mpv/video/out/vo.c

1143 lines
34 KiB
C
Raw Normal View History

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
core/VO: Allow VO drivers to add/modify frames Add interfaces to allow VO drivers to add or remove frames from the video stream and to alter timestamps. Currently this functionality only works with in correct-pts mode. Use the new functionality in vo_vdpau to properly support frame-adding deinterlace modes. Frames added by the VDPAU deinterlacing code are now properly timed. Before every second frame was always shown immediately (probably next monitor refresh) after the previous one, even if you were watching things in slow motion, and framestepping didn't stop at them at all. When seeking the deinterlace algorithm is no longer fed a mix of frames from old and new positions. As a side effect of the changes a problem with resize events was also fixed. Resizing calls video_to_output_surface() to render the frame at the new resolution, but before this function also changed the list of history frames, so resizing could give an image different from the original one, and also corrupt next frames due to them seeing the wrong history. Now the function has no such side effects. There are more resize-related problems though that will be fixed in a later commit. The deint_mpi[] list of reserved frames is increased from 2 to 3 entries for reasons related to the above. Having 2 entries is enough when you initially get a new frame in draw_image() because then you'll have those two entries plus the new one for a total of 3 (the code relied on the oldest mpi implicitly staying reserved for the duration of the call even after usage count was decreased). However if you want to be able to reproduce the rendering outside draw_image(), relying on the explicitly reserved list only, then it needs to store 3 entries.
2009-09-18 13:27:55 +00:00
#include <stdbool.h>
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
#include <pthread.h>
#include <math.h>
2014-08-13 23:30:20 +00:00
#ifndef __MINGW32__
#include <unistd.h>
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
#include <poll.h>
2014-08-13 23:30:20 +00:00
#endif
#include "talloc.h"
#include "config.h"
#include "osdep/timer.h"
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
#include "osdep/threads.h"
#include "misc/dispatch.h"
#include "misc/rendezvous.h"
#include "options/options.h"
#include "misc/bstr.h"
#include "vo.h"
#include "aspect.h"
2013-12-17 00:23:09 +00:00
#include "input/input.h"
#include "options/m_config.h"
#include "common/msg.h"
#include "common/global.h"
#include "video/mp_image.h"
#include "sub/osd.h"
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
#include "osdep/io.h"
#include "osdep/threads.h"
extern const struct vo_driver video_out_x11;
extern const struct vo_driver video_out_vdpau;
extern const struct vo_driver video_out_xv;
extern const struct vo_driver video_out_opengl;
extern const struct vo_driver video_out_opengl_hq;
extern const struct vo_driver video_out_opengl_cb;
extern const struct vo_driver video_out_null;
extern const struct vo_driver video_out_image;
extern const struct vo_driver video_out_lavc;
extern const struct vo_driver video_out_caca;
extern const struct vo_driver video_out_drm;
extern const struct vo_driver video_out_direct3d;
extern const struct vo_driver video_out_direct3d_shaders;
extern const struct vo_driver video_out_sdl;
extern const struct vo_driver video_out_vaapi;
extern const struct vo_driver video_out_wayland;
RPI support This requires FFmpeg git master for accelerated hardware decoding. Keep in mind that FFmpeg must be compiled with --enable-mmal. Libav will also work. Most things work. Screenshots don't work with accelerated/opaque decoding (except using full window screenshot mode). Subtitles are very slow - even simple but huge overlays can cause frame drops. This always uses fullscreen mode. It uses dispmanx and mmal directly, and there are no window managers or anything on this level. vo_opengl also kind of works, but is pretty useless and slow. It can't use opaque hardware decoding (copy back can be used by forcing the option --vd=lavc:h264_mmal). Keep in mind that the dispmanx backend is preferred over the X11 ones in case you're trying on X11; but X11 is even more useless on RPI. This doesn't correctly reject extended h264 profiles and thus doesn't fallback to software decoding. The hw supports only up to the high profile, and will e.g. return garbage for Hi10P video. This sets a precedent of enabling hw decoding by default, but only if RPI support is compiled (which most hopefully it will be disabled on desktop Linux platforms). While it's more or less required to use hw decoding on the weak RPI, it causes more problems than it solves on real platforms (Linux has the Intel GPU problem, OSX still has some cases with broken decoding.) So I can live with this compromise of having different defaults depending on the platform. Raspberry Pi 2 is required. This wasn't tested on the original RPI, though at least decoding itself seems to work (but full playback was not tested).
