mpv/sub/img_convert.c

294 lines
9.5 KiB
C
Raw Normal View History

/*
* This file is part of mpv.
*
Relicense some non-MPlayer source files to LGPL 2.1 or later This covers source files which were added in mplayer2 and mpv times only, and where all code is covered by LGPL relicensing agreements. There are probably more files to which this applies, but I'm being conservative here. A file named ao_sdl.c exists in MPlayer too, but the mpv one is a complete rewrite, and was added some time after the original ao_sdl.c was removed. The same applies to vo_sdl.c, for which the SDL2 API is radically different in addition (MPlayer supports SDL 1.2 only). common.c contains only code written by me. But common.h is a strange case: although it originally was named mp_common.h and exists in MPlayer too, by now it contains only definitions written by uau and me. The exceptions are the CONTROL_ defines - thus not changing the license of common.h yet. codec_tags.c contained once large tables generated from MPlayer's codecs.conf, but all of these tables were removed. From demux_playlist.c I'm removing a code fragment from someone who was not asked; this probably could be done later (see commit 15dccc37). misc.c is a bit complicated to reason about (it was split off mplayer.c and thus contains random functions out of this file), but actually all functions have been added post-MPlayer. Except get_relative_time(), which was written by uau, but looks similar to 3 different versions of something similar in each of the Unix/win32/OSX timer source files. I'm not sure what that means in regards to copyright, so I've just moved it into another still-GPL source file for now. screenshot.c once had some minor parts of MPlayer's vf_screenshot.c, but they're all gone.
2016-01-19 17:36:06 +00:00
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Relicense some non-MPlayer source files to LGPL 2.1 or later This covers source files which were added in mplayer2 and mpv times only, and where all code is covered by LGPL relicensing agreements. There are probably more files to which this applies, but I'm being conservative here. A file named ao_sdl.c exists in MPlayer too, but the mpv one is a complete rewrite, and was added some time after the original ao_sdl.c was removed. The same applies to vo_sdl.c, for which the SDL2 API is radically different in addition (MPlayer supports SDL 1.2 only). common.c contains only code written by me. But common.h is a strange case: although it originally was named mp_common.h and exists in MPlayer too, by now it contains only definitions written by uau and me. The exceptions are the CONTROL_ defines - thus not changing the license of common.h yet. codec_tags.c contained once large tables generated from MPlayer's codecs.conf, but all of these tables were removed. From demux_playlist.c I'm removing a code fragment from someone who was not asked; this probably could be done later (see commit 15dccc37). misc.c is a bit complicated to reason about (it was split off mplayer.c and thus contains random functions out of this file), but actually all functions have been added post-MPlayer. Except get_relative_time(), which was written by uau, but looks similar to 3 different versions of something similar in each of the Unix/win32/OSX timer source files. I'm not sure what that means in regards to copyright, so I've just moved it into another still-GPL source file for now. screenshot.c once had some minor parts of MPlayer's vf_screenshot.c, but they're all gone.
2016-01-19 17:36:06 +00:00
* GNU Lesser General Public License for more details.
*
Relicense some non-MPlayer source files to LGPL 2.1 or later This covers source files which were added in mplayer2 and mpv times only, and where all code is covered by LGPL relicensing agreements. There are probably more files to which this applies, but I'm being conservative here. A file named ao_sdl.c exists in MPlayer too, but the mpv one is a complete rewrite, and was added some time after the original ao_sdl.c was removed. The same applies to vo_sdl.c, for which the SDL2 API is radically different in addition (MPlayer supports SDL 1.2 only). common.c contains only code written by me. But common.h is a strange case: although it originally was named mp_common.h and exists in MPlayer too, by now it contains only definitions written by uau and me. The exceptions are the CONTROL_ defines - thus not changing the license of common.h yet. codec_tags.c contained once large tables generated from MPlayer's codecs.conf, but all of these tables were removed. From demux_playlist.c I'm removing a code fragment from someone who was not asked; this probably could be done later (see commit 15dccc37). misc.c is a bit complicated to reason about (it was split off mplayer.c and thus contains random functions out of this file), but actually all functions have been added post-MPlayer. Except get_relative_time(), which was written by uau, but looks similar to 3 different versions of something similar in each of the Unix/win32/OSX timer source files. I'm not sure what that means in regards to copyright, so I've just moved it into another still-GPL source file for now. screenshot.c once had some minor parts of MPlayer's vf_screenshot.c, but they're all gone.
