vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
#ifndef MPV_VDPAU_H
|
|
|
|
#define MPV_VDPAU_H
|
|
|
|
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <inttypes.h>
|
|
|
|
|
vdpau: make mp_vdpau_ctx thread-safe
Preparation so that various things related to video can run in different
threads. One part to this is making the video surface pool safe.
Another issue is the preemption mechanism, which continues to give us
endless pain. In theory, it's probably impossible to handle preemption
100% correctly and race-condition free, unless _every_ API user in the
same process uses a central, shared mutex to protect every vdpau API
call. Otherwise, it could happen that one thread recovering from
preemption allocates a vdpau object, and then another thread (which
hasn't recovered yet) happens to free the object for some reason. This
is because objects are referenced by integer IDs, and vdpau will reuse
IDs invalidated by preemption after preemption.
Since this is unreasonable, we're as lazy as possible when it comes to
handling preemption. We don't do any locking around the mp_vdpau_ctx
fields that are normally immutable, and only can change when recovering
from preemption. In practice, this will work, because it doesn't matter
whether not-yet-recovered components use the old or new vdpau function
pointers or device ID. Code calls mp_vdpau_handle_preemption() anyway to
check for the preemption event and possibly to recover, and that
function acquires the lock protecting the preemption state.
Another possible source of potential grandiose fuckup is the fact that
the vdpau library is in fact only a tiny wrapper, and the real driver
lives in a shared object dlopen()ed by the wrapper. The wrapper also
calls dlclose() on the loaded shared object in some situations. One
possible danger is that failing to recreate a vdpau device could trigger
a dlclose() call, and that glibc might unload it. Currently, glibc
implements full unloading of shared objects on the last dlclose() call,
and if that happens, calls to function pointers pointing into the shared
object would obviously crash. Fortunately, it seems the existing vdpau
wrapper won't trigger this case and never unloads the driver once it's
successfully loaded.
To make it short, vdpau preemption opens up endless depths of WTFs.
Another issue is that any participating thread might do the preemption
recovery (whichever comes first). This is easier to implement. The
implication is that we need threadsafe xlib. We just hope and pray that
this will actually work. This also means that once vdpau code is
actually involved in a multithreaded scenario, we have to add
XInitThreads() to the X11 code.
2014-05-09 19:49:42 +00:00
|
|
|
#include <pthread.h>
|
|
|
|
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
#include <vdpau/vdpau.h>
|
|
|
|
#include <vdpau/vdpau_x11.h>
|
|
|
|
|
2013-12-17 01:39:45 +00:00
|
|
|
#include "common/msg.h"
|
2015-01-22 14:32:23 +00:00
|
|
|
#include "hwdec.h"
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
|
2015-01-22 16:47:14 +00:00
|
|
|
#define CHECK_VDP_ERROR_ST(ctx, message, statement) \
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
do { \
|
|
|
|
if (vdp_st != VDP_STATUS_OK) { \
|
2013-12-21 17:05:23 +00:00
|
|
|
MP_ERR(ctx, "%s: %s\n", message, vdp->get_error_string(vdp_st)); \
|
2015-01-22 16:47:14 +00:00
|
|
|
statement \
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
} \
|
|
|
|
} while (0)
|
|
|
|
|
2015-01-22 16:47:14 +00:00
|
|
|
#define CHECK_VDP_ERROR(ctx, message) \
|
|
|
|
CHECK_VDP_ERROR_ST(ctx, message, return -1;)
|
|
|
|
|
2016-06-21 19:31:58 +00:00
|
|
|
#define CHECK_VDP_ERROR_NORETURN(ctx, message) \
|
|
|
|
CHECK_VDP_ERROR_ST(ctx, message, ;)
|
|
|
|
|
2013-12-21 17:05:23 +00:00
|
|
|
#define CHECK_VDP_WARNING(ctx, message) \
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
do { \
|
|
|
|
if (vdp_st != VDP_STATUS_OK) \
|
2013-12-21 17:05:23 +00:00
|
|
|
MP_WARN(ctx, "%s: %s\n", message, vdp->get_error_string(vdp_st)); \
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
} while (0)
|
|
|
|
|
|
|
|
struct vdp_functions {
|
|
|
|
#define VDP_FUNCTION(vdp_type, _, mp_name) vdp_type *mp_name;
|
2013-07-28 22:58:44 +00:00
|
|
|
#include "video/vdpau_functions.inc"
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
#undef VDP_FUNCTION
|
|
|
|
};
|
|
|
|
|
2013-11-05 21:06:32 +00:00
|
|
|
|
|
|
|
#define MAX_VIDEO_SURFACES 50
|
|
|
|
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
// Shared state. Objects created from different VdpDevices are often (always?)