2015-03-29 13:12:11 +00:00
extern const struct vo_driver video_out_rpi;
const struct vo_driver *const video_out_drivers[] =
{
RPI support This requires FFmpeg git master for accelerated hardware decoding. Keep in mind that FFmpeg must be compiled with --enable-mmal. Libav will also work. Most things work. Screenshots don't work with accelerated/opaque decoding (except using full window screenshot mode). Subtitles are very slow - even simple but huge overlays can cause frame drops. This always uses fullscreen mode. It uses dispmanx and mmal directly, and there are no window managers or anything on this level. vo_opengl also kind of works, but is pretty useless and slow. It can't use opaque hardware decoding (copy back can be used by forcing the option --vd=lavc:h264_mmal). Keep in mind that the dispmanx backend is preferred over the X11 ones in case you're trying on X11; but X11 is even more useless on RPI. This doesn't correctly reject extended h264 profiles and thus doesn't fallback to software decoding. The hw supports only up to the high profile, and will e.g. return garbage for Hi10P video. This sets a precedent of enabling hw decoding by default, but only if RPI support is compiled (which most hopefully it will be disabled on desktop Linux platforms). While it's more or less required to use hw decoding on the weak RPI, it causes more problems than it solves on real platforms (Linux has the Intel GPU problem, OSX still has some cases with broken decoding.) So I can live with this compromise of having different defaults depending on the platform. Raspberry Pi 2 is required. This wasn't tested on the original RPI, though at least decoding itself seems to work (but full playback was not tested).
2015-03-29 13:12:11 +00:00
#if HAVE_RPI
&video_out_rpi,
RPI support This requires FFmpeg git master for accelerated hardware decoding. Keep in mind that FFmpeg must be compiled with --enable-mmal. Libav will also work. Most things work. Screenshots don't work with accelerated/opaque decoding (except using full window screenshot mode). Subtitles are very slow - even simple but huge overlays can cause frame drops. This always uses fullscreen mode. It uses dispmanx and mmal directly, and there are no window managers or anything on this level. vo_opengl also kind of works, but is pretty useless and slow. It can't use opaque hardware decoding (copy back can be used by forcing the option --vd=lavc:h264_mmal). Keep in mind that the dispmanx backend is preferred over the X11 ones in case you're trying on X11; but X11 is even more useless on RPI. This doesn't correctly reject extended h264 profiles and thus doesn't fallback to software decoding. The hw supports only up to the high profile, and will e.g. return garbage for Hi10P video. This sets a precedent of enabling hw decoding by default, but only if RPI support is compiled (which most hopefully it will be disabled on desktop Linux platforms). While it's more or less required to use hw decoding on the weak RPI, it causes more problems than it solves on real platforms (Linux has the Intel GPU problem, OSX still has some cases with broken decoding.) So I can live with this compromise of having different defaults depending on the platform. Raspberry Pi 2 is required. This wasn't tested on the original RPI, though at least decoding itself seems to work (but full playback was not tested).
2015-03-29 13:12:11 +00:00
#endif
#if HAVE_GL
&video_out_opengl,
#endif
#if HAVE_VDPAU
&video_out_vdpau,
#endif
#if HAVE_DIRECT3D
&video_out_direct3d_shaders,
&video_out_direct3d,
#endif
#if HAVE_WAYLAND
&video_out_wayland,
#endif
#if HAVE_XV
&video_out_xv,
#endif
#if HAVE_SDL2
&video_out_sdl,
#endif
#if HAVE_VAAPI_X11
&video_out_vaapi,
#endif
#if HAVE_X11
&video_out_x11,
#endif
&video_out_null,
// should not be auto-selected
&video_out_image,
#if HAVE_CACA
&video_out_caca,
#endif
#if HAVE_DRM
&video_out_drm,
#endif
#if HAVE_ENCODING
&video_out_lavc,
#endif
#if HAVE_GL
&video_out_opengl_hq,
&video_out_opengl_cb,
#endif
NULL
};
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo_internal {
pthread_t thread;
struct mp_dispatch_queue *dispatch;
// --- The following fields are protected by lock
pthread_mutex_t lock;
pthread_cond_t wakeup;
bool need_wakeup;
bool terminate;
int wakeup_pipe[2]; // used for VOs that use a unix FD for waiting
bool hasframe;
bool hasframe_rendered;
bool request_redraw; // redraw request from player to VO
bool want_redraw; // redraw request from VO to player
bool send_reset; // send VOCTRL_RESET
bool paused;
bool vsync_timed; // the VO redraws itself as fast as possible
// at every vsync
int queued_events; // event mask for the user
int internal_events; // event mask for us
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
int64_t vsync_interval;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
int64_t flip_queue_offset; // queue flip events at most this much in advance
int64_t delayed_count;
int64_t drop_count;
bool dropped_frame; // the previous frame was dropped
struct vo_frame *current_frame; // last frame queued to the VO
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
int64_t wakeup_pts; // time at which to pull frame from decoder
bool rendering; // true if an image is being rendered
struct vo_frame *frame_queued; // should be drawn next
int req_frames; // VO's requested value of num_frames
double display_fps;
// --- The following fields can be accessed from the VO thread only
int64_t vsync_interval_approx;
int64_t last_flip;
char *window_title;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
};
static void forget_frames(struct vo *vo);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
static void *vo_thread(void *ptr);
static bool get_desc(struct m_obj_desc *dst, int index)
{
if (index >= MP_ARRAY_SIZE(video_out_drivers) - 1)
return false;
const struct vo_driver *vo = video_out_drivers[index];
*dst = (struct m_obj_desc) {
.name = vo->name,
.description = vo->description,
.priv_size = vo->priv_size,
.priv_defaults = vo->priv_defaults,
.options = vo->options,
.hidden = vo->encode || !strcmp(vo->name, "opengl-cb"),
.p = vo,
};
return true;
}
// For the vo option
const struct m_obj_list vo_obj_list = {
.get_desc = get_desc,
.description = "video outputs",
.aliases = {
{"gl", "opengl"},
{"gl3", "opengl-hq"},
{0}
},
.allow_unknown_entries = true,
.allow_trailer = true,
};
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
static void dispatch_wakeup_cb(void *ptr)
{
struct vo *vo = ptr;
vo_wakeup(vo);
}
// Does not include thread- and VO uninit.
