
MARS User Manual
Multiversion Asynchronous Replicated Storage

01101011101001

Thomas Schöbel-Theuer (tst@1und1.de)

Version 0.1a-162

Copyright (C) 2013-16 Thomas Schöbel-Theuer
Copyright (C) 2013-16 1&1 Internet AG (see http://www.1und1.de shortly called 1&1 in the
following).
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

http://www.1und1.de

Abstract

MARS is a block-level storage replication system for long distances / flaky networks under
GPL.
It is a key component for achieving geo-redundancy under Linux, for example Disaster

Recovery (DR) at datacenter granularity, and/or Location Transparency (LT) at VM / LV
granularity.
It can help to increase reliability via Sharding, and to save cost by optional support for

local storage in addition to network storage.
It eases load balancing and background migration of data, even over long distances.
MARS runs as a Linux kernel module. The sysadmin interface is similar to DRBD, but its

internal engine is completely different from DRBD: it works with transaction logging, similar
to some database systems.
Therefore, MARS can provide stronger consistency guarantees. In case of network bottlenecks

/ problems / failures, the secondaries may become outdated (reflect an elder state), but will
not become inconsistent. In contrast to DRBD, MARS preserves the order of write operations
even when the network is flaky (Anytime Consistency).
The current version of MARS supports k > 2 replicas and works asynchronously. Therefore,

application performance is completely decoupled from any network problems. Future versions
are planned to also support synchronous or near-synchronous modes.
MARS supports a new method for building Cloud Storage / Software Defined Storage, called

LV Football. It comes with some automation scripts, enabling a similar functionality than
Kubernetes, but devoted to stateful LVs over virtual LVM pools in the petabytes range.
MARS is in production since 2014, and on thousands of Linux servers replicating petabytes

of data.

01101011101001

Many thanks for constructive feedback which helped to improve this document series and related
material like presentation slides:

• Philipp Reisner from Linbit

• Ewen NcNeill and Simon Lyall from the Australian / New Zealand Linux community

• Jens Clever and Jörg Mann, external freelancers working at 1&1

• Anders Henke and Christian Albert from 1&1 Ionos

• Olof Sandström-Herrera from Arsys

Please report any omissions in case I forgot somebody.

4

Preface

Introduction

MARS is a block-level storage replication system for long distances / flaky networks under
GPL.
It is a key component for achieving geo-redundancy under Linux, for example Disaster

Recovery (DR) at datacenter granularity, and/or Location Transparency (LT) at VM / LV
granularity.
It can help to increase reliability via Sharding, and to save cost by optional support for

local storage in addition to network storage.
It eases load balancing and background migration of data, even over long distances.
MARS runs as a Linux kernel module. The sysadmin interface is similar to DRBD, but its

internal engine is completely different from DRBD: it works with transaction logging, similar
to some database systems.
Therefore, MARS can provide stronger consistency guarantees. In case of network bottlenecks

/ problems / failures, the secondaries may become outdated (reflect an elder state), but will
not become inconsistent. In contrast to DRBD, MARS preserves the order of write operations
even when the network is flaky (Anytime Consistency).
The current version of MARS supports k > 2 replicas and works asynchronously. Therefore,

application performance is completely decoupled from any network problems. Future versions
are planned to also support synchronous or near-synchronous modes.
MARS supports a new method for building Cloud Storage / Software Defined Storage, called

LV Football. It comes with some automation scripts, enabling a similar functionality than
Kubernetes, but devoted to stateful LVs over virtual LVM pools in the petabytes range.
MARS is in production since 2014, and on thousands of Linux servers replicating petabytes

of data.

Purpose

This document explains how to install, setup and run a storage replication system on a Linux
based platform using MARS.
MARS is free software under GPL. The terms and conditions of the GPL apply. This docu-

mentation is best effort and may contain bugs (no warranty, according to the GPL).

Scope

The following topics are covered within this document:

• preconditions: what you need.

• creating a Linux kernel module for MARS.

• creation of a MARS cluster.

• creation and operation of MARS resources.

• dynamic creation / deletion of additional replicas, and how migrate data this way.

• hints for monitoring.

