mpv/video/out/d3d11/context.c

403 lines
13 KiB
C
Raw Normal View History

vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common/msg.h"
#include "options/m_config.h"
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 12:53:42 +00:00
#include "osdep/timer.h"
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
#include "osdep/windows_utils.h"
#include "video/out/gpu/context.h"
#include "video/out/gpu/d3d11_helpers.h"
#include "video/out/gpu/spirv.h"
#include "video/out/w32_common.h"
#include "ra_d3d11.h"
static int d3d11_validate_adapter(struct mp_log *log,
const struct m_option *opt,
struct bstr name, struct bstr param);
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
struct d3d11_opts {
int feature_level;
int warp;
int flip;
int sync_interval;
char *adapter_name;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
};
#define OPT_BASE_STRUCT struct d3d11_opts
const struct m_sub_options d3d11_conf = {
.opts = (const struct m_option[]) {
OPT_CHOICE("d3d11-warp", warp, 0,
({"auto", -1},
{"no", 0},
{"yes", 1})),
OPT_CHOICE("d3d11-feature-level", feature_level, 0,
({"12_1", D3D_FEATURE_LEVEL_12_1},
{"12_0", D3D_FEATURE_LEVEL_12_0},
{"11_1", D3D_FEATURE_LEVEL_11_1},
{"11_0", D3D_FEATURE_LEVEL_11_0},
{"10_1", D3D_FEATURE_LEVEL_10_1},
{"10_0", D3D_FEATURE_LEVEL_10_0},
{"9_3", D3D_FEATURE_LEVEL_9_3},
{"9_2", D3D_FEATURE_LEVEL_9_2},
{"9_1", D3D_FEATURE_LEVEL_9_1})),
OPT_FLAG("d3d11-flip", flip, 0),
OPT_INTRANGE("d3d11-sync-interval", sync_interval, 0, 0, 4),
OPT_STRING_VALIDATE("d3d11-adapter", adapter_name, 0,
d3d11_validate_adapter),
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
{0}
},
.defaults = &(const struct d3d11_opts) {
.feature_level = D3D_FEATURE_LEVEL_12_1,
.warp = -1,
.flip = 1,
.sync_interval = 1,
.adapter_name = NULL,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
},
.size = sizeof(struct d3d11_opts)
};
struct priv {
struct d3d11_opts *opts;
struct ra_tex *backbuffer;
ID3D11Device *device;
IDXGISwapChain *swapchain;
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 12:53:42 +00:00
int64_t perf_freq;
unsigned last_sync_refresh_count;
int64_t last_sync_qpc_time;
int64_t vsync_duration_qpc;
int64_t last_submit_qpc;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
};
static int d3d11_validate_adapter(struct mp_log *log,
const struct m_option *opt,
struct bstr name, struct bstr param)
{
bool help = bstr_equals0(param, "help");
bool adapter_matched = false;
struct bstr listing = { 0 };
if (bstr_equals0(param, "")) {
return 0;
}
adapter_matched = mp_d3d11_list_or_verify_adapters(log,
help ? NULL : &param,
help ? &listing : NULL);
if (help) {
mp_info(log, "Available D3D11 adapters:\n%.*s",
BSTR_P(listing));
talloc_free(listing.start);
return M_OPT_EXIT;
}
if (!adapter_matched) {
mp_err(log, "No adapter with name '%.*s'!\n", BSTR_P(param));
}
return adapter_matched ? 0 : M_OPT_INVALID;
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
static struct ra_tex *get_backbuffer(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv;
ID3D11Texture2D *backbuffer = NULL;
struct ra_tex *tex = NULL;
HRESULT hr;
hr = IDXGISwapChain_GetBuffer(p->swapchain, 0, &IID_ID3D11Texture2D,
(void**)&backbuffer);
if (FAILED(hr)) {
MP_ERR(ctx, "Couldn't get swapchain image\n");
goto done;
}
tex = ra_d3d11_wrap_tex(ctx->ra, (ID3D11Resource *)backbuffer);
done:
SAFE_RELEASE(backbuffer);
return tex;
}
static bool resize(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv;
HRESULT hr;
ra_tex_free(ctx->ra, &p->backbuffer);
hr = IDXGISwapChain_ResizeBuffers(p->swapchain, 0, ctx->vo->dwidth,
ctx->vo->dheight, DXGI_FORMAT_UNKNOWN, 0);
if (FAILED(hr)) {
MP_FATAL(ctx, "Couldn't resize swapchain: %s\n", mp_HRESULT_to_str(hr));
return false;
}
p->backbuffer = get_backbuffer(ctx);
return true;
}
static bool d3d11_reconfig(struct ra_ctx *ctx)
{
vo_w32_config(ctx->vo);
return resize(ctx);
}
static int d3d11_color_depth(struct ra_swapchain *sw)
{
struct priv *p = sw->priv;
if (!p->backbuffer)
return 0;
return p->backbuffer->params.format->component_depth[0];
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
}
static bool d3d11_start_frame(struct ra_swapchain *sw, struct ra_fbo *out_fbo)
{
struct priv *p = sw->priv;
if (!p->backbuffer)
return false;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
*out_fbo = (struct ra_fbo) {
.tex = p->backbuffer,
.flip = false,
};
return true;
}
static bool d3d11_submit_frame(struct ra_swapchain *sw,
const struct vo_frame *frame)
{
ra_d3d11_flush(sw->ctx->ra);
return true;
}
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 12:53:42 +00:00
static int64_t qpc_to_us(struct ra_swapchain *sw, int64_t qpc)
{
struct priv *p = sw->priv;
// Convert QPC units (1/perf_freq seconds) to microseconds. This will work
// without overflow because the QPC value is guaranteed not to roll-over
// within 100 years, so perf_freq must be less than 2.9*10^9.