static void dealloc_vo(struct vo *vo)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
forget_frames(vo); // implicitly synchronized
pthread_mutex_destroy(&vo->in->lock);
pthread_cond_destroy(&vo->in->wakeup);
for (int n = 0; n < 2; n++)
close(vo->in->wakeup_pipe[n]);
talloc_free(vo);
}
static struct vo *vo_create(bool probing, struct mpv_global *global,
struct vo_extra *ex, char *name, char **args)
{
struct mp_log *log = mp_log_new(NULL, global->log, "vo");
struct m_obj_desc desc;
if (!m_obj_list_find(&desc, &vo_obj_list, bstr0(name))) {
mp_msg(log, MSGL_ERR, "Video output %s not found!\n", name);
talloc_free(log);
return NULL;
};
struct vo *vo = talloc_ptrtype(NULL, vo);
*vo = (struct vo) {
.log = mp_log_new(vo, log, name),
.driver = desc.p,
.opts = &global->opts->vo,
.global = global,
.encode_lavc_ctx = ex->encode_lavc_ctx,
.input_ctx = ex->input_ctx,
.osd = ex->osd,
.event_fd = -1,
.monitor_par = 1,
.extra = *ex,
.probing = probing,
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
.in = talloc(vo, struct vo_internal),
};
talloc_steal(vo, log);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
*vo->in = (struct vo_internal) {
.dispatch = mp_dispatch_create(vo),
.req_frames = 1,
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
};
mp_make_wakeup_pipe(vo->in->wakeup_pipe);
mp_dispatch_set_wakeup_fn(vo->in->dispatch, dispatch_wakeup_cb, vo);
pthread_mutex_init(&vo->in->lock, NULL);
pthread_cond_init(&vo->in->wakeup, NULL);
mp_input_set_mouse_transform(vo->input_ctx, NULL, NULL);
if (vo->driver->encode != !!vo->encode_lavc_ctx)
goto error;
struct m_config *config = m_config_from_obj_desc(vo, vo->log, &desc);
if (m_config_apply_defaults(config, name, vo->opts->vo_defs) < 0)
goto error;
if (m_config_set_obj_params(config, args) < 0)
goto error;
vo->priv = config->optstruct;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
if (pthread_create(&vo->in->thread, NULL, vo_thread, vo))
goto error;
if (mp_rendezvous(vo, 0) < 0) { // init barrier
pthread_join(vo->in->thread, NULL);
goto error;
}
return vo;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
error:
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
dealloc_vo(vo);
return NULL;
}
struct vo *init_best_video_out(struct mpv_global *global, struct vo_extra *ex)
{
struct m_obj_settings *vo_list = global->opts->vo.video_driver_list;
// first try the preferred drivers, with their optional subdevice param:
if (vo_list && vo_list[0].name) {
for (int n = 0; vo_list[n].name; n++) {
// Something like "-vo name," allows fallback to autoprobing.
if (strlen(vo_list[n].name) == 0)
goto autoprobe;
bool p = !!vo_list[n + 1].name;
struct vo *vo = vo_create(p, global, ex, vo_list[n].name,
vo_list[n].attribs);
if (vo)
return vo;
}
return NULL;
}
autoprobe:
// now try the rest...