|
|
|
|
// incompatible to each other, so all code must use a shared VdpDevice.
|
|
|
|
struct mp_vdpau_ctx {
|
vdpau: make mp_vdpau_ctx thread-safe
Preparation so that various things related to video can run in different
threads. One part to this is making the video surface pool safe.
Another issue is the preemption mechanism, which continues to give us
endless pain. In theory, it's probably impossible to handle preemption
100% correctly and race-condition free, unless _every_ API user in the
same process uses a central, shared mutex to protect every vdpau API
call. Otherwise, it could happen that one thread recovering from
preemption allocates a vdpau object, and then another thread (which
hasn't recovered yet) happens to free the object for some reason. This
is because objects are referenced by integer IDs, and vdpau will reuse
IDs invalidated by preemption after preemption.
Since this is unreasonable, we're as lazy as possible when it comes to
handling preemption. We don't do any locking around the mp_vdpau_ctx
fields that are normally immutable, and only can change when recovering
from preemption. In practice, this will work, because it doesn't matter
whether not-yet-recovered components use the old or new vdpau function
pointers or device ID. Code calls mp_vdpau_handle_preemption() anyway to
check for the preemption event and possibly to recover, and that
function acquires the lock protecting the preemption state.
Another possible source of potential grandiose fuckup is the fact that
the vdpau library is in fact only a tiny wrapper, and the real driver
lives in a shared object dlopen()ed by the wrapper. The wrapper also
calls dlclose() on the loaded shared object in some situations. One
possible danger is that failing to recreate a vdpau device could trigger
a dlclose() call, and that glibc might unload it. Currently, glibc
implements full unloading of shared objects on the last dlclose() call,
and if that happens, calls to function pointers pointing into the shared
object would obviously crash. Fortunately, it seems the existing vdpau
wrapper won't trigger this case and never unloads the driver once it's
successfully loaded.
To make it short, vdpau preemption opens up endless depths of WTFs.
Another issue is that any participating thread might do the preemption
recovery (whichever comes first). This is easier to implement. The
implication is that we need threadsafe xlib. We just hope and pray that
this will actually work. This also means that once vdpau code is
actually involved in a multithreaded scenario, we have to add
XInitThreads() to the X11 code.
2014-05-09 19:49:42 +00:00
|
|
|
struct mp_log *log;
|
2014-12-03 20:13:59 +00:00
|
|
|
Display *x11;
|
vdpau: make mp_vdpau_ctx thread-safe
Preparation so that various things related to video can run in different
threads. One part to this is making the video surface pool safe.
Another issue is the preemption mechanism, which continues to give us
endless pain. In theory, it's probably impossible to handle preemption
100% correctly and race-condition free, unless _every_ API user in the
same process uses a central, shared mutex to protect every vdpau API
call. Otherwise, it could happen that one thread recovering from
preemption allocates a vdpau object, and then another thread (which
hasn't recovered yet) happens to free the object for some reason. This
is because objects are referenced by integer IDs, and vdpau will reuse
IDs invalidated by preemption after preemption.