2016-01-19 17:36:06 +00:00
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <assert.h>
#include <libavutil/mem.h>
#include <libavutil/common.h>
#include "mpv_talloc.h"
#include "common/common.h"
#include "img_convert.h"
#include "osd.h"
#include "video/img_format.h"
#include "video/mp_image.h"
#include "video/sws_utils.h"
struct osd_conv_cache {
struct sub_bitmap part[MP_SUB_BB_LIST_MAX];
struct sub_bitmap *parts;
void *scratch;
};
struct osd_conv_cache *osd_conv_cache_new(void)
{
return talloc_zero(NULL, struct osd_conv_cache);
}
void mp_blur_rgba_sub_bitmap(struct sub_bitmap *d, double gblur)
{
struct mp_image *tmp1 = mp_image_alloc(IMGFMT_BGRA, d->w, d->h);
struct mp_image *tmp2 = mp_image_alloc(IMGFMT_BGRA, d->w, d->h);
if (tmp1 && tmp2) { // on OOM, skip region
struct mp_image s = {0};
mp_image_setfmt(&s, IMGFMT_BGRA);
mp_image_set_size(&s, d->w, d->h);
s.stride[0] = d->stride;
s.planes[0] = d->bitmap;
mp_image_copy(tmp1, &s);
mp_image_sw_blur_scale(tmp2, tmp1, gblur);
mp_image_copy(&s, tmp2);
}
talloc_free(tmp1);
talloc_free(tmp2);
}
// If RGBA parts need scaling, scale them.
bool osd_scale_rgba(struct osd_conv_cache *c, struct sub_bitmaps *imgs)
{
struct sub_bitmaps src = *imgs;
if (src.format != SUBBITMAP_RGBA)
return false;
bool need_scale = false;
for (int n = 0; n < src.num_parts; n++) {
struct sub_bitmap *sb = &src.parts[n];
if (sb->w != sb->dw || sb->h != sb->dh)
need_scale = true;
}
if (!need_scale)
return false;
talloc_free(c->parts);
imgs->parts = c->parts = talloc_array(c, struct sub_bitmap, src.num_parts);
imgs->packed = NULL;
// Note: we scale all parts, since most likely all need scaling anyway, and
// to get a proper copy of all data in the imgs list.
for (int n = 0; n < src.num_parts; n++) {
struct sub_bitmap *d = &imgs->parts[n];
struct sub_bitmap *s = &src.parts[n];
struct mp_image src_image = {0};
mp_image_setfmt(&src_image, IMGFMT_BGRA);
mp_image_set_size(&src_image, s->w, s->h);
src_image.planes[0] = s->bitmap;
src_image.stride[0] = s->stride;
d->x = s->x;
d->y = s->y;
d->w = d->dw = s->dw;
d->h = d->dh = s->dh;
struct mp_image *image = mp_image_alloc(IMGFMT_BGRA, d->w, d->h);
talloc_steal(c->parts, image);
if (image) {
d->stride = image->stride[0];
d->bitmap = image->planes[0];
mp_image_swscale(image, &src_image, mp_sws_fast_flags);
} else {
// on OOM, skip the region; just don't scale it
*d = *s;
}
}
return true;
}
static void draw_ass_rgba(unsigned char *src, int src_w, int src_h,
int src_stride, unsigned char *dst, size_t dst_stride,
int dst_x, int dst_y, uint32_t color)
{
const unsigned int r = (color >> 24) & 0xff;
const unsigned int g = (color >> 16) & 0xff;
const unsigned int b = (color >> 8) & 0xff;
const unsigned int a = 0xff - (color & 0xff);
dst += dst_y * dst_stride + dst_x * 4;
for (int y = 0; y < src_h; y++, dst += dst_stride, src += src_stride) {
uint32_t *dstrow = (uint32_t *) dst;
for (int x = 0; x < src_w; x++) {
const unsigned int v = src[x];
int rr = (r * a * v);
int gg = (g * a * v);
int bb = (b * a * v);
int aa = a * v;
uint32_t dstpix = dstrow[x];
unsigned int dstb = dstpix & 0xFF;
unsigned int dstg = (dstpix >> 8) & 0xFF;
unsigned int dstr = (dstpix >> 16) & 0xFF;
unsigned int dsta = (dstpix >> 24) & 0xFF;
dstb = (bb + dstb * (255 * 255 - aa)) / (255 * 255);
dstg = (gg + dstg * (255 * 255 - aa)) / (255 * 255);
dstr = (rr + dstr * (255 * 255 - aa)) / (255 * 255);
dsta = (aa * 255 + dsta * (255 * 255 - aa)) / (255 * 255);
dstrow[x] = dstb | (dstg << 8) | (dstr << 16) | (dsta << 24);
}
}
}
bool osd_conv_ass_to_rgba(struct osd_conv_cache *c, struct sub_bitmaps *imgs)
{
struct sub_bitmaps src = *imgs;
if (src.format != SUBBITMAP_LIBASS)
return false;
assert(!src.scaled); // ASS is always unscaled