for (int i = 0; video_out_drivers[i]; i++) {
const struct vo_driver *driver = video_out_drivers[i];
if (driver == &video_out_null)
break;
struct vo *vo = vo_create(true, global, ex, (char *)driver->name, NULL);
if (vo)
return vo;
}
return NULL;
}
void vo_destroy(struct vo *vo)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo_internal *in = vo->in;
mp_dispatch_lock(in->dispatch);
vo->in->terminate = true;
mp_dispatch_unlock(in->dispatch);
pthread_join(vo->in->thread, NULL);
dealloc_vo(vo);
}
// to be called from VO thread only
static void update_display_fps(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
if (in->internal_events & VO_EVENT_WIN_STATE) {
in->internal_events &= ~(unsigned)VO_EVENT_WIN_STATE;
pthread_mutex_unlock(&in->lock);
double display_fps = 0;
if (vo->global->opts->frame_drop_fps > 0) {
display_fps = vo->global->opts->frame_drop_fps;
} else {
vo->driver->control(vo, VOCTRL_GET_DISPLAY_FPS, &display_fps);
}
pthread_mutex_lock(&in->lock);
if (in->display_fps != display_fps) {
in->display_fps = display_fps;
MP_VERBOSE(vo, "Assuming %f FPS for framedrop.\n", display_fps);
// make sure to update the player
in->queued_events |= VO_EVENT_WIN_STATE;
mp_input_wakeup(vo->input_ctx);
}
}
pthread_mutex_unlock(&in->lock);
}
static void check_vo_caps(struct vo *vo)
{
int rot = vo->params->rotate;
if (rot) {
bool ok = rot % 90 ? false : (vo->driver->caps & VO_CAP_ROTATE90);
if (!ok) {
MP_WARN(vo, "Video is flagged as rotated by %d degrees, but the "
"video output does not support this.\n", rot);
}
}
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
static void run_reconfig(void *p)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
void **pp = p;
struct vo *vo = pp[0];
struct mp_image_params *params = pp[1];
int *ret = pp[2];
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo_internal *in = vo->in;
vo->dwidth = params->d_w;
vo->dheight = params->d_h;
talloc_free(vo->params);
vo->params = talloc_memdup(vo, params, sizeof(*params));
*ret = vo->driver->reconfig(vo, vo->params);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
vo->config_ok = *ret >= 0;
if (vo->config_ok) {
check_vo_caps(vo);
} else {
talloc_free(vo->params);
vo->params = NULL;
}
pthread_mutex_lock(&in->lock);
talloc_free(in->current_frame);
in->current_frame = NULL;
forget_frames(vo);
pthread_mutex_unlock(&in->lock);
update_display_fps(vo);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
}
int vo_reconfig(struct vo *vo, struct mp_image_params *params)
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
{
int ret;
void *p[] = {vo, params, &ret};
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
mp_dispatch_run(vo->in->dispatch, run_reconfig, p);
return ret;
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
static void run_control(void *p)
{
void **pp = p;
struct vo *vo = pp[0];
uint32_t request = *(int *)pp[1];
void *data = pp[2];
if (request == VOCTRL_UPDATE_WINDOW_TITLE) // legacy fallback
vo->in->window_title = talloc_strdup(vo, data);
int ret = vo->driver->control(vo, request, data);
*(int *)pp[3] = ret;
}
int vo_control(struct vo *vo, uint32_t request, void *data)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
int ret;
void *p[] = {vo, &request, data, &ret};
mp_dispatch_run(vo->in->dispatch, run_control, p);
return ret;
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// must be called locked
static void forget_frames(struct vo *vo)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo_internal *in = vo->in;
in->hasframe = false;
in->hasframe_rendered = false;
in->drop_count = 0;
in->delayed_count = 0;
talloc_free(in->frame_queued);
in->frame_queued = NULL;
// don't unref current_frame; we always want to be able to redraw it
if (in->current_frame) {
in->current_frame->num_vsyncs = 0; // but reset future repeats
in->current_frame->display_synced = false; // mark discontinuity
}
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
#ifndef __MINGW32__
static void wait_event_fd(struct vo *vo, int64_t until_time)
{
struct vo_internal *in = vo->in;
struct pollfd fds[2] = {
{ .fd = vo->event_fd, .events = POLLIN },
{ .fd = in->wakeup_pipe[0], .events = POLLIN },
};
int64_t wait_us = until_time - mp_time_us();
int timeout_ms = MPCLAMP((wait_us + 500) / 1000, 0, 10000);
poll(fds, 2, timeout_ms);
if (fds[1].revents & POLLIN) {
char buf[100];
read(in->wakeup_pipe[0], buf, sizeof(buf)); // flush
}
}
static void wakeup_event_fd(struct vo *vo)
{
struct vo_internal *in = vo->in;
write(in->wakeup_pipe[1], &(char){0}, 1);
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
#else
static void wait_event_fd(struct vo *vo, int64_t until_time){}
static void wakeup_event_fd(struct vo *vo){}
#endif
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// Called unlocked.
static void wait_vo(struct vo *vo, int64_t until_time)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo_internal *in = vo->in;
if (vo->event_fd >= 0) {
wait_event_fd(vo, until_time);
pthread_mutex_lock(&in->lock);
in->need_wakeup = false;
pthread_mutex_unlock(&in->lock);
} else if (vo->driver->wait_events) {
vo->driver->wait_events(vo, until_time);
pthread_mutex_lock(&in->lock);
in->need_wakeup = false;
pthread_mutex_unlock(&in->lock);
} else {
pthread_mutex_lock(&in->lock);
if (!in->need_wakeup) {
struct timespec ts = mp_time_us_to_timespec(until_time);
pthread_cond_timedwait(&in->wakeup, &in->lock, &ts);
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
in->need_wakeup = false;
pthread_mutex_unlock(&in->lock);
}
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
static void wakeup_locked(struct vo *vo)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo_internal *in = vo->in;
pthread_cond_broadcast(&in->wakeup);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
if (vo->event_fd >= 0)
wakeup_event_fd(vo);
if (vo->driver->wakeup)
vo->driver->wakeup(vo);
in->need_wakeup = true;
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// Wakeup VO thread, and make it check for new events with VOCTRL_CHECK_EVENTS.
// To be used by threaded VO backends.
void vo_wakeup(struct vo *vo)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
wakeup_locked(vo);
pthread_mutex_unlock(&in->lock);
}
// Whether vo_queue_frame() can be called. If the VO is not ready yet, the
// function will return false, and the VO will call the wakeup callback once
// it's ready.