• troubleshooting

5

Audience
This document is written for experienced sysadmins with working knowledge on the following
methods and technologies:

• Setup and operation of LVM (Logical Volume Manager) under Linux.

• Operation of storage systems.

• Ability to patch and to compile and install a customized Linux kernel. Most patches are
already provided ready-to-use, so no full developer knowledge is needed.

How to use this document
Please start with the very short introduction chapter 1 Briefing: how MARS works.
If you want to install MARS, read HOWTO setup MARS.
If you just want to operate a MARS installation which is already set up, go on to HOWTO

operation of MARS resources.
If you already have some experiences with MARS and just need some details about marsadm

commands, chapter Working with marsadm commands is a kind of “reference” for you.
Users who want to go deeper into tuning should read Tuning, tips and tricks.
Automation via interfacing to systemd is described in Advanced users: automation and the

macro processor, as well as tips for writing your own automation scripts.
Appendix A on page 103 answers a few FAQs by the inventor of MARS.
Appendix B on page 105 contains some estimations for typical datacenter hardware, called

Technical Data MARS.
Some non-standard expert tricks (e.g. for mass operation of thousands of instances) can be

found in the following appendices.

Related documents
• mars-architecture-guide.pdf: explains usage scenarios.

• football-user-manual.pdf: for sysadmins and userspace developers who want to use
Football.

• mars-for-kernel-developers.pdf: some infos for kernel developers.

6

Contents

1. Briefing: how MARS works 10
1.1. Typical MARS replication setup . 10
1.2. The Transaction Logger . 11
1.3. The State of MARS . 12

2. HOWTO setup MARS 14
2.1. Description: what you Need . 14
2.2. MARS Kernel Module . 16
2.3. Setup Primary and Secondary Cluster Nodes . 19

2.3.1. Setup Hardware . 19
2.3.2. Setup the Network . 19

2.4. Setup / Install OS . 20
2.4.1. Setup LVM . 22
2.4.2. Setup Cluster Nodes . 23

2.5. Setup Housekeeping Cron Job . 24
2.6. Creating and Maintaining Resources . 26

3. HOWTO operation of MARS resources 28
3.1. Inspecting the State of MARS . 28

3.1.1. Standard marsadm view . 28
3.2. Switch Primary / Secondary Roles . 33

3.2.1. Intended Switching / Planned Handover 34
3.2.2. Forced Switching . 36

3.3. Split Brain Resolution . 38
3.4. Final Destruction of a Damaged Node . 40
3.5. Online Resizing during Operation . 41
3.6. Defending Overflow of /mars/ . 42

3.6.1. Countermeasures against overflow . 42
3.6.1.1. Dimensioning of /mars/ . 42
3.6.1.2. Monitoring . 42
3.6.1.3. Throttling . 44

3.7. Emergency Mode and its Resolution . 45

4. Working with marsadm commands 47
4.1. Cluster Operations . 49
4.2. Resource Operations . 52

4.2.1. Resource Creation / Deletion / Modification 53
4.2.2. Operation of the Resource . 55
4.2.3. Logfile Operations . 60
4.2.4. Consistency Operations . 60

4.3. Further marsadm Operations . 60
4.3.1. Inspection Commands . 60
4.3.2. Setting Parameters . 61

4.3.2.1. Per-Resource Parameters . 61
4.3.2.2. Global Parameters . 61

4.3.3. Waiting . 62
4.3.4. systemd Control Commands . 63
4.3.5. Low-Level Expert Commands . 64
4.3.6. Senseless Commands (from DRBD) . 65
4.3.7. Forbidden Commands (from DRBD) . 65

7

Contents

5. Tuning, tips and tricks 66
5.1. IO Performance Tuning . 66
5.2. Data Compression and Checksumming (Digests) 70

5.2.1. Network Transport Compression . 71
5.2.2. Logfile Payload Compression . 71
5.2.3. Logfile Payload Digests . 71
5.2.4. Network Payload Digests . 72