Since this is unreasonable, we're as lazy as possible when it comes to
handling preemption. We don't do any locking around the mp_vdpau_ctx
fields that are normally immutable, and only can change when recovering
from preemption. In practice, this will work, because it doesn't matter
whether not-yet-recovered components use the old or new vdpau function
pointers or device ID. Code calls mp_vdpau_handle_preemption() anyway to
check for the preemption event and possibly to recover, and that
function acquires the lock protecting the preemption state.
Another possible source of potential grandiose fuckup is the fact that
the vdpau library is in fact only a tiny wrapper, and the real driver
lives in a shared object dlopen()ed by the wrapper. The wrapper also
calls dlclose() on the loaded shared object in some situations. One
possible danger is that failing to recreate a vdpau device could trigger
a dlclose() call, and that glibc might unload it. Currently, glibc
implements full unloading of shared objects on the last dlclose() call,
and if that happens, calls to function pointers pointing into the shared
object would obviously crash. Fortunately, it seems the existing vdpau
wrapper won't trigger this case and never unloads the driver once it's
successfully loaded.
To make it short, vdpau preemption opens up endless depths of WTFs.
Another issue is that any participating thread might do the preemption
recovery (whichever comes first). This is easier to implement. The
implication is that we need threadsafe xlib. We just hope and pray that
this will actually work. This also means that once vdpau code is
actually involved in a multithreaded scenario, we have to add
XInitThreads() to the X11 code.
2014-05-09 19:49:42 +00:00
|
|
|
|
2015-01-22 14:32:23 +00:00
|
|
|
struct mp_hwdec_ctx hwctx;
|
2017-01-17 10:00:31 +00:00
|
|
|
struct AVBufferRef *av_device_ref;
|
2015-01-22 14:32:23 +00:00
|
|
|
|
vdpau: make mp_vdpau_ctx thread-safe
Preparation so that various things related to video can run in different
threads. One part to this is making the video surface pool safe.
Another issue is the preemption mechanism, which continues to give us
endless pain. In theory, it's probably impossible to handle preemption
100% correctly and race-condition free, unless _every_ API user in the
same process uses a central, shared mutex to protect every vdpau API
call. Otherwise, it could happen that one thread recovering from
preemption allocates a vdpau object, and then another thread (which
hasn't recovered yet) happens to free the object for some reason. This
is because objects are referenced by integer IDs, and vdpau will reuse
IDs invalidated by preemption after preemption.
Since this is unreasonable, we're as lazy as possible when it comes to
handling preemption. We don't do any locking around the mp_vdpau_ctx
fields that are normally immutable, and only can change when recovering
from preemption. In practice, this will work, because it doesn't matter
whether not-yet-recovered components use the old or new vdpau function
pointers or device ID. Code calls mp_vdpau_handle_preemption() anyway to
check for the preemption event and possibly to recover, and that
function acquires the lock protecting the preemption state.
Another possible source of potential grandiose fuckup is the fact that
the vdpau library is in fact only a tiny wrapper, and the real driver
lives in a shared object dlopen()ed by the wrapper. The wrapper also
calls dlclose() on the loaded shared object in some situations. One
possible danger is that failing to recreate a vdpau device could trigger
a dlclose() call, and that glibc might unload it. Currently, glibc
implements full unloading of shared objects on the last dlclose() call,
and if that happens, calls to function pointers pointing into the shared
object would obviously crash. Fortunately, it seems the existing vdpau
wrapper won't trigger this case and never unloads the driver once it's
successfully loaded.
To make it short, vdpau preemption opens up endless depths of WTFs.
Another issue is that any participating thread might do the preemption
recovery (whichever comes first). This is easier to implement. The
implication is that we need threadsafe xlib. We just hope and pray that
this will actually work. This also means that once vdpau code is
actually involved in a multithreaded scenario, we have to add
XInitThreads() to the X11 code.