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// next_pts is the exact time when the next frame should be displayed. If the
// VO is ready, but the time is too "early", return false, and call the wakeup
// callback once the time is right.
// If next_pts is negative, disable any timing and draw the frame as fast as
// possible.
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
bool vo_is_ready_for_frame(struct vo *vo, int64_t next_pts)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
bool r = vo->config_ok && !in->frame_queued &&
(!in->current_frame || in->current_frame->num_vsyncs < 1);
if (r && next_pts >= 0) {
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// Don't show the frame too early - it would basically freeze the
// display by disallowing OSD redrawing or VO interaction.
// Actually render the frame at earliest 50ms before target time.
next_pts -= (uint64_t)(0.050 * 1e6);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
next_pts -= in->flip_queue_offset;
int64_t now = mp_time_us();
if (next_pts > now)
r = false;
if (!in->wakeup_pts || next_pts < in->wakeup_pts) {
in->wakeup_pts = in->vsync_timed ? 0 : next_pts;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
wakeup_locked(vo);
}
}
pthread_mutex_unlock(&in->lock);
return r;
}
// Direct the VO thread to put the currently queued image on the screen.
// vo_is_ready_for_frame() must have returned true before this call.
// Ownership of frame is handed to the vo.
void vo_queue_frame(struct vo *vo, struct vo_frame *frame)
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
assert(vo->config_ok && !in->frame_queued &&
(!in->current_frame || in->current_frame->num_vsyncs < 1));
in->hasframe = true;
in->frame_queued = frame;
in->wakeup_pts = (frame->display_synced || in->vsync_timed)
? 0 : frame->pts + MPMAX(frame->duration, 0);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
wakeup_locked(vo);
pthread_mutex_unlock(&in->lock);
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// If a frame is currently being rendered (or queued), wait until it's done.
// Otherwise, return immediately.
void vo_wait_frame(struct vo *vo)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
while (in->frame_queued || in->rendering)
pthread_cond_wait(&in->wakeup, &in->lock);
pthread_mutex_unlock(&in->lock);
}
// Wait until realtime is >= ts
// called without lock
static void wait_until(struct vo *vo, int64_t target)
{
struct vo_internal *in = vo->in;
struct timespec ts = mp_time_us_to_timespec(target);
pthread_mutex_lock(&in->lock);
while (target > mp_time_us()) {
if (in->queued_events & VO_EVENT_LIVE_RESIZING)
break;
if (pthread_cond_timedwait(&in->wakeup, &in->lock, &ts))
break;
}
pthread_mutex_unlock(&in->lock);
}
// needs lock
static int64_t prev_sync(struct vo *vo, int64_t ts)
{
struct vo_internal *in = vo->in;
int64_t diff = (int64_t)(ts - in->last_flip);
int64_t offset = diff % in->vsync_interval;
if (offset < 0)
offset += in->vsync_interval;
return ts - offset;
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
static bool render_frame(struct vo *vo)
{
struct vo_internal *in = vo->in;
struct vo_frame *frame = NULL;
bool got_frame = false;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
update_display_fps(vo);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
pthread_mutex_lock(&in->lock);
vo->in->vsync_interval = in->display_fps > 0 ? 1e6 / in->display_fps : 0;
vo->in->vsync_interval = MPMAX(vo->in->vsync_interval, 1);
if (in->frame_queued) {
talloc_free(in->current_frame);
in->current_frame = in->frame_queued;
in->frame_queued = NULL;
} else if (in->paused || !in->current_frame || !in->hasframe ||
(in->current_frame->display_synced && in->current_frame->num_vsyncs < 1) ||
(!in->vsync_timed && !in->current_frame->display_synced))
{
goto done;
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
frame = vo_frame_ref(in->current_frame);
assert(frame);
if (frame->display_synced) {
frame->pts = 0;
frame->duration = -1;
}
int64_t pts = frame->pts;
int64_t duration = frame->duration;
int64_t end_time = pts + duration;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// The next time a flip (probably) happens.
int64_t prev_vsync = prev_sync(vo, mp_time_us());
int64_t next_vsync = prev_vsync + in->vsync_interval;
frame->vsync_interval = in->vsync_interval;
2015-01-23 10:30:43 +00:00
// Time at which we should flip_page on the VO.
int64_t target = frame->display_synced ? 0 : pts - in->flip_queue_offset;
2015-01-23 10:30:43 +00:00
bool prev_dropped_frame = in->dropped_frame;
// "normal" strict drop threshold.
in->dropped_frame = duration >= 0 && end_time < next_vsync;
// Clip has similar (within ~5%) or lower fps than the display.
if (duration >= 0 && duration > 0.95 * in->vsync_interval) {
// If the clip and display have similar/identical fps, it's possible that
// due to the very tight timing, we'll drop frames frequently even if on
// average we can keep up - especially if we have timing jitter (inaccurate
// clip timestamps, inaccurate timers, vsync block jitter, etc).
// So we're allowing to be 1 vsync late to prevent these frequent drops.
