vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
/*
|
|
|
|
* This file is part of mpv.
|
|
|
|
*
|
|
|
|
* mpv is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* mpv is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "options/m_config.h"
|
2018-11-10 11:53:33 +00:00
|
|
|
#include "video/out/placebo/ra_pl.h"
|
2017-09-13 01:09:48 +00:00
|
|
|
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
#include "context.h"
|
|
|
|
#include "utils.h"
|
|
|
|
|
|
|
|
struct vulkan_opts {
|
|
|
|
char *device; // force a specific GPU
|
|
|
|
int swap_mode;
|
2018-11-10 11:53:33 +00:00
|
|
|
int queue_count;
|
|
|
|
int async_transfer;
|
|
|
|
int async_compute;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static int vk_validate_dev(struct mp_log *log, const struct m_option *opt,
|
options: Make validation and help possible for all option types
Today, validation is only possible for string type options. But there's
no particular reason why it needs to be restricted in this way, and
there are potential uses, to allow other options to be validated
without forcing the option to have to reimplement parsing from
scratch.
The first part, simply making the validation function an explicit
field instead of overloading priv is simple enough. But if we only do
that, then the validation function still needs to deal with the raw
pre-parsed string. Instead, we want to allow the value to be parsed
before it is validated. That in turn leads to us having validator
functions that should be type aware. Unfortunately, that means we need
to keep the explicit macro like OPT_STRING_VALIDATE() as a way to
enforce the correct typing of the function. Otherwise, we'd have to
have the validator take a void * and hope the implementation can cast
it correctly.
For help, we don't have this problem, as help doesn't look at the
value.
Then, we turn validators that are really help generators into explicit
help functions and where a validator is help + validation, we split
them into two parts.
I have, however, left functions that need to query information for both
help and validation as single functions to avoid code duplication.
In this change, I have not added an other OPT_FOO_VALIDATE() macros as
they are not needed, but I will add some in a separate change to
illustrate the pattern.
2021-02-21 00:41:44 +00:00
|
|
|
struct bstr name, const char **value)
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
{
|
options: Make validation and help possible for all option types
Today, validation is only possible for string type options. But there's
no particular reason why it needs to be restricted in this way, and
there are potential uses, to allow other options to be validated
without forcing the option to have to reimplement parsing from
scratch.
The first part, simply making the validation function an explicit
field instead of overloading priv is simple enough. But if we only do
that, then the validation function still needs to deal with the raw
pre-parsed string. Instead, we want to allow the value to be parsed
before it is validated. That in turn leads to us having validator
functions that should be type aware. Unfortunately, that means we need
to keep the explicit macro like OPT_STRING_VALIDATE() as a way to
enforce the correct typing of the function. Otherwise, we'd have to
have the validator take a void * and hope the implementation can cast
it correctly.
For help, we don't have this problem, as help doesn't look at the
value.
Then, we turn validators that are really help generators into explicit
help functions and where a validator is help + validation, we split
them into two parts.
I have, however, left functions that need to query information for both
help and validation as single functions to avoid code duplication.
In this change, I have not added an other OPT_FOO_VALIDATE() macros as
they are not needed, but I will add some in a separate change to
illustrate the pattern.
2021-02-21 00:41:44 +00:00
|
|
|
struct bstr param = bstr0(*value);
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
int ret = M_OPT_INVALID;
|
|
|
|
VkResult res;
|
|
|
|
|
|
|
|
// Create a dummy instance to validate/list the devices
|
|
|
|
VkInstanceCreateInfo info = {
|
|
|
|
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
|
|
|
|
};
|
|
|
|
|
|
|
|
VkInstance inst;
|
|
|
|
VkPhysicalDevice *devices = NULL;
|
|
|
|
uint32_t num = 0;
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
res = vkCreateInstance(&info, NULL, &inst);
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
if (res != VK_SUCCESS)
|
2018-10-21 06:57:42 +00:00
|
|
|