2014-05-09 19:49:42 +00:00
|
|
|
// These are mostly immutable, except on preemption. We don't really care
|
|
|
|
// to synchronize the preemption case fully correctly, because it's an
|
|
|
|
// extremely obscure corner case, and basically a vdpau API design bug.
|
|
|
|
// What we do will sort-of work anyway (no memory errors are possible).
|
2014-03-19 18:57:08 +00:00
|
|
|
struct vdp_functions vdp;
|
2013-11-05 21:06:32 +00:00
|
|
|
VdpGetProcAddress *get_proc_address;
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
VdpDevice vdp_device;
|
vdpau: make mp_vdpau_ctx thread-safe
Preparation so that various things related to video can run in different
threads. One part to this is making the video surface pool safe.
Another issue is the preemption mechanism, which continues to give us
endless pain. In theory, it's probably impossible to handle preemption
100% correctly and race-condition free, unless _every_ API user in the
same process uses a central, shared mutex to protect every vdpau API
call. Otherwise, it could happen that one thread recovering from
preemption allocates a vdpau object, and then another thread (which
hasn't recovered yet) happens to free the object for some reason. This
is because objects are referenced by integer IDs, and vdpau will reuse
IDs invalidated by preemption after preemption.
Since this is unreasonable, we're as lazy as possible when it comes to
handling preemption. We don't do any locking around the mp_vdpau_ctx
fields that are normally immutable, and only can change when recovering
from preemption. In practice, this will work, because it doesn't matter
whether not-yet-recovered components use the old or new vdpau function
pointers or device ID. Code calls mp_vdpau_handle_preemption() anyway to
check for the preemption event and possibly to recover, and that
function acquires the lock protecting the preemption state.
Another possible source of potential grandiose fuckup is the fact that
the vdpau library is in fact only a tiny wrapper, and the real driver
lives in a shared object dlopen()ed by the wrapper. The wrapper also
calls dlclose() on the loaded shared object in some situations. One
possible danger is that failing to recreate a vdpau device could trigger
a dlclose() call, and that glibc might unload it. Currently, glibc
implements full unloading of shared objects on the last dlclose() call,
and if that happens, calls to function pointers pointing into the shared
object would obviously crash. Fortunately, it seems the existing vdpau
wrapper won't trigger this case and never unloads the driver once it's
successfully loaded.
To make it short, vdpau preemption opens up endless depths of WTFs.
Another issue is that any participating thread might do the preemption
recovery (whichever comes first). This is easier to implement. The
implication is that we need threadsafe xlib. We just hope and pray that
this will actually work. This also means that once vdpau code is
actually involved in a multithreaded scenario, we have to add
XInitThreads() to the X11 code.
2014-05-09 19:49:42 +00:00
|
|
|
|
|
|
|
pthread_mutex_t preempt_lock;
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
bool is_preempted; // set to true during unavailability
|
|
|
|
uint64_t preemption_counter; // incremented after _restoring_
|
2013-11-05 21:06:32 +00:00
|
|
|
bool preemption_user_notified;
|
|
|
|
double last_preemption_retry_fail;
|
vdpau: force driver to report preemption early
Another fix for the crazy and insane nvidia preemption behavior.
This time, the situation is that we are using vo_opengl with vdpau
interop, and that vdpau got preempted in the background while mpv was
sitting idly. This can be e.g. reproduced by using:
--force-window=immediate --idle --hwdec=vdpau
and switching VTs. Then after switching back, load a video file.
This will not let mp_vdpau_handle_preemption() perform preemption
recovery, simply because it will do so only once vdp_decoder_create()
has been called. There are some other API calls which trigger
preemption, but many don't.
Due to the way the libavcodec API works, vdp_decoder_create() is way too
late. It does so when get_format returns. It notices creating the
decoder fails, and continues calling get_format without the vdpau
format. We could perhaps force it to reinit again (by adding a call to
vdpau.c, that checks for preemption, and sets hwdec_request_reinit), but
this seems too much of a mess.