struct mp_rect bb_list[MP_SUB_BB_LIST_MAX];
int num_bb = mp_get_sub_bb_list(&src, bb_list, MP_SUB_BB_LIST_MAX);
imgs->format = SUBBITMAP_RGBA;
imgs->parts = c->part;
imgs->num_parts = num_bb;
imgs->packed = NULL;
size_t newsize = 0;
for (int n = 0; n < num_bb; n++) {
struct mp_rect bb = bb_list[n];
int w = bb.x1 - bb.x0;
int h = bb.y1 - bb.y0;
int stride = w * 4;
newsize += h * stride;
}
if (talloc_get_size(c->scratch) < newsize) {
talloc_free(c->scratch);
c->scratch = talloc_array(c, uint8_t, newsize);
}
uint8_t *data = c->scratch;
for (int n = 0; n < num_bb; n++) {
struct mp_rect bb = bb_list[n];
struct sub_bitmap *bmp = &c->part[n];
bmp->x = bb.x0;
bmp->y = bb.y0;
bmp->w = bmp->dw = bb.x1 - bb.x0;
bmp->h = bmp->dh = bb.y1 - bb.y0;
bmp->stride = bmp->w * 4;
bmp->bitmap = data;
data += bmp->h * bmp->stride;
memset_pic(bmp->bitmap, 0, bmp->w * 4, bmp->h, bmp->stride);
for (int p = 0; p < src.num_parts; p++) {
struct sub_bitmap *s = &src.parts[p];
// Assume mp_get_sub_bb_list() never splits sub bitmaps
// So we don't clip/adjust the size of the sub bitmap
if (s->x > bb.x1 || s->x + s->w < bb.x0 ||
s->y > bb.y1 || s->y + s->h < bb.y0)
continue;
draw_ass_rgba(s->bitmap, s->w, s->h, s->stride,
bmp->bitmap, bmp->stride,
s->x - bb.x0, s->y - bb.y0,
s->libass.color);
}
}
return true;
}
bool mp_sub_bitmaps_bb(struct sub_bitmaps *imgs, struct mp_rect *out_bb)
{
struct mp_rect bb = {INT_MAX, INT_MAX, INT_MIN, INT_MIN};
for (int n = 0; n < imgs->num_parts; n++) {
struct sub_bitmap *p = &imgs->parts[n];
bb.x0 = FFMIN(bb.x0, p->x);
bb.y0 = FFMIN(bb.y0, p->y);
bb.x1 = FFMAX(bb.x1, p->x + p->dw);
bb.y1 = FFMAX(bb.y1, p->y + p->dh);
}
// avoid degenerate bounding box if empty
bb.x0 = FFMIN(bb.x0, bb.x1);
bb.y0 = FFMIN(bb.y0, bb.y1);
*out_bb = bb;
return bb.x0 < bb.x1 && bb.y0 < bb.y1;
}
// Merge bounding rectangles if they're closer than the given amount of pixels.
// Avoids having too many rectangles due to spacing between letter.
#define MERGE_RC_PIXELS 50
static void remove_intersecting_rcs(struct mp_rect *list, int *count)
{
int M = MERGE_RC_PIXELS;
bool changed = true;
while (changed) {
changed = false;
for (int a = 0; a < *count; a++) {
struct mp_rect *rc_a = &list[a];
for (int b = *count - 1; b > a; b--) {
struct mp_rect *rc_b = &list[b];
if (rc_a->x0 - M <= rc_b->x1 && rc_a->x1 + M >= rc_b->x0 &&
rc_a->y0 - M <= rc_b->y1 && rc_a->y1 + M >= rc_b->y0)
{
mp_rect_union(rc_a, rc_b);
MP_TARRAY_REMOVE_AT(list, *count, b);
changed = true;
}
}
}
}
}
// Cluster the given subrectangles into a small numbers of bounding rectangles,
// and store them into list. E.g. when subtitles and toptitles are visible at
// the same time, there should be two bounding boxes, so that the video between
// the text is left untouched (need to resample less pixels -> faster).
// Returns number of rectangles added to out_rc_list (<= rc_list_count)
// NOTE: some callers assume that sub bitmaps are never split or partially
// covered by returned rectangles.
int mp_get_sub_bb_list(struct sub_bitmaps *sbs, struct mp_rect *out_rc_list,
int rc_list_count)
{
int M = MERGE_RC_PIXELS;
int num_rc = 0;
for (int n = 0; n < sbs->num_parts; n++) {
struct sub_bitmap *sb = &sbs->parts[n];
struct mp_rect bb = {sb->x, sb->y, sb->x + sb->dw, sb->y + sb->dh};
bool intersects = false;
for (int r = 0; r < num_rc; r++) {
struct mp_rect *rc = &out_rc_list[r];
if ((bb.x0 - M <= rc->x1 && bb.x1 + M >= rc->x0 &&
bb.y0 - M <= rc->y1 && bb.y1 + M >= rc->y0) ||
num_rc == rc_list_count)
{
mp_rect_union(rc, &bb);
intersects = true;
break;
}
}
if (!intersects) {
out_rc_list[num_rc++] = bb;
remove_intersecting_rcs(out_rc_list, &num_rc);
}
}
remove_intersecting_rcs(out_rc_list, &num_rc);
return num_rc;
}