mp_image_pool: make reference counting thread-safe

See previous commits. Also simplify this thing: 2 flags per pool image
are enough to avoid a weird central refcount and an associated shared
object keeping the refcount. We could even just store these two flags
in the mp_image itself (like in mp_image.flags or mp_image.priv), but
let's not for the sake of readability.
This commit is contained in:
wm4 2013-07-28 00:10:58 +02:00
parent a9a6cf3b6c
commit c28bafcfb6
2 changed files with 70 additions and 40 deletions

View File

@ -16,6 +16,10 @@
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <stddef.h>
#include <stdbool.h>
#include <assert.h>
#include "talloc.h"
@ -25,18 +29,39 @@
#include "mp_image_pool.h"
struct pool_trampoline {
struct mp_image_pool *pool;
int refcount;
#if HAVE_PTHREADS
#include <pthread.h>
static pthread_mutex_t pool_mutex = PTHREAD_MUTEX_INITIALIZER;
#define pool_lock() pthread_mutex_lock(&pool_mutex)
#define pool_unlock() pthread_mutex_unlock(&pool_mutex)
#else
#define pool_lock() 0
#define pool_unlock() 0
#endif
// Thread-safety: the pool itself is not thread-safe, but pool-allocated images
// can be referenced and unreferenced from other threads. (As long as compiled
// with pthreads, and the image destructors are thread-safe.)
struct mp_image_pool {
int max_count;
struct mp_image **images;
int num_images;
};
// Used to gracefully handle the case when the pool is freed while image
// references allocated from the image pool are still held by someone.
struct image_flags {
// If both of these are false, the image must be freed.
bool referenced; // outside mp_image reference exists
bool pool_alive; // the mp_image_pool references this
};
static int image_pool_destructor(void *ptr)
{
struct mp_image_pool *pool = ptr;
mp_image_pool_clear(pool);
pool->trampoline->pool = NULL;
if (!pool->trampoline->refcount)
talloc_free(pool->trampoline);
return 0;
}
@ -46,9 +71,6 @@ struct mp_image_pool *mp_image_pool_new(int max_count)
talloc_set_destructor(pool, image_pool_destructor);
*pool = (struct mp_image_pool) {
.max_count = max_count,
.trampoline = talloc_struct(NULL, struct pool_trampoline, {
.pool = pool,
}),
};
return pool;
}
@ -57,32 +79,33 @@ void mp_image_pool_clear(struct mp_image_pool *pool)
{
for (int n = 0; n < pool->num_images; n++) {
struct mp_image *img = pool->images[n];
if (img->priv) {
// Image data is being used - detach from the pool, and make it
// free itself when pool_free_image() is called
img->priv = talloc_struct(NULL, struct pool_trampoline, {
.refcount = 1,
});
} else {
struct image_flags *it = img->priv;
bool referenced;
pool_lock();
assert(it->pool_alive);
it->pool_alive = false;
referenced = it->referenced;
pool_unlock();
if (!referenced)
talloc_free(img);
}
}
pool->num_images = 0;
pool->trampoline->refcount = 0;
}
static void pool_free_image(void *ptr)
// This is the only function that is allowed to run in a different thread.
// (Consider passing an image to another thread, which frees it.)
static void unref_image(void *ptr)
{
struct mp_image *img = ptr;
struct pool_trampoline *trampoline = img->priv;
trampoline->refcount--;
img->priv = NULL;
if (!trampoline->pool) {
// pool was free'd while image reference was still held
if (trampoline->refcount == 0)
talloc_free(trampoline);
struct image_flags *it = img->priv;
bool alive;
pool_lock();
assert(it->referenced);
it->referenced = false;
alive = it->pool_alive;
pool_unlock();
if (!alive)
talloc_free(img);
}
}
// Return a new image of given format/size. The only difference to
@ -93,22 +116,35 @@ struct mp_image *mp_image_pool_get(struct mp_image_pool *pool, unsigned int fmt,
int w, int h)
{
struct mp_image *new = NULL;
pool_lock();
for (int n = 0; n < pool->num_images; n++) {
struct mp_image *img = pool->images[n];
if (!img->priv && img->imgfmt == fmt && img->w == w && img->h == h) {
new = img;
break;
struct image_flags *it = img->priv;
assert(it->pool_alive);
if (!it->referenced) {
if (img->imgfmt == fmt && img->w == w && img->h == h) {
new = img;
break;
}
}
}
pool_unlock();
if (!new) {
if (pool->num_images >= pool->max_count)
mp_image_pool_clear(pool);
new = mp_image_alloc(fmt, w, h);
struct image_flags *it = talloc_ptrtype(new, it);
*it = (struct image_flags) { .pool_alive = true };
new->priv = it;
MP_TARRAY_APPEND(pool, pool->images, pool->num_images, new);
}
pool->trampoline->refcount++;
new->priv = pool->trampoline;
return mp_image_new_custom_ref(new, new, pool_free_image);
struct image_flags *it = new->priv;
assert(!it->referenced && it->pool_alive);
it->referenced = true;
return mp_image_new_custom_ref(new, new, unref_image);
}
// Like mp_image_new_copy(), but allocate the image out of the pool.

View File

@ -1,13 +1,7 @@
#ifndef MPV_MP_IMAGE_POOL_H
#define MPV_MP_IMAGE_POOL_H
struct mp_image_pool {
int max_count;
struct mp_image **images;
int num_images;
struct pool_trampoline *trampoline;
};
struct mp_image_pool;
struct mp_image_pool *mp_image_pool_new(int max_count);
struct mp_image *mp_image_pool_get(struct mp_image_pool *pool, unsigned int fmt,