2018-11-10 11:53:33 +00:00
|
|
|
#include "video/out/placebo/utils.h"
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
#include "utils.h"
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
bool mpvk_init(struct mpvk_ctx *vk, struct ra_ctx *ctx, const char *surface_ext)
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
{
|
2018-11-10 11:53:33 +00:00
|
|
|
vk->ctx = pl_context_create(PL_API_VER, NULL);
|
|
|
|
if (!vk->ctx)
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
goto error;
|
vo_gpu: vulkan: support split command pools
Instead of using a single primary queue, we generate multiple
vk_cmdpools and pick the right one dynamically based on the intent.
This has a number of immediate benefits:
1. We can use async texture uploads
2. We can use the DMA engine for buffer updates
3. We can benefit from async compute on AMD GPUs
Unfortunately, the major downside is that due to the lack of QF
ownership tracking, we need to use CONCURRENT sharing for all resources
(buffers *and* images!). In theory, we could try figuring out a way to
get rid of the concurrent sharing for buffers (which is only needed for
compute shader UBOs), but even so, the concurrent sharing mode doesn't
really seem to have a significant impact over here (nvidia). It's
possible that other platforms may disagree.
Our deadlock-avoidance strategy is stupidly simple: Just flush the
command every time we need to switch queues, and make sure all
submission and callbacks happen in FIFO order. This required lifting the
cmds_pending and cmds_queued out from vk_cmdpool to mpvk_ctx, and some
functions died/got moved as a result, but that's a relatively minor
change.
On my hardware this is a fairly significant performance boost, mainly
due to async transfers. (Nvidia doesn't expose separate compute queues
anyway). On AMD, this should be a performance boost as well due to async
compute.
2017-09-24 13:05:24 +00:00
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
vk->pl_log = mp_log_new(ctx, ctx->log, "libplacebo");
|
|
|
|
mppl_ctx_set_log(vk->ctx, vk->pl_log, true);
|
2020-07-16 07:41:09 +00:00
|
|
|
mp_verbose(vk->pl_log, "Initialized libplacebo v%d\n", PL_API_VER);
|
2017-10-07 19:36:16 +00:00
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
const char *exts[] = {
|
|
|
|
VK_KHR_SURFACE_EXTENSION_NAME,
|
|
|
|
surface_ext,
|
2017-09-27 15:08:06 +00:00
|
|
|
};
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
vk->vkinst = pl_vk_inst_create(vk->ctx, &(struct pl_vk_inst_params) {
|
|
|
|
.debug = ctx->opts.debug,
|
|
|
|
.extensions = exts,
|
|
|
|
.num_extensions = MP_ARRAY_SIZE(exts),
|
2017-09-27 15:08:06 +00:00
|
|
|
});
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
if (!vk->vkinst)
|
2017-09-27 15:08:06 +00:00
|
|
|
goto error;
|
vo_gpu: vulkan: initial implementation
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.
2016-09-14 18:54:18 +00:00
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
mppl_ctx_set_log(vk->ctx, vk->pl_log, false); // disable probing
|
|
|
|
return true;
|
2017-09-28 22:36:46 +00:00
|
|
|
|
|
|
|
error:
|
2018-11-10 11:53:33 +00:00
|
|
|
mpvk_uninit(vk);
|
2017-09-28 22:36:46 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
void mpvk_uninit(struct mpvk_ctx *vk)
|
2017-09-28 22:36:46 +00:00
|
|
|
{
|
2018-11-10 11:53:33 +00:00
|
|
|
if (vk->surface) {
|
|
|
|
assert(vk->vkinst);
|
|
|
|
vkDestroySurfaceKHR(vk->vkinst->instance, vk->surface, NULL);
|
|
|
|
vk->surface = NULL;
|
2017-09-28 22:36:46 +00:00
|
|
|
}
|
|
|
|
|
2018-11-10 11:53:33 +00:00
|
|
|
pl_vk_inst_destroy(&vk->vkinst);
|
|
|
|
pl_context_destroy(&vk->ctx);
|
|
|
|
TA_FREEP(&vk->pl_log);
|
2017-09-28 22:36:46 +00:00
|
|
|
}
|