5.3. The /proc/sys/mars/ and other Expert Tweaks 72
5.3.1. Tuning Network Performance . 72
5.3.2. Syslogging . 74

5.3.2.1. Logging to Files . 74
5.3.2.2. Logging to Syslog . 74
5.3.2.3. Tuning Verbosity of Logging . 75

5.3.3. Tuning the Sync . 75
5.3.4. Lowlevel TCP Tuning (Networking Experts Only) 75

6. Advanced users: automation and the macro processor 77
6.1. The systemd Template Generator . 77

6.1.1. Why systemd? . 77
6.1.2. Execution Model of systemd and marsadm 78
6.1.3. Working Principle of the Template Generator for systemd 80
6.1.4. Template Markers . 81
6.1.5. Special .script Pseudo Units . 82
6.1.6. Example systemd Templates . 85
6.1.7. Fully Automatic Handover using systemd 87

6.2. The macro processor . 88
6.2.1. Predefined Primitive Macros . 89

6.2.1.1. Intended for Humans . 89
6.2.1.2. Intended for Scripting . 91

6.3. Creating your own Macros . 95
6.3.1. General Macro Syntax . 96
6.3.2. Calling Builtin / Primitive Macros . 97
6.3.3. Predefined Variables . 101

6.4. Scripting Advice . 102

A. FAQ 103

B. Technical Data MARS 105

C. HISTORIC Guide for Midnight Problem Solving 106
C.1. Inspecting the State of MARS . 106
C.2. Replication is unexpectedly Stuck . 107
C.3. Standard Resolution of Emergency Mode and Split Brain 108
C.4. Alternative Resolution of Split Brain / Emergency Mode / Defective Hardware . 109
C.5. Handover of Primary Role . 111
C.6. Failover = Emergency Switch of Primary Role 112

D. HISTORICAL Methods for Split Brain Resolution 114

E. Alternative De- and Reconstruction of a Damaged Resource 115

F. Cleanup in case of Complicated Cascading Failures 116

G. Experts only: Special Trick Switching and Rebuild 118

H. Creating Backups via Pseudo Snapshots 120

I. Command Documentation for Userspace Tools 121
I.1. marsadm --help . 121

8

Contents

J. GNU Free Documentation License 134

9

1. Briefing: how MARS works

1.1. Typical MARS replication setup

Typical recommended usage is replication of multiple Logical Volumes (LVs) directly at bare
metal (never inside of VMs), similar to DRBD:

Datacenter A

replication traffic

...

...

RAID

pvs + vgs

lvs

MARS

...

...

RAID

pvs + vgs

lvs

MARS

zfs snapshots, xfs

filesystem

applications

zfs snapshots, xfs

primary secondary

applications

filesystem
long−distance

Datacenters B (and C)

At the primary (active) side A, the applications are running. At each of the secondary (passive)
sides B and C, only the underlying LV replicas are updated via the replication network traffic.
The filesystem is not mounted at any secondary side, and the applications are not running there.
However, the roles may be switched at any time, and then the application will for example run
at Datacenter B in primary role, while the corresponding LV replicas will then be in secondary
(passive) role at datacenters A and C.
An advantage of multiple LV replication is that primary and secondary roles can be indi-

vidually switched at runtime. For example, if you have 10 LVs in each of your servers, 6
LVs may currently run in datacenter A in primary role, while the other 4 LVs are running in
datacenter B, while datacenter C is dimensioned for less CPU power, and is mainly intended for
additional “emergency backup” replicas. For instance, such a 3-datacenter configuration may be
used for load balancing during overload peaks, or for switchover due to kernel security updates,
and much more.
Further setups are also possible. For example, you might replicate physical disks. However,

this would be less flexible because your volumes must then uniformly run in the same datacenter
at the same time.
In addition, MARS’ replicated block devices may be exported via iSCSI or other protocols.

Filesystems residing on top of MARS may be exported via NFS or glusterfs, etc. For more
details, please consult mars-architecture-guide.pdf.