Solve it by calling API in mp_vdpau_handle_preemption() that empirically
does trigger preemption: output_surface_put_bits_native(). This call is
useless, and in fact should be doing nothing (empty update VdpRect).
There's the slight chance that in theory it will slow down operation,
but in practice it's bound to be harmless. It's the likely cheapest and
simplest API call I've found that can trigger the fallback this way.
(The driver is closed source, so it was up to trial & error.)
Also, when initializing decoding, allow initial preemption recovery,
which is needed to pass the test mention above.
2016-01-25 15:42:54 +00:00
|
|
|
VdpOutputSurface preemption_obj; // dummy for reliable preempt. check
|
2013-11-05 21:06:32 +00:00
|
|
|
|
|
|
|
// Surface pool
|
vdpau: make mp_vdpau_ctx thread-safe
Preparation so that various things related to video can run in different
threads. One part to this is making the video surface pool safe.
Another issue is the preemption mechanism, which continues to give us
endless pain. In theory, it's probably impossible to handle preemption
100% correctly and race-condition free, unless _every_ API user in the
same process uses a central, shared mutex to protect every vdpau API
call. Otherwise, it could happen that one thread recovering from
preemption allocates a vdpau object, and then another thread (which
hasn't recovered yet) happens to free the object for some reason. This
is because objects are referenced by integer IDs, and vdpau will reuse
IDs invalidated by preemption after preemption.
Since this is unreasonable, we're as lazy as possible when it comes to
handling preemption. We don't do any locking around the mp_vdpau_ctx
fields that are normally immutable, and only can change when recovering
from preemption. In practice, this will work, because it doesn't matter
whether not-yet-recovered components use the old or new vdpau function
pointers or device ID. Code calls mp_vdpau_handle_preemption() anyway to
check for the preemption event and possibly to recover, and that
function acquires the lock protecting the preemption state.
Another possible source of potential grandiose fuckup is the fact that
the vdpau library is in fact only a tiny wrapper, and the real driver
lives in a shared object dlopen()ed by the wrapper. The wrapper also
calls dlclose() on the loaded shared object in some situations. One
possible danger is that failing to recreate a vdpau device could trigger
a dlclose() call, and that glibc might unload it. Currently, glibc
implements full unloading of shared objects on the last dlclose() call,
and if that happens, calls to function pointers pointing into the shared
object would obviously crash. Fortunately, it seems the existing vdpau
wrapper won't trigger this case and never unloads the driver once it's
successfully loaded.
To make it short, vdpau preemption opens up endless depths of WTFs.
Another issue is that any participating thread might do the preemption
recovery (whichever comes first). This is easier to implement. The
implication is that we need threadsafe xlib. We just hope and pray that
this will actually work. This also means that once vdpau code is
actually involved in a multithreaded scenario, we have to add
XInitThreads() to the X11 code.