goto done;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
|
|
|
res = vkEnumeratePhysicalDevices(inst, &num, NULL);
|
|
|
|
if (res != VK_SUCCESS)
|
2018-10-21 06:57:42 +00:00
|
|
|
goto done;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
|
|
|
devices = talloc_array(NULL, VkPhysicalDevice, num);
|
|
|
|
vkEnumeratePhysicalDevices(inst, &num, devices);
|
|
|
|
if (res != VK_SUCCESS)
|
2018-10-21 06:57:42 +00:00
|
|
|
goto done;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
|
|
|
bool help = bstr_equals0(param, "help");
|
|
|
|
if (help) {
|
|
|
|
mp_info(log, "Available vulkan devices:\n");
|
|
|
|
ret = M_OPT_EXIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < num; i++) {
|
|
|
|
VkPhysicalDeviceProperties prop;
|
|
|
|
vkGetPhysicalDeviceProperties(devices[i], &prop);
|
|
|
|
|
|
|
|
if (help) {
|
|
|
|
mp_info(log, " '%s' (GPU %d, ID %x:%x)\n", prop.deviceName, i,
|
|
|
|
(unsigned)prop.vendorID, (unsigned)prop.deviceID);
|
|
|
|
} else if (bstr_equals0(param, prop.deviceName)) {
|
|
|
|
ret = 0;
|
2018-10-21 06:57:42 +00:00
|
|
|
goto done;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!help)
|
|
|
|
mp_err(log, "No device with name '%.*s'!\n", BSTR_P(param));
|
|
|
|
|
2018-10-21 06:57:42 +00:00
|
|
|
done:
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
talloc_free(devices);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define OPT_BASE_STRUCT struct vulkan_opts
|
|
|
|
const struct m_sub_options vulkan_conf = {
|
|
|
|
.opts = (const struct m_option[]) {
|
options: change option macros and all option declarations
Change all OPT_* macros such that they don't define the entire m_option
initializer, and instead expand only to a part of it, which sets certain
fields. This requires changing almost every option declaration, because
they all use these macros. A declaration now always starts with
{"name", ...
followed by designated initializers only (possibly wrapped in macros).
The OPT_* macros now initialize the .offset and .type fields only,
sometimes also .priv and others.
I think this change makes the option macros less tricky. The old code
had to stuff everything into macro arguments (and attempted to allow
setting arbitrary fields by letting the user pass designated
initializers in the vararg parts). Some of this was made messy due to
C99 and C11 not allowing 0-sized varargs with ',' removal. It's also
possible that this change is pointless, other than cosmetic preferences.
Not too happy about some things. For example, the OPT_CHOICE()
indentation I applied looks a bit ugly.
Much of this change was done with regex search&replace, but some places
required manual editing. In particular, code in "obscure" areas (which I
didn't include in compilation) might be broken now.
In wayland_common.c the author of some option declarations confused the
flags parameter with the default value (though the default value was
also properly set below). I fixed this with this change.
2020-03-14 20:28:01 +00:00
|
|
|
{"vulkan-device", OPT_STRING_VALIDATE(device, vk_validate_dev)},
|
|
|
|
{"vulkan-swap-mode", OPT_CHOICE(swap_mode,
|
|
|
|
{"auto", -1},
|
|
|
|
{"fifo", VK_PRESENT_MODE_FIFO_KHR},
|
|
|
|
{"fifo-relaxed", VK_PRESENT_MODE_FIFO_RELAXED_KHR},
|
|
|
|
{"mailbox", VK_PRESENT_MODE_MAILBOX_KHR},
|
|
|
|
{"immediate", VK_PRESENT_MODE_IMMEDIATE_KHR})},
|
|
|
|
{"vulkan-queue-count", OPT_INT(queue_count), M_RANGE(1, 8)},
|
|
|
|
{"vulkan-async-transfer", OPT_FLAG(async_transfer)},
|
|
|
|
{"vulkan-async-compute", OPT_FLAG(async_compute)},
|
2022-10-05 14:35:14 +00:00
|
|
|
{"vulkan-disable-events", OPT_REMOVED("Unused")},
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
{0}
|
|
|
|
},
|
2017-10-07 19:36:16 +00:00
|
|
|
.size = sizeof(struct vulkan_opts),
|
|
|
|
.defaults = &(struct vulkan_opts) {
|
2018-11-10 11:53:33 +00:00
|
|
|
.swap_mode = -1,
|
|
|
|
.queue_count = 1,
|
|
|
|
.async_transfer = true,
|
|
|
|
.async_compute = true,
|
2017-10-07 19:36:16 +00:00
|
|
|
},
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct priv {
|
|
|
|
struct mpvk_ctx *vk;
|
|
|
|
struct vulkan_opts *opts;
|
2019-10-07 20:58:36 +00:00
|
|
|
struct ra_vk_ctx_params params;
|
2018-11-10 11:53:33 +00:00
|
|
|
struct ra_tex proxy_tex;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
};
|
|
|
|
|
2017-09-13 01:09:48 +00:00
|
|
|
static const struct ra_swapchain_fns vulkan_swapchain;
|
|
|
|
|
|
|
|
struct mpvk_ctx *ra_vk_ctx_get(struct ra_ctx *ctx)
|
|
|
|
{
|
|
|
|
if (ctx->swapchain->fns != &vulkan_swapchain)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
struct priv *p = ctx->swapchain->priv;