10

1.2. The Transaction Logger

1.2. The Transaction Logger

MARS Data Flow Principle

MARS LCA2014 Presentation by Thomas Schöbel-Theuer

Temporary
Memory
Buffer

Host A
(primary)

/dev/mars/mydata

/dev/lv-x/mydata /mars/resource-
mydata/log-00001-

hostA

Logfile
Replicator

/mars/resource-
mydata/log-00001-

hostA
/dev/lv-
x/mydata

Logfile
Applicator

Host A
(primary)

Host B
(secondary)

w
ri

te
ba

ck
 in

ba
ck

gr
ou

nd

long-distance

tra
nsfer

append

Transaction Logger

The basic idea of MARS is to record all changes made to your LV in a so-called transaction
logfile. Any write request is treated like a transaction which changes the contents of your LV.
This is similar in concept to some database systems (c.f. MySQL replication), but there

exists no separate “commit” operation: any write request is acting like a commit.
The picture shows the flow of write requests. Let’s start with the primary node.
Write requests directed at the virtual block device /dev/mars/mydata are first buffered in a

temporary kernel memory buffer.
The temporary kernel memory buffer serves multiple purposes:

• It keeps track of the order of write operations.

• Additionally, it keeps track of the positions in the underlying LV /dev/lv-x/mydata. In
particular, it detects when the same block is overwritten multiple times.

• Writeback to the underlying LV may occur in a different order than submission order.
On magnetic disk media, this may lead to a noticeable performance boost, as shown
in section 5.1.

• During pending write operations, any concurrent reads from the same locations are served
from the temporary memory buffer.

After the write has been buffered in the temporary memory buffer, the internal transaction
logger kernel thread creates a so-called log entry and starts an “append” operation on the
transaction logfile. The log entry contains vital information such as the logical block number in
the underlying LV, the length of the data, a timestamp, some header magic in order to detect
corruption, the log entry sequence number, of course the data itself, and optional information
like an MD5 checksum or compression information.
Once the log entries1 have been written through to the /mars/ filesystem via fsync(), the

1Notice that the order of log records present in the transaction log defines a total order among the write
requests which is compatible to the partial order of write requests issued on /dev/mars/mydata.
Also notice that despite its sequential nature, the transaction logfile is typically not the performance

bottleneck of the system. At least on magnetic media, appending to a logfile is almost purely sequential IO,
it runs much faster than random IO.

11

1. Briefing: how MARS works

application waiting for the write operation at /dev/mars/mydata is signaled that the write was
successful2.
This usually happens before the writeback to the underlying LV /dev/lv-x/mydata has

started. Even when you power off the system right now, the information is not lost: it is present
in the logfile, and will be reconstructed from there after restart from power loss (Recovery
phase). This is similar to Recovery of database systems after unexpected power loss.
In case the primary node crashes during writeback, it suffices to replay the log entries from

some point in the past until the end of the transaction logfile. It does no harm if you accidentally
replay some log entries twice or even more often: since the replay is in the original total
order. Thus any temporary inconsistency will be healed 3by logfile application. Good news for
desperate sysadmins forced to work with old or flaky hardware!
The basic idea of asynchronous replication by MARS is rather simple: just transfer the logfiles

to your secondary nodes, and replay them onto their LV replica (aka copy of the disk data, aka
mirror).
Replay is always in the same write order as the total order defined by the primary.
Therefore, a mirror of your data on any secondary may be outdated, but it always corresponds

to some version which was valid in the past. This property is called anytime consistency4.

As you can see in the picture, the logfile transfer process is independent from the re-
play process. Both processes can be switched on / off separately (see commands marsadm
{dis,}connect and marsadm {pause,resume}-replay in section 4.2.2). This may be ex-
ploited : for example, you may replicate your logfiles as soon as possible (to protect against
catastrophic failures), but deliberately wait one hour until it is replayed (under regular cir-
cumstances). If your data inside your filesystem /mydata/ at the primary site is accidentally
destroyed by rm -rf /mydata/, you have an old copy at the secondary site. This way, you can
substitute some parts5 of conventional backup functionality by MARS. In case you need the
actual version, just replay in “fast-forward” mode (similar to old-fashioned video tapes).

Future versions of MARS are planned to also allow “fast-backward” rewinding, of course at
some cost.