2014-05-09 19:49:42 +00:00
|
|
|
pthread_mutex_t pool_lock;
|
2014-08-11 12:03:53 +00:00
|
|
|
int64_t age_counter;
|
2013-11-05 21:06:32 +00:00
|
|
|
struct surface_entry {
|
|
|
|
VdpVideoSurface surface;
|
2014-05-22 18:55:17 +00:00
|
|
|
VdpOutputSurface osurface;
|
|
|
|
bool allocated;
|
2014-03-17 17:21:11 +00:00
|
|
|
int w, h;
|
2014-05-22 18:55:17 +00:00
|
|
|
VdpRGBAFormat rgb_format;
|
2013-11-05 21:06:32 +00:00
|
|
|
VdpChromaType chroma;
|
2014-05-22 18:55:17 +00:00
|
|
|
bool rgb;
|
2013-11-05 21:06:32 +00:00
|
|
|
bool in_use;
|
2014-08-11 12:03:53 +00:00
|
|
|
int64_t age;
|
2013-11-05 21:06:32 +00:00
|
|
|
} video_surfaces[MAX_VIDEO_SURFACES];
|
2015-01-22 16:47:14 +00:00
|
|
|
struct mp_vdpau_mixer *getimg_mixer;
|
|
|
|
VdpOutputSurface getimg_surface;
|
|
|
|
int getimg_w, getimg_h;
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
};
|
|
|
|
|
2015-06-20 20:26:57 +00:00
|
|
|
struct mp_vdpau_ctx *mp_vdpau_create_device_x11(struct mp_log *log, Display *x11,
|
|
|
|
bool probing);
|
2013-11-05 21:06:32 +00:00
|
|
|
void mp_vdpau_destroy(struct mp_vdpau_ctx *ctx);
|
|
|
|
|
2014-05-09 19:49:29 +00:00
|
|
|
int mp_vdpau_handle_preemption(struct mp_vdpau_ctx *ctx, uint64_t *counter);
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
|
2014-03-17 17:21:11 +00:00
|
|
|
struct mp_image *mp_vdpau_get_video_surface(struct mp_vdpau_ctx *ctx,
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
VdpChromaType chroma, int w, int h);
|
|
|
|
|
|
|
|
bool mp_vdpau_get_format(int imgfmt, VdpChromaType *out_chroma_type,
|
|
|
|
VdpYCbCrFormat *out_pixel_format);
|
2014-05-22 18:55:17 +00:00
|
|
|
bool mp_vdpau_get_rgb_format(int imgfmt, VdpRGBAFormat *out_rgba_format);
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
|
2014-05-04 08:50:32 +00:00
|
|
|
struct mp_image *mp_vdpau_upload_video_surface(struct mp_vdpau_ctx *ctx,
|
|
|
|
struct mp_image *mpi);
|
|
|
|
|
2014-05-27 23:37:53 +00:00
|
|
|
bool mp_vdpau_guess_if_emulated(struct mp_vdpau_ctx *ctx);
|
|
|
|
|
vdpau: split off decoder parts, use "new" libavcodec vdpau hwaccel API
Move the decoder parts from vo_vdpau.c to a new file vdpau_old.c. This
file is named so because because it's written against the "old"
libavcodec vdpau pseudo-decoder (e.g. "h264_vdpau").
Add support for the "new" libavcodec vdpau support. This was recently
added and replaces the "old" vdpau parts. (In fact, Libav is about to
deprecate and remove the "old" API without deprecation grace period,
so we have to support it now. Moreover, there will probably be no Libav
release which supports both, so the transition is even less smooth than
we could hope, and we have to support both the old and new API.)
Whether the old or new API is used is checked by a configure test: if
the new API is found, it is used, otherwise the old API is assumed.
Some details might be handled differently. Especially display preemption
is a bit problematic with the "new" libavcodec vdpau support: it wants
to keep a pointer to a specific vdpau API function (which can be driver
specific, because preemption might switch drivers). Also, surface IDs
are now directly stored in AVFrames (and mp_images), so they can't be
forced to VDP_INVALID_HANDLE on preemption. (This changes even with
older libavcodec versions, because mp_image always uses the newer
representation to make vo_vdpau.c simpler.)
Decoder initialization in the new code tries to deal with codec
profiles, while the old code always uses the highest profile per codec.
Surface allocation changes. Since the decoder won't call config() in
vo_vdpau.c on video size change anymore, we allow allocating surfaces
of arbitrary size instead of locking it to what the VO was configured.
The non-hwdec code also has slightly different allocation behavior now.
Enabling the old vdpau special decoders via e.g. --vd=lavc:h264_vdpau
doesn't work anymore (a warning suggesting the --hwdec option is
printed instead).
2013-07-27 23:49:45 +00:00
|
|
|
#endif
|