return qpc / p->perf_freq * 1000000 +
qpc % p->perf_freq * 1000000 / p->perf_freq;
}
static int64_t qpc_us_now(struct ra_swapchain *sw)
{
LARGE_INTEGER perf_count;
QueryPerformanceCounter(&perf_count);
return qpc_to_us(sw, perf_count.QuadPart);
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
static void d3d11_swap_buffers(struct ra_swapchain *sw)
{
struct priv *p = sw->priv;
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 12:53:42 +00:00
LARGE_INTEGER perf_count;
QueryPerformanceCounter(&perf_count);
p->last_submit_qpc = perf_count.QuadPart;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
IDXGISwapChain_Present(p->swapchain, p->opts->sync_interval, 0);
}
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 12:53:42 +00:00
static void d3d11_get_vsync(struct ra_swapchain *sw, struct vo_vsync_info *info)
{
struct priv *p = sw->priv;
HRESULT hr;
// The calculations below are only valid if mpv presents on every vsync
if (p->opts->sync_interval != 1)
return;
// GetLastPresentCount returns a sequential ID for the frame submitted by
// the last call to IDXGISwapChain::Present()
UINT submit_count;
hr = IDXGISwapChain_GetLastPresentCount(p->swapchain, &submit_count);
if (FAILED(hr))
return;
// GetFrameStatistics returns two pairs. The first is (PresentCount,
// PresentRefreshCount) which relates a present ID (on the same timeline as
// GetLastPresentCount) to the physical vsync it was displayed on. The
// second is (SyncRefreshCount, SyncQPCTime), which relates a physical vsync
// to a timestamp on the same clock as QueryPerformanceCounter.
DXGI_FRAME_STATISTICS stats;
hr = IDXGISwapChain_GetFrameStatistics(p->swapchain, &stats);
if (hr == DXGI_ERROR_FRAME_STATISTICS_DISJOINT) {
p->last_sync_refresh_count = 0;
p->last_sync_qpc_time = 0;
}
if (FAILED(hr))
return;
// Detecting skipped vsyncs is possible but not supported yet
info->skipped_vsyncs = 0;
// Get the number of physical vsyncs that have passed since the last call.
// Check for 0 here, since sometimes GetFrameStatistics returns S_OK but
// with 0s in some (all?) members of DXGI_FRAME_STATISTICS.
unsigned src_passed = 0;
if (stats.SyncRefreshCount && p->last_sync_refresh_count)
src_passed = stats.SyncRefreshCount - p->last_sync_refresh_count;
p->last_sync_refresh_count = stats.SyncRefreshCount;
// Get the elapsed time passed between the above vsyncs
unsigned sqt_passed = 0;
if (stats.SyncQPCTime.QuadPart && p->last_sync_qpc_time)
sqt_passed = stats.SyncQPCTime.QuadPart - p->last_sync_qpc_time;
p->last_sync_qpc_time = stats.SyncQPCTime.QuadPart;
// If any vsyncs have passed, estimate the physical frame rate
if (src_passed && sqt_passed)
p->vsync_duration_qpc = sqt_passed / src_passed;
if (p->vsync_duration_qpc)
info->vsync_duration = qpc_to_us(sw, p->vsync_duration_qpc);
// If the physical frame rate is known and the other members of
// DXGI_FRAME_STATISTICS are non-0, estimate the timing of the next frame
if (p->vsync_duration_qpc && stats.PresentCount &&
stats.PresentRefreshCount && stats.SyncRefreshCount &&
stats.SyncQPCTime.QuadPart)
{
// PresentRefreshCount and SyncRefreshCount might refer to different
// frames (this can definitely occur in bitblt-mode.) Assuming mpv
// presents on every frame, guess the present count that relates to
// SyncRefreshCount.