1.3. The State of MARS

In general, MARS tries to hide any network failures from you as best as it can. After a
network problem, any internal low-level socket connections are transparently tried to re-open
ASAP, without need for sysadmin intervention. In difference to DRBD, network failures will not
automatically alter the state of MARS, such as switching to disconnected after a ko_timeout
or similar. From a high-level sysadmin viewpoint, communication may just take a very long
time to succeed.
2In order to reclaim the temporary memory buffer, its content must be written back to the underlying disk
/dev/lv-x/mydata somewhen. After writeback, the temporary space is freed. The writeback can do the
following optimizations:

1. writeback may be in any order; in particular, it is sorted according to ascending sector ´numbers. This
reduces the average seek distances of magnetic disks in general.

2. when the same sector is overwritten multiple times, only the “last” version need to be written back,
skipping some intermediate versions.

3In mathematics, the property that you can apply your logfile twice to your data (or even as often as you want),
is called idempotence. This is a very desirable property: it ensures that nothing goes wrong when replaying
“too much” / starting your replay “too early”. Idempotence is even more beneficial: in case anything should
go wrong with your data on your disk (e.g. IO errors), replaying your logfile once more often may even heal
some defects.

4Your secondary nodes are always strictly consistent in themselves. Notice that this kind of consistency is
a local consistency model. At global level, MARS is eventually consistent. Strict global consistency is
generally not possible over long distances. Reasons are (1) Einstein’s law (speed of light), and (2) the CAP
theorem and its sister theorems. The front-cover pictures showing the planets Earth and Mars tries to lead
your imagination away from global consistency models, in order to prepare you mentally for local consistency
as in “MARS Think(tm)”.

5Please note that MARS cannot fully substitute a backup system, because it can keep only physical copies,
and does not create logical copies.

12

1.3. The State of MARS

When the behaviour of MARS is different from DRBD, it is usually intended as a feature.
MARS is not only an asynchronous system at block IO level, but also at control level.
This is necessary because in a widely distributed long-distance system running on slow or

even temporarily failing networks, actions may take a long time, and there may be many actions
started in parallel.

Synchronous concepts are generally not sufficient for expressing that. Because of in-
herent asynchronicity and of dynamic creation / joining of resources, it is neither possible to
comprehensively depict a complex distributed MARS system, nor a comprehensive standalone
snippet of MARS, as a finite state transition diagram6.

6Probably it could be possible to formally model MARS as a Petri net. However, complete Petri nets are tending
to become very conplex, and to describe lots of low-level details. Expressing hierarchy, in a top-down fashion,
is cumbersome. We find no clue in trying to do so.

13

2. HOWTO setup MARS

This chapter is for impatient but experienced sysadmins. For more detailed information, refer
to chapter Working with marsadm commands.

2.1. Description: what you Need
This section describes the hardware you will need to buy and deploy, and which software
components to install. Step-by-step setup instructions are following in the next section (starting
with section 2.2).
Typically, you will install MARS at many bare metal servers for replication of many LVs

between1 multiple datacenters. Do not use MARS inside of VMs (see explanation of Dijkstra’s
layering rules in mars-architecture-guide.pdf).
You can use MARS both at dedicated storage servers (e.g. for serving Windows clients over

iSCSI), or at standalone Linux servers where CPU and storage are not separated.
Here is a list of software to be installed at your servers (with distro-specific tools like dpkg /

aptitude / rpm / yum / zypper / etc):

• ssh

• ssh-agent (such that ssh root@hostA will work without password)

• rsync

• perl

• lvm

• Further standard Linux tools like modprobe, typically already present at servers. When
necessary, you typically can install them from typical OpenSource / Linux Distro repos.

• Only if you don’t have an already pre-built MARS kernel module, and only at your work-
station, not necessarily at your server: everything you need for compiling a customized
kernel. Optionally, the tools for building a Debian or rpm package. Details are distro-
specific.