// However, once we've dropped a frame - "catch up" by using the strict
// threshold - which will typically be dropping 2 frames in a row.
// On low clip fps, we don't drop anyway and this logic doesn't matter.
// if we dropped previously - "catch up" by keeping the strict threshold.
in->dropped_frame &= prev_dropped_frame;
// if we haven't dropped - allow 1 frame late (prev_vsync as threshold).
in->dropped_frame |= end_time < prev_vsync;
}
in->dropped_frame &= !frame->display_synced;
in->dropped_frame &= !(vo->driver->caps & VO_CAP_FRAMEDROP);
in->dropped_frame &= (vo->global->opts->frame_dropping & 1);
// Even if we're hopelessly behind, rather degrade to 10 FPS playback,
// instead of just freezing the display forever.
in->dropped_frame &= mp_time_us() - in->last_flip < 100 * 1000;
in->dropped_frame &= in->hasframe_rendered;
2015-01-23 10:30:43 +00:00
if (in->vsync_timed && !frame->display_synced) {
2015-01-23 10:30:43 +00:00
// this is a heuristic that wakes the thread up some
// time before the next vsync
target = next_vsync - MPMIN(in->vsync_interval / 2, 8e3);
2015-01-23 10:30:43 +00:00
// We are very late with the frame and using vsync timing: probably
// no new frames are coming in. This must be done whether or not
// framedrop is enabled. Also, if the frame is to be dropped, even
// though it's an interpolated frame (repeat set), exit early.
bool late = prev_vsync > pts + duration + in->vsync_interval_approx;
if (frame->repeat && ((in->hasframe_rendered && late) || in->dropped_frame))
2015-01-23 10:30:43 +00:00
{
in->dropped_frame = false;
goto done;
2015-01-23 10:30:43 +00:00
}
frame->vsync_offset = next_vsync - pts;
}
// Setup parameters for the next time this frame is drawn. ("frame" is the
// frame currently drawn, while in->current_frame is the potentially next.)
in->current_frame->repeat = true;
if (frame->display_synced) {
in->current_frame->vsync_offset += in->vsync_interval;
in->dropped_frame |= in->current_frame->num_vsyncs < 1;
}
if (in->current_frame->num_vsyncs > 0)
in->current_frame->num_vsyncs -= 1;
if (in->dropped_frame) {
in->drop_count += 1;
} else {
2015-02-07 20:14:43 +00:00
in->rendering = true;
in->hasframe_rendered = true;
int64_t prev_drop_count = vo->in->drop_count;
pthread_mutex_unlock(&in->lock);
mp_input_wakeup(vo->input_ctx); // core can queue new video now
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
2014-08-22 14:21:58 +00:00
MP_STATS(vo, "start video");
if (vo->driver->draw_frame) {
vo->driver->draw_frame(vo, frame);
} else {
vo->driver->draw_image(vo, mp_image_new_ref(frame->current));
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
wait_until(vo, target);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
vo->driver->flip_page(vo);
int64_t prev_flip = in->last_flip;
in->last_flip = mp_time_us();
in->vsync_interval_approx = in->last_flip - prev_flip;
2014-08-22 14:21:58 +00:00
MP_STATS(vo, "end video");
MP_STATS(vo, "video_end");
2014-08-22 14:21:58 +00:00
pthread_mutex_lock(&in->lock);
in->dropped_frame = prev_drop_count < vo->in->drop_count;
2015-02-07 20:14:43 +00:00
in->rendering = false;
double diff = (in->vsync_interval - in->vsync_interval_approx) / 1e6;
if (fabs(diff) < 0.150)
MP_STATS(vo, "value %f vsync-diff", diff);
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
if (!in->dropped_frame) {
2015-02-07 20:14:43 +00:00
vo->want_redraw = false;
in->want_redraw = false;
in->request_redraw = false;
}
pthread_cond_broadcast(&in->wakeup); // for vo_wait_frame()
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
mp_input_wakeup(vo->input_ctx);
got_frame = true;
2015-01-23 10:30:43 +00:00
done:
talloc_free(frame);
2015-01-23 10:30:43 +00:00
pthread_mutex_unlock(&in->lock);
return got_frame || (in->frame_queued && in->frame_queued->display_synced);
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
static void do_redraw(struct vo *vo)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo_internal *in = vo->in;
vo->want_redraw = false;
if (!vo->config_ok)
return;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
pthread_mutex_lock(&in->lock);
in->request_redraw = false;
in->want_redraw = false;
bool full_redraw = in->dropped_frame;
struct vo_frame *frame = NULL;
if (!vo->driver->untimed)
frame = vo_frame_ref(in->current_frame);
if (frame)
in->dropped_frame = false;
struct vo_frame dummy = {0};
if (!frame)
frame = &dummy;
frame->redraw = !full_redraw; // unconditionally redraw if it was dropped
frame->still = true;
frame->pts = 0;
frame->duration = -1;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
pthread_mutex_unlock(&in->lock);
if (vo->driver->draw_frame) {
vo->driver->draw_frame(vo, frame);
} else if ((full_redraw || vo->driver->control(vo, VOCTRL_REDRAW_FRAME, NULL) < 1)