|
|
|
|
return p->vk;
|
|
|
|
}
|
|
|
|
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
void ra_vk_ctx_uninit(struct ra_ctx *ctx)
|
|
|
|
{
|
2018-11-10 11:53:33 +00:00
|
|
|
if (!ctx->swapchain)
|
|
|
|
return;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
struct priv *p = ctx->swapchain->priv;
|
|
|
|
struct mpvk_ctx *vk = p->vk;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
if (ctx->ra) {
|
|
|
|
pl_gpu_finish(vk->gpu);
|
2021-10-23 19:04:51 +00:00
|
|
|
pl_swapchain_destroy(&vk->swapchain);
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
ctx->ra->fns->destroy(ctx->ra);
|
|
|
|
ctx->ra = NULL;
|
|
|
|
}
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
vk->gpu = NULL;
|
|
|
|
pl_vulkan_destroy(&vk->vulkan);
|
|
|
|
TA_FREEP(&ctx->swapchain);
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool ra_vk_ctx_init(struct ra_ctx *ctx, struct mpvk_ctx *vk,
|
2019-10-07 20:58:36 +00:00
|
|
|
struct ra_vk_ctx_params params,
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
VkPresentModeKHR preferred_mode)
|
|
|
|
{
|
|
|
|
struct ra_swapchain *sw = ctx->swapchain = talloc_zero(NULL, struct ra_swapchain);
|
|
|
|
sw->ctx = ctx;
|
|
|
|
sw->fns = &vulkan_swapchain;
|
|
|
|
|
|
|
|
struct priv *p = sw->priv = talloc_zero(sw, struct priv);
|
|
|
|
p->vk = vk;
|
2019-10-07 20:58:36 +00:00
|
|
|
p->params = params;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
p->opts = mp_get_config_group(p, ctx->global, &vulkan_conf);
|
|
|
|
|
2022-02-03 15:20:18 +00:00
|
|
|
assert(vk->pllog);
|
2018-11-10 11:53:33 +00:00
|
|
|
assert(vk->vkinst);
|
2022-02-03 15:20:18 +00:00
|
|
|
vk->vulkan = pl_vulkan_create(vk->pllog, &(struct pl_vulkan_params) {
|
2018-11-10 11:53:33 +00:00
|
|
|
.instance = vk->vkinst->instance,
|
2022-03-13 22:38:05 +00:00
|
|
|
.get_proc_addr = vk->vkinst->get_proc_addr,
|
2018-11-10 11:53:33 +00:00
|
|
|
.surface = vk->surface,
|
|
|
|
.async_transfer = p->opts->async_transfer,
|
|
|
|
.async_compute = p->opts->async_compute,
|
|
|
|
.queue_count = p->opts->queue_count,
|
2019-08-18 17:11:02 +00:00
|
|
|
.device_name = p->opts->device,
|
2018-11-10 11:53:33 +00:00
|
|
|
});
|
|
|
|
if (!vk->vulkan)
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
goto error;
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
vk->gpu = vk->vulkan->gpu;
|
|
|
|
ctx->ra = ra_create_pl(vk->gpu, ctx->log);
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
if (!ctx->ra)
|
|
|
|
goto error;
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
// Create the swapchain
|
2019-10-07 20:58:36 +00:00
|
|
|
struct pl_vulkan_swapchain_params pl_params = {
|
2018-11-10 11:53:33 +00:00
|
|
|
.surface = vk->surface,
|
|
|
|
.present_mode = preferred_mode,
|
2019-09-28 08:26:23 +00:00
|
|
|
.swapchain_depth = ctx->vo->opts->swapchain_depth,
|
2019-12-22 02:55:07 +00:00
|
|
|
// mpv already handles resize events, so gracefully allow suboptimal
|
|
|
|
// swapchains to exist in order to make resizing even smoother
|
|
|
|
.allow_suboptimal = true,
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
};
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
if (p->opts->swap_mode >= 0) // user override
|
2019-10-07 20:58:36 +00:00
|
|
|
pl_params.present_mode = p->opts->swap_mode;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
2021-10-23 19:04:51 +00:00
|
|
|
vk->swapchain = pl_vulkan_create_swapchain(vk->vulkan, &pl_params);
|
|
|
|
if (!vk->swapchain)
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
goto error;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
error:
|
|
|
|
ra_vk_ctx_uninit(ctx);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
bool ra_vk_ctx_resize(struct ra_ctx *ctx, int width, int height)
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
{
|
2018-11-10 11:53:33 +00:00
|
|
|
struct priv *p = ctx->swapchain->priv;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
2021-10-23 19:04:51 +00:00
|
|
|
bool ok = pl_swapchain_resize(p->vk->swapchain, &width, &height);
|
2018-11-10 11:53:33 +00:00
|
|
|
ctx->vo->dwidth = width;
|
|
|
|
ctx->vo->dheight = height;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
return ok;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
}
|
|
|
|
|
2019-12-19 01:11:36 +00:00
|
|
|
char *ra_vk_ctx_get_device_name(struct ra_ctx *ctx)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* This implementation is a bit odd because it has to work even if the
|
|
|
|
* ctx hasn't been initialised yet. A context implementation may need access
|
|
|
|
* to the device name before it can fully initialise the ctx.
