mpv/video/out/opengl/hwdec_drmprime_drm.c

262 lines
8.4 KiB
C
Raw Normal View History

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdbool.h>
#include <libavutil/hwcontext_drm.h>
#include "common.h"
#include "video/hwdec.h"
#include "common/msg.h"
#include "options/m_config.h"
#include "libmpv/opengl_cb.h"
#include "video/out/drm_common.h"
#include "video/out/drm_prime.h"
#include "video/out/gpu/hwdec.h"
#include "video/mp_image.h"
extern const struct m_sub_options drm_conf;
struct drm_frame {
struct drm_prime_framebuffer fb;
struct mp_image *image; // associated mpv image
};
struct priv {
struct mp_log *log;
struct mp_image_params params;
struct drm_atomic_context *ctx;
struct drm_frame current_frame, last_frame, old_frame;
struct mp_rect src, dst;
int display_w, display_h;
};
static void set_current_frame(struct ra_hwdec *hw, struct drm_frame *frame)
{
struct priv *p = hw->priv;
// frame will be on screen after next vsync
// current_frame is currently the displayed frame and will be replaced
// by frame after next vsync.
// We used old frame as triple buffering to make sure that the drm framebuffer
// is not being displayed when we release it.
if (p->ctx) {
drm_prime_destroy_framebuffer(p->log, p->ctx->fd, &p->old_frame.fb);
}
mp_image_setrefp(&p->old_frame.image, p->last_frame.image);
p->old_frame.fb = p->last_frame.fb;
mp_image_setrefp(&p->last_frame.image, p->current_frame.image);
p->last_frame.fb = p->current_frame.fb;
if (frame) {
p->current_frame.fb = frame->fb;
mp_image_setrefp(&p->current_frame.image, frame->image);
} else {
memset(&p->current_frame.fb, 0, sizeof(p->current_frame.fb));
mp_image_setrefp(&p->current_frame.image, NULL);
}
}
static void scale_dst_rect(struct ra_hwdec *hw, int source_w, int source_h ,struct mp_rect *src, struct mp_rect *dst)
{
struct priv *p = hw->priv;
// drm can allow to have a layer that has a different size from framebuffer
// we scale here the destination size to video mode
double hratio = p->display_w / (double)source_w;
double vratio = p->display_h / (double)source_h;
double ratio = hratio <= vratio ? hratio : vratio;
dst->x0 = src->x0 * ratio;
dst->x1 = src->x1 * ratio;
dst->y0 = src->y0 * ratio;
dst->y1 = src->y1 * ratio;
int offset_x = (p->display_w - ratio * source_w) / 2;
int offset_y = (p->display_h - ratio * source_h) / 2;
dst->x0 += offset_x;
dst->x1 += offset_x;
dst->y0 += offset_y;
dst->y1 += offset_y;
}
static int overlay_frame(struct ra_hwdec *hw, struct mp_image *hw_image,
struct mp_rect *src, struct mp_rect *dst, bool newframe)
{
struct priv *p = hw->priv;
AVDRMFrameDescriptor *desc = NULL;
drmModeAtomicReq *request = NULL;
struct drm_frame next_frame = {0};
int ret;
if (hw_image) {
// grab opengl-cb windowing info to eventually upscale the overlay
// as egl windows could be upscaled to primary plane.
struct mpv_opengl_cb_window_pos *glparams =
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
ra_get_native_resource(hw->ra, "opengl-cb-window-pos");
if (glparams) {
scale_dst_rect(hw, glparams->width, glparams->height, dst, &p->dst);
} else {
p->dst = *dst;
}
p->src = *src;
// grab drm interop info
struct mpv_opengl_cb_drm_params *drmparams =
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
ra_get_native_resource(hw->ra, "opengl-cb-drm-params");
if (drmparams)
request = (drmModeAtomicReq *)drmparams->atomic_request;
next_frame.image = hw_image;
desc = (AVDRMFrameDescriptor *)hw_image->planes[0];
if (desc) {
int srcw = p->src.x1 - p->src.x0;
int srch = p->src.y1 - p->src.y0;
int dstw = MP_ALIGN_UP(p->dst.x1 - p->dst.x0, 2);
int dsth = MP_ALIGN_UP(p->dst.y1 - p->dst.y0, 2);
if (drm_prime_create_framebuffer(p->log, p->ctx->fd, desc, srcw, srch, &next_frame.fb)) {
ret = -1;
goto fail;
}
if (request) {
drm_object_set_property(request, p->ctx->overlay_plane, "FB_ID", next_frame.fb.fb_id);
drm_object_set_property(request, p->ctx->overlay_plane, "CRTC_ID", p->ctx->crtc->id);
drm_object_set_property(request, p->ctx->overlay_plane, "SRC_X", p->src.x0 << 16);
drm_object_set_property(request, p->ctx->overlay_plane, "SRC_Y", p->src.y0 << 16);
drm_object_set_property(request, p->ctx->overlay_plane, "SRC_W", srcw << 16);
