state becomes somewhat
less awkward.
As the manpage says, this has no value other than adding bugs.
It uses code based on context_x11.c, and basically does very stripped
down context creation (no alpha support etc.). It uses vdpau for
display, and maps vdpau output surfaces as FBOs to render into them.
This might be good to experiment with asynchronous presentation. For
now, it presents synchronously, with a 4 frame delay (which should whack
off A/V sync). The forced 4 frame delay is probably also why interaction
feels slower.
There are some weird vdpau errors on resizing and uninit. No idea what
causes them.
Should have done this 1000 years ago. Now GL backends can use mp_log
macros directly on the MPGLContext, instead of doing stupid things like
for example MP_WARN(ctx->vo, ...).
This replaces the old backend that exclusively used EGL windowing with
one that can also use ANGLE's ability to render to directly to a
texture. The advantage of this is that it allows mpv to create the swap
chain itself and this allows mpv to use a flip-mode swap chain on a HWND
(which avoids problems with DirectComposition) and to use a longer swap
chain that has six backbuffers by default (which reportedly fixes
problems with rendering 24fps video on 24Hz monitors.)
Also, "screenshot window" should now work on DXGI 1.2 and up (Windows 8
and up.)
vo_opengl used to have it as sub-option, which made it very hard to pass
down option values to backends in a generic way (even if these options
were completely backend-specific). For --opengl-dcomposition we used a
VOFLAG to deal with this. Fortunately, sub-options are gone, and we can
just add it as global option.
Move the option to context_angle.c and add it as global option. I
thought about adding a mechanism to let backends declare options, which
would get magically picked up my m_config instead of having to add them
to the global option list manually (similar to VO vo_driver.options),
but decided against this complexity just for 1 or 2 backends. Likewise,
it could have been added as a single option to avoid the boilerplate of
an option struct, but then again there are probably going to be more
angle suboptions, and it's cleaner.
Thread-local storage in GCC is platform-specific, and some platforms that
are otherwise perfectly capable of running mpv may lack TLS support in GCC.
This change adds a test for GCC variant of TLS and relies on its result
instead of assumption.
Provided that LLVM's `__thread` support is similar to GCC, the test is
called "GCC/LLVM TLS".
Signed-off-by: wm4 <wm4@nowhere>
There were multiple values under M_OPT_EXIT (M_OPT_EXIT-n for n>=0).
Somehow M_OPT_EXIT-n either meant error code n (with n==0 no error?), or
the number of option valus consumed (0 or 1). The latter is MPlayer
legacy, which left it to the option type parsers to determine whether an
option took a value or not. All of this was changed in mpv, by requiring
the user to use explicit syntax ("--opt=val" instead of "-opt val").
In any case, the n value wasn't even used (anymore), so rip this all
out. Now M_OPT_EXIT-1 doesn't mean anything, and could be used by a new
error code.
Minimal support just for testing.
Only the window surface creation (including size determination) is
really platform specific, so this could be some generic thing with
platform-specific support as some sort of sub-driver, but on the other
hand I don't see much of a need for such a thing.
While most of the fbdev usage is done by the EGL driver, using this
fbdev ioctl is apparently the only way to get the display resolution.
Add a function to egl_helpers.c for creating an EGL context and make
context_x11egl.c use it. This is meant to be generic, and should work
with other windowing APIs as well. The other EGL-using code in mpv can
be switched to it.
The consequence of this was that e.g. hardware decoding with VAAPI-EGL
could sometimes not work if the compiler didn't support C11. (Although I
found this one on RPI, which also uses this mechanism.)
It forces es2 mode on ANGLE. Only useful for testing. Since the normal
"angle" backend already falls back to es2 if es3 does not work, this new
backend always exit when autoprobing it.
Until now, we have tried to create a GL 3.0 context. The main reason for
this is that many Mesa-based drivers did not support anything better.
But some drivers (Mesa AMD) will not report a higher OpenGL version,
because their compatibility mode is restricted. While later GL features
are reported as extensions just fine, there doesn't seem to be a way to
determine or enable higher GLSL versions.
Add some more shitty hacks to try to deal with this messed up situation,
and try to probe each interesting GL version separately (starting with
3.3, then 3.2 etc.). Other backends might suffer from similar problems,
but these will have to deal with it on their own.
Probably fixes#2938, or maybe not.
Do this to make the license situation less confusing.
This change should be of no consequence, since LGPL is compatible with
GPL anyway, and making it LGPL-only does not restrict the use with GPL
code.
Additionally, the wording implies that this is allowed, and that we can
just remove the GPL part.
gcc 4.8 does not support C11 thread local storage. This is a bit
annoying, so add a hack to use the gcc specific __thread extension if
C11 TLS is not available.
(This is used for the extremely silly mpv-internal way hwdec modules
access some platform specific handles. Disabling it simply made
hwdec_vaegl.c always fail initialization.)
Fixes#2631.
Now common.c only contains the code for the function loader, while
context.c contains the backend loader/dispatcher.
Not calling it "backend.c", because the central struct is called
MPGLContext.