&& frame->current)
{
vo->driver->draw_image(vo, mp_image_new_ref(frame->current));
}
vo->driver->flip_page(vo);
if (frame != &dummy)
talloc_free(frame);
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
static void *vo_thread(void *ptr)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
struct vo *vo = ptr;
struct vo_internal *in = vo->in;
mpthread_set_name("vo");
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
int r = vo->driver->preinit(vo) ? -1 : 0;
mp_rendezvous(vo, r); // init barrier
if (r < 0)
return NULL;
update_display_fps(vo);
vo_event(vo, VO_EVENT_WIN_STATE);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
while (1) {
mp_dispatch_queue_process(vo->in->dispatch, 0);
if (in->terminate)
break;
vo->driver->control(vo, VOCTRL_CHECK_EVENTS, NULL);
bool working = render_frame(vo);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
int64_t now = mp_time_us();
int64_t wait_until = now + (working ? 0 : (int64_t)1e9);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
pthread_mutex_lock(&in->lock);
if (in->wakeup_pts) {
if (in->wakeup_pts > now) {
wait_until = MPMIN(wait_until, in->wakeup_pts);
} else {
in->wakeup_pts = 0;
mp_input_wakeup(vo->input_ctx);
}
}
if (vo->want_redraw && !in->want_redraw) {
in->want_redraw = true;
mp_input_wakeup(vo->input_ctx);
}
bool redraw = in->request_redraw;
bool send_reset = in->send_reset;
in->send_reset = false;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
pthread_mutex_unlock(&in->lock);
if (send_reset)
vo->driver->control(vo, VOCTRL_RESET, NULL);
if (wait_until > now && redraw) {
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
do_redraw(vo); // now is a good time
continue;
}
wait_vo(vo, wait_until);
}
forget_frames(vo); // implicitly synchronized
talloc_free(in->current_frame);
in->current_frame = NULL;
vo->driver->uninit(vo);
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
return NULL;
}
void vo_set_paused(struct vo *vo, bool paused)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
if (in->paused != paused) {
in->paused = paused;
if (in->paused && in->dropped_frame)
in->request_redraw = true;
in->last_flip = 0;
}
pthread_mutex_unlock(&in->lock);
vo_control(vo, paused ? VOCTRL_PAUSE : VOCTRL_RESUME, NULL);
}
int64_t vo_get_drop_count(struct vo *vo)
{
pthread_mutex_lock(&vo->in->lock);
int64_t r = vo->in->drop_count;
pthread_mutex_unlock(&vo->in->lock);
return r;
}
void vo_increment_drop_count(struct vo *vo, int64_t n)
{
pthread_mutex_lock(&vo->in->lock);
vo->in->drop_count += n;
pthread_mutex_unlock(&vo->in->lock);
}
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// Make the VO redraw the OSD at some point in the future.
void vo_redraw(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
if (!in->request_redraw) {
in->request_redraw = true;
wakeup_locked(vo);
}
pthread_mutex_unlock(&in->lock);
}
bool vo_want_redraw(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
bool r = in->want_redraw;
pthread_mutex_unlock(&in->lock);
return r;
}
void vo_seek_reset(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
forget_frames(vo);
in->last_flip = 0;
in->send_reset = true;
wakeup_locked(vo);
pthread_mutex_unlock(&in->lock);
}
// Return true if there is still a frame being displayed (or queued).
// If this returns true, a wakeup some time in the future is guaranteed.
bool vo_still_displaying(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&vo->in->lock);
int64_t now = mp_time_us();
int64_t frame_end = 0;
if (in->current_frame) {
frame_end = in->current_frame->pts + MPMAX(in->current_frame->duration, 0);
if (in->current_frame->display_synced)
frame_end = in->current_frame->num_vsyncs > 0 ? INT64_MAX : 0;
}
bool working = now < frame_end || in->rendering || in->frame_queued;
pthread_mutex_unlock(&vo->in->lock);
return working && in->hasframe;
}
// Whether at least 1 frame was queued or rendered since last seek or reconfig.
bool vo_has_frame(struct vo *vo)
{
return vo->in->hasframe;
}
static void run_query_format(void *p)
{
void **pp = p;
struct vo *vo = pp[0];
uint8_t *list = pp[1];
for (int format = IMGFMT_START; format < IMGFMT_END; format++)
list[format - IMGFMT_START] = vo->driver->query_format(vo, format);
}
// For each item in the list (allocated as uint8_t[IMGFMT_END - IMGFMT_START]),
// set the supported format flags.
void vo_query_formats(struct vo *vo, uint8_t *list)
{
void *p[] = {vo, list};
mp_dispatch_run(vo->in->dispatch, run_query_format, p);
}
// Calculate the appropriate source and destination rectangle to
// get a correctly scaled picture, including pan-scan.
// out_src: visible part of the video
// out_dst: area of screen covered by the video source rectangle
// out_osd: OSD size, OSD margins, etc.