|
|
|
|
*/
|
|
|
|
struct vulkan_opts *opts = mp_get_config_group(NULL, ctx->global,
|
|
|
|
&vulkan_conf);
|
|
|
|
char *device_name = talloc_strdup(NULL, opts->device);
|
|
|
|
talloc_free(opts);
|
|
|
|
return device_name;
|
|
|
|
}
|
|
|
|
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
static int color_depth(struct ra_swapchain *sw)
|
|
|
|
{
|
2018-11-10 11:53:33 +00:00
|
|
|
return 0; // TODO: implement this somehow?
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool start_frame(struct ra_swapchain *sw, struct ra_fbo *out_fbo)
|
|
|
|
{
|
|
|
|
struct priv *p = sw->priv;
|
2018-11-10 11:53:33 +00:00
|
|
|
struct pl_swapchain_frame frame;
|
2021-11-04 15:01:24 +00:00
|
|
|
|
2021-11-04 14:42:54 +00:00
|
|
|
bool visible = true;
|
|
|
|
if (p->params.check_visible)
|
|
|
|
visible = p->params.check_visible(sw->ctx);
|
2021-11-04 15:01:24 +00:00
|
|
|
|
|
|
|
// If out_fbo is NULL, this was called from vo_gpu_next. Bail out.
|
|
|
|
if (out_fbo == NULL || !visible)
|
|
|
|
return visible;
|
|
|
|
|
2021-10-23 19:04:51 +00:00
|
|
|
if (!pl_swapchain_start_frame(p->vk->swapchain, &frame))
|
2018-11-10 11:53:33 +00:00
|
|
|
return false;
|
|
|
|
if (!mppl_wrap_tex(sw->ctx->ra, frame.fbo, &p->proxy_tex))
|
2017-09-29 11:52:27 +00:00
|
|
|
return false;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
*out_fbo = (struct ra_fbo) {
|
|
|
|
.tex = &p->proxy_tex,
|
|
|
|
.flip = frame.flipped,
|
|
|
|
};
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
return true;
|
2017-09-28 21:06:56 +00:00
|
|
|
}
|
|
|
|
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
static bool submit_frame(struct ra_swapchain *sw, const struct vo_frame *frame)
|
|
|
|
{
|
|
|
|
struct priv *p = sw->priv;
|
2021-10-23 19:04:51 +00:00
|
|
|
return pl_swapchain_submit_frame(p->vk->swapchain);
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void swap_buffers(struct ra_swapchain *sw)
|
|
|
|
{
|
|
|
|
struct priv *p = sw->priv;
|
2021-10-23 19:04:51 +00:00
|
|
|
pl_swapchain_swap_buffers(p->vk->swapchain);
|
2019-10-07 20:58:36 +00:00
|
|
|
if (p->params.swap_buffers)
|
|
|
|
p->params.swap_buffers(sw->ctx);
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
}
|
|
|
|
|
2019-10-20 17:46:42 +00:00
|
|
|
static void get_vsync(struct ra_swapchain *sw,
|
|
|
|
struct vo_vsync_info *info)
|
|
|
|
{
|
|
|
|
struct priv *p = sw->priv;
|
|
|
|
if (p->params.get_vsync)
|
|
|
|
p->params.get_vsync(sw->ctx, info);
|
|
|
|
}
|
|
|
|
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
static const struct ra_swapchain_fns vulkan_swapchain = {
|
|
|
|
.color_depth = color_depth,
|
|
|
|
.start_frame = start_frame,
|
|
|
|
.submit_frame = submit_frame,
|
|
|
|
.swap_buffers = swap_buffers,
|
2019-10-20 17:46:42 +00:00
|
|
|
.get_vsync = get_vsync,
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
};
|