unsigned expected_sync_pc = stats.PresentCount +
(stats.SyncRefreshCount - stats.PresentRefreshCount);
// Now guess the timestamp of the last submitted frame based on the
// timestamp of the frame at SyncRefreshCount and the frame rate
int64_t last_queue_display_time_qpc = stats.SyncQPCTime.QuadPart +
(submit_count - expected_sync_pc) * p->vsync_duration_qpc;
// Only set the estimated display time if it's after the last submission
// time. It could be before if mpv skips a lot of frames.
if (last_queue_display_time_qpc >= p->last_submit_qpc) {
info->last_queue_display_time = mp_time_us() +
(qpc_to_us(sw, last_queue_display_time_qpc) - qpc_us_now(sw));
}
}
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
static int d3d11_control(struct ra_ctx *ctx, int *events, int request, void *arg)
{
int ret = vo_w32_control(ctx->vo, events, request, arg);
if (*events & VO_EVENT_RESIZE) {
if (!resize(ctx))
return VO_ERROR;
}
return ret;
}
static void d3d11_uninit(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv;
if (ctx->ra)
ra_tex_free(ctx->ra, &p->backbuffer);
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
SAFE_RELEASE(p->swapchain);
vo_w32_uninit(ctx->vo);
SAFE_RELEASE(p->device);
// Destory the RA last to prevent objects we hold from showing up in D3D's
// leak checker
if (ctx->ra)
ctx->ra->fns->destroy(ctx->ra);
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
}
static const struct ra_swapchain_fns d3d11_swapchain = {
.color_depth = d3d11_color_depth,
.start_frame = d3d11_start_frame,
.submit_frame = d3d11_submit_frame,
.swap_buffers = d3d11_swap_buffers,
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 12:53:42 +00:00
.get_vsync = d3d11_get_vsync,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
};
static bool d3d11_init(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv = talloc_zero(ctx, struct priv);
p->opts = mp_get_config_group(ctx, ctx->global, &d3d11_conf);
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 12:53:42 +00:00
LARGE_INTEGER perf_freq;
QueryPerformanceFrequency(&perf_freq);
p->perf_freq = perf_freq.QuadPart;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
struct ra_swapchain *sw = ctx->swapchain = talloc_zero(ctx, struct ra_swapchain);
sw->priv = p;
sw->ctx = ctx;
sw->fns = &d3d11_swapchain;
struct d3d11_device_opts dopts = {
.debug = ctx->opts.debug,
.allow_warp = p->opts->warp != 0,
.force_warp = p->opts->warp == 1,
.max_feature_level = p->opts->feature_level,
.max_frame_latency = ctx->vo->opts->swapchain_depth,
.adapter_name = p->opts->adapter_name,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
};
if (!mp_d3d11_create_present_device(ctx->log, &dopts, &p->device))
goto error;
if (!spirv_compiler_init(ctx))
goto error;
ctx->ra = ra_d3d11_create(p->device, ctx->log, ctx->spirv);
if (!ctx->ra)
goto error;
if (!vo_w32_init(ctx->vo))
goto error;
struct d3d11_swapchain_opts scopts = {
.window = vo_w32_hwnd(ctx->vo),
.width = ctx->vo->dwidth,
.height = ctx->vo->dheight,
.flip = p->opts->flip,
// Add one frame for the backbuffer and one frame of "slack" to reduce
// contention with the window manager when acquiring the backbuffer
.length = ctx->vo->opts->swapchain_depth + 2,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
.usage = DXGI_USAGE_RENDER_TARGET_OUTPUT,
};
if (!mp_d3d11_create_swapchain(p->device, ctx->log, &scopts, &p->swapchain))
goto error;
p->backbuffer = get_backbuffer(ctx);
if (!p->backbuffer)
goto error;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 10:18:06 +00:00
return true;
error:
d3d11_uninit(ctx);
return false;
}
const struct ra_ctx_fns ra_ctx_d3d11 = {
.type = "d3d11",
.name = "d3d11",
.reconfig = d3d11_reconfig,
.control = d3d11_control,
.init = d3d11_init,
.uninit = d3d11_uninit,
};