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// Must be called from the VO thread only.
void vo_get_src_dst_rects(struct vo *vo, struct mp_rect *out_src,
struct mp_rect *out_dst, struct mp_osd_res *out_osd)
{
if (!vo->params) {
*out_src = *out_dst = (struct mp_rect){0};
*out_osd = (struct mp_osd_res){0};
return;
}
mp_get_src_dst_rects(vo->log, vo->opts, vo->driver->caps, vo->params,
vo->dwidth, vo->dheight, vo->monitor_par,
out_src, out_dst, out_osd);
}
// Return the window title the VO should set. Always returns a null terminated
// string. The string is valid until frontend code is invoked again. Copy it if
// you need to keep the string for an extended period of time.
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// Must be called from the VO thread only.
// Don't use for new code.
const char *vo_get_window_title(struct vo *vo)
{
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
if (!vo->in->window_title)
vo->in->window_title = talloc_strdup(vo, "");
return vo->in->window_title;
}
// flip_page[_timed] will be called offset_us microseconds too early.
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
// (For vo_vdpau, which does its own timing.)
// Setting vsync_timed to true redraws as fast as possible.
// num_req_frames set the requested number of requested vo_frame.frames.
// (For vo_opengl interpolation.)
void vo_set_queue_params(struct vo *vo, int64_t offset_us, bool vsync_timed,
int num_req_frames)
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
in->flip_queue_offset = offset_us;
in->vsync_timed = vsync_timed;
in->req_frames = MPCLAMP(num_req_frames, 1, VO_MAX_REQ_FRAMES);
pthread_mutex_unlock(&in->lock);
}
int vo_get_num_req_frames(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
int res = in->req_frames;
video: move display and timing to a separate thread The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit.
2014-08-12 21:02:08 +00:00
pthread_mutex_unlock(&in->lock);
return res;
}
int64_t vo_get_vsync_interval(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
int64_t res = vo->in->vsync_interval > 1 ? vo->in->vsync_interval : -1;
pthread_mutex_unlock(&in->lock);
return res;
}
// Get the time in seconds at after which the currently rendering frame will
// end. Returns positive values if the frame is yet to be finished, negative
// values if it already finished.
// This can only be called while no new frame is queued (after
// vo_is_ready_for_frame). Returns 0 for non-display synced frames, or if the
// deadline for continuous display was missed.
double vo_get_delay(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
assert (!in->frame_queued);
int64_t res = 0;
if (in->last_flip && in->vsync_interval > 1 && in->current_frame) {
res = in->last_flip;
int extra = !!in->rendering;
res += (in->current_frame->num_vsyncs + extra) * in->vsync_interval;
if (!in->current_frame->display_synced)
res = 0;
}
pthread_mutex_unlock(&in->lock);
return res ? (res - mp_time_us()) / 1e6 : 0;
}
int64_t vo_get_delayed_count(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
int64_t res = vo->in->delayed_count;
pthread_mutex_unlock(&in->lock);
return res;
}
double vo_get_display_fps(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
double res = vo->in->display_fps;
pthread_mutex_unlock(&in->lock);
return res;
}
// Set specific event flags, and wakeup the playback core if needed.
// vo_query_and_reset_events() can retrieve the events again.
void vo_event(struct vo *vo, int event)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
if ((in->queued_events & event & VO_EVENTS_USER) != (event & VO_EVENTS_USER))
mp_input_wakeup(vo->input_ctx);
if (event)
wakeup_locked(vo);
in->queued_events |= event;
in->internal_events |= event;
pthread_mutex_unlock(&in->lock);
}
// Check event flags set with vo_event(). Return the mask of events that was
// set and included in the events parameter. Clear the returned events.
int vo_query_and_reset_events(struct vo *vo, int events)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
int r = in->queued_events & events;
in->queued_events &= ~(unsigned)r;
pthread_mutex_unlock(&in->lock);
return r;
}
struct mp_image *vo_get_current_frame(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
struct mp_image *r = NULL;
if (vo->in->current_frame)
r = mp_image_new_ref(vo->in->current_frame->current);
pthread_mutex_unlock(&in->lock);
return r;
}
static void destroy_frame(void *p)
{
struct vo_frame *frame = p;
for (int n = 0; n < frame->num_frames; n++)
talloc_free(frame->frames[n]);
}
// Return a new reference to the given frame. The image pointers are also new
// references. Calling talloc_free() on the frame unrefs all currently set
// image references. (Assuming current==frames[0].)
struct vo_frame *vo_frame_ref(struct vo_frame *frame)
{
if (!frame)
return NULL;
struct vo_frame *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, destroy_frame);
*new = *frame;
for (int n = 0; n < frame->num_frames; n++) {
new->frames[n] = mp_image_new_ref(frame->frames[n]);
if (!new->frames[n])
abort(); // OOM on tiny allocs
}
new->current = new->num_frames ? new->frames[0] : NULL;
return new;
}
/*
* lookup an integer in a table, table must have 0 as the last key
* param: key key to search for
* returns translation corresponding to key or "to" value of last mapping
* if not found.
*/
int lookup_keymap_table(const struct mp_keymap *map, int key)
{
while (map->from && map->from != key)
map++;
return map->to;
}