drm_object_set_property(request, p->ctx->overlay_plane, "SRC_H", srch << 16);
drm_object_set_property(request, p->ctx->overlay_plane, "CRTC_X", MP_ALIGN_DOWN(p->dst.x0, 2));
drm_object_set_property(request, p->ctx->overlay_plane, "CRTC_Y", MP_ALIGN_DOWN(p->dst.y0, 2));
drm_object_set_property(request, p->ctx->overlay_plane, "CRTC_W", dstw);
drm_object_set_property(request, p->ctx->overlay_plane, "CRTC_H", dsth);
drm_object_set_property(request, p->ctx->overlay_plane, "ZPOS", 0);
} else {
ret = drmModeSetPlane(p->ctx->fd, p->ctx->overlay_plane->id, p->ctx->crtc->id, next_frame.fb.fb_id, 0,
MP_ALIGN_DOWN(p->dst.x0, 2), MP_ALIGN_DOWN(p->dst.y0, 2), dstw, dsth,
p->src.x0 << 16, p->src.y0 << 16 , srcw << 16, srch << 16);
if (ret < 0) {
MP_ERR(hw, "Failed to set the plane %d (buffer %d).\n", p->ctx->overlay_plane->id,
next_frame.fb.fb_id);
goto fail;
}
}
}
} else {
while (p->old_frame.fb.fb_id)
set_current_frame(hw, NULL);
}
set_current_frame(hw, &next_frame);
return 0;
fail:
drm_prime_destroy_framebuffer(p->log, p->ctx->fd, &next_frame.fb);
return ret;
}
static void uninit(struct ra_hwdec *hw)
{
struct priv *p = hw->priv;
set_current_frame(hw, NULL);
if (p->ctx) {
drm_atomic_destroy_context(p->ctx);
p->ctx = NULL;
}
}
static int init(struct ra_hwdec *hw)
{
struct priv *p = hw->priv;
int drm_overlay;
p->log = hw->log;
void *tmp = talloc_new(NULL);
struct drm_opts *opts = mp_get_config_group(tmp, hw->global, &drm_conf);
drm_overlay = opts->drm_overlay_id;
talloc_free(tmp);
struct mpv_opengl_cb_drm_params *params =
client API: add a new way to pass X11 Display etc. to render API Hardware decoding things often need access to additional handles from the windowing system, such as the X11 or Wayland display when using vaapi. The opengl-cb had nothing dedicated for this, and used the weird GL_MP_MPGetNativeDisplay GL extension (which was mpv specific and not officially registered with OpenGL). This was awkward, and a pain due to having to emulate GL context behavior (like needing a TLS variable to store context for the pseudo GL extension function). In addition (and not inherently due to this), we could pass only one resource from mpv builtin context backends to hwdecs. It was also all GL specific. Replace this with a newer mechanism. It works for all RA backends, not just GL. the API user can explicitly pass the objects at init time via mpv_render_context_create(). Multiple resources are naturally possible. The API uses MPV_RENDER_PARAM_* defines, but internally we use strings. This is done for 2 reasons: 1. trying to leave libmpv and internal mechanisms decoupled, 2. not having to add public API for some of the internal resource types (especially D3D/GL interop stuff). To remain sane, drop support for obscure half-working opengl-cb things, like the DRM interop (was missing necessary things), the RPI window thing (nobody used it), and obscure D3D interop things (not needed with ANGLE, others were undocumented). In order not to break ABI and the C API, we don't remove the associated structs from opengl_cb.h. The parts which are still needed (in particular DRM interop) needs to be ported to the render API.
2018-03-22 16:05:01 +00:00
ra_get_native_resource(hw->ra, "opengl-cb-drm-params");
if (!params) {
MP_VERBOSE(hw, "Could not get drm interop info.\n");
goto err;
}
if (params->fd) {
p->ctx = drm_atomic_create_context(p->log, params->fd, params->crtc_id,
drm_overlay);
if (!p->ctx) {
mp_err(p->log, "Failed to retrieve DRM atomic context.\n");
goto err;
}
} else {
mp_err(p->log, "Failed to retrieve DRM fd from native display.\n");
goto err;
}
drmModeCrtcPtr crtc;
crtc = drmModeGetCrtc(p->ctx->fd, p->ctx->crtc->id);
if (crtc) {
p->display_w = crtc->mode.hdisplay;
p->display_h = crtc->mode.vdisplay;
drmModeFreeCrtc(crtc);
}
uint64_t has_prime;
if (drmGetCap(p->ctx->fd, DRM_CAP_PRIME, &has_prime) < 0) {
MP_ERR(hw, "Card does not support prime handles.\n");
goto err;
}
return 0;
err:
uninit(hw);
return -1;
}
const struct ra_hwdec_driver ra_hwdec_drmprime_drm = {
.name = "drmprime-drm",
.priv_size = sizeof(struct priv),
.imgfmts = {IMGFMT_DRMPRIME, 0},
.init = init,
.overlay_frame = overlay_frame,
.uninit = uninit,
};