In order to protect your server data from low-level disk failures, you should use a hard-
ware RAID controller with BBU. Software RAID is currently not recommended, be-
cause it generally provides worse performance due to the lack of a hardware BBU (for some
benchmark comparisons with/out BBU, see https://github.com/schoebel/blkreplay/raw/
master/doc/blkreplay.pdf).
For many application workloads, RAID-6 provides a good compromise between cost and

performance. Reads are very fast due to RAID-6 striping, while the slow RAID-6 writes are
partially compensated by the MARS kernel memory buffer (see section 5.1).
For almost double the cost per TiB, you can speed up write operations by RAID-10. However,

checkout RAID-6 first. A good tool to measure your real application performance is blktrace
plus blkreplay, see https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.
pdf.
For much higher cost per TiB, typically by about a factor of 10, you can of course also use

SSDs in place of HDDs. While relatively small-sized database workloads are nowadays typically
on SSDs, big mass data is typically remaining on HDDs for cost reasons.
1Many other solutions, even from commercial storage vendors, will not work reliably over distances greater
than ≈ 50 km, and/or when your network is not extremely reliable, and/or when you try to push huge
masses of data from high-performance applications through a network bottleneck. If you ever encountered
suchalike problems (or try to avoid them in advance), MARS is for you. More information can be found in
mars-architecture-guide.pdf.

14

https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf
https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf
https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf
https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf

2.1. Description: what you Need

Typically, you should build more than one RAID set2 if you have more than 12 to 15 spindles
in total. Therefore, the step-by-step HOWTO from this best-effort manual will show you some
examples with LVM striping over 2 physical volumes (PVs).
LVM is highly recommended3 for maximum flexibility. When used in static space allocation

mode (as opposed to thin provisioning mode), LVM involves no measurable overhead (within
the measurement tolerances of blkreplay). Although LVM thin provisioning could potentially
save some cost, it may lead to massive performance degradation as observed with certain types
of application behaviour. In order to stay at the safe side of operations, you should dimension
your RAID storage size accordingly.
MARS’ tolerance of networking problems comes with some cost. You will need some extra

space for the transaction logfiles of MARS, residing at the /mars/ filesystem.
The exact space requirements for /mars/ depend on the average write rate of your application,

not on the size of your data. An example: in 1&1 Shared Hosting Linux (ShaHoLin), we found
that only few applications are writing more than 1 TB per day during ordinary4 operations.
Most are writing even less than 100 GB per day, because the observed average filesystem data
change rate is only about 1% per day5. Of course, there exist other applications like backup
where the write rate is much higher. Please try to determine your actual write rates from
system tools like sar. Usually, you want to dimension /mars/ such that you can survive a
network loss lasting 3 days / about one weekend.
This can be achieved rather easily, in one of the following ways:

1. Create an LV for /mars on top of your application VG, typically named /dev/vg/mars
or similar (see step-by-step instructions in section 2.4.1). This is the easiest solution if
you are anyway using LVM on top of a hardware BBU. This is also most flexible: it can
be resized during operation. Therefore, you may start with a size of around 500 GiB,
and later be extended with increasing demands.
This variant is also recommended if you have very expensive SSD storage. Depending on
write rates, you could for example start with 100 GiB, and extend dynamically as far as
needed, for example by some alerting scripts, or even using some cron job.

2. Alternatively, you may use one dedicated HDD with a capacity of 4 TB or more. Typi-
cally, this will provide you with plenty of headroom even for bigger networking incidents.
Performance of a single HDD over a BBU is typically good enough for /mars because
the transaction logs are involving mostly sequential reads and writes in larger chunks.
However, there exist some workloads where striping could be necessary for maximizing
sequential throughput.

3. Alternatively, if you are concerned about both performance and reliability, use two ded-
icated spindles over hardware RAID-1 with BBU. For maximum flexibility, put another
VG on top of the dediactedRAID-1 set. For example, if /dev/sdc is your RAID-1 set,
create a PV and a VG called mars on top of it. This is most flexible, since you might
later migrate your /mars even during runtime, for example when replacing small disks
with bigger ones, or when replacing HDDs with SSDs during runtime.

4. For extremely high performance, separate SSD sets for the user data VG and for /mars
might be beneficial. However, check whether it really pays off. Notice that a hardware
BBU is nothing but a RAM cache, which is faster than any SSD, and there exist some
workloads where sequntial IO to HDDs is faster than to SSDs. Sometimes, there are
hidden performance bottlenecks, such as SAS buses, or some old-generation RAID con-
trollers.

Dedicated HDDs for /mars/ have another advantage: their mechanical head movement is com-
pletely independent from your data head movements. For best performance, attach the cor-
2For low-cost storage, RAID-5 is no longer regarded safe for today’s typical storage sizes, because the error rate
is regarded too high. Therefore, use RAID-6. If you need more than 15 disks in total, create multiple RAID
sets (each having at most 15 disks, better about 12 disks) and stripe them via LVM (or via your hardware
RAID controller if it supports RAID-60).

3In principle, you may combine MARS with commercial storage boxes connected over Fibrechannel or iSCSI.
At 1&1, there is not yet operational experience with such setups.

4Exception: restores from backup.
5Within some limits, the distribution is an exponential one, according to Zipf’s law.

15

2. HOWTO setup MARS

responding disks to your hardware RAID controller with BBU, building a separate RAID set
(even if it consists only of a single disk – notice that the hardware BBU is the crucial point).
If you are concerned about reliability, use two disks configured as a relatively small RAID-

1 set. For extremely high performance demands, you may consider (and check) RAID-10
and/or SSD storage. However, SSDs are reported as less reliable. While failures of HDDs are
typically detectable in advance by upcoming SMART media error counts, SSDs are typically
failing suddenly and unexpectedly6. And their failure is not statistically independent in general.
Building a RAID-1 on top of SSDs bears an increased risk that both SSDs are unexpectedly
failing both at the same time7.
If you want to build extremely cheap low-cost storage, for example for low-performance

backup systems or similar use cases: cheap but high-capacity nearline-SAS8 disks may be
sufficient, because the transaction logfiles are highly sequential in their access pattern. However,
check with blkreplay that performance is really sufficient, when compared with “better” disks.

Do not import the block device for /mars/ over iSCSI. This would sacrifice both reliability
and performance. MARS is constructed for exploiting a hardware BBU cache with a typical
IO parallelism degree of 1000 parallel IO requests, over fast local DMA. See also section IO
Performance Tuning.

Consequence: never run MARS inside of a VM (other than for functional component
testing). See also Dijkstra’s layering rules in mars-architecture-guide.pdf.

Notice that the filesystem /mars/ has nothing to do with an ordinary filesystem. It is
completely reserved for MARS internal purposes, namely as a storage container for MARS’
persistent data. It does not obey any userspace rules like FHS (filesystem hierarchy standard),
and it should not be accessed by any userspace tool execpt the official marsadm tool. Its internal
data format should be a regarded as a blackbox by you. The internal data format may change
in future, or the complete /mars/ filesystem may be even replaced by a totally different container
format, while the official marsadm interface and its primitive macros are supposed to remain
stable.

That said, you might look into its contents by hand for curiosity or for debugging purposes,
and only as root. But don’t program any tools / monitoring scripts / etc bypassing the official
marsadm tool.

Like DRBD, the current version of MARS has no security built in. MARS assumes
that it is running in a trusted network. Anyone who can connect to the MARS ports (default
7777 to 7779) can potentially breach in and become root. Therefore, you must protect your
network by appropriate means, such as firewalling and/or encrypted VPN.
Currently, MARS provides no shared secret like DRBD, because a simple shared secret is

way too weak to provide any real security (potentially misleading people about the real level of
security). Future versions of MARS might provide some 2-factor authorization, and encryption
via dynamic session keys. Until that is implemented9, use a secured VPN instead. And don’t
forget to audit it for security holes.

2.2. MARS Kernel Module
Always use the newest stable version (master branch) from https://github.com/schoebel/
mars. Please consult the file ChangeLog there.
The MARS kernel module should be available or can be built via one of the following methods:

6Notice: the component failure rate is not the crucial point. Even if some types of SSDs have a better MTBF
than typical HDDs: when you can detect failure in advance, you can prevent

7Preliminary replacement of SSDs after a certain amount of write may help. But it will increase cost.
8Even cheaper SATA disks are not recommended for professional datacenter usage. Typically, they are not
rated for 24/7/365 usage. Even for some use cases like backup, experiences are worse.

9There is fundamental argument: network traffic between datacenters belongs to a higher level than a single
component like MARS. Thus its security requirements must be solved at that higher level, but not at the
lower level of MARS.

16

https://github.com/schoebel/mars
https://github.com/schoebel/mars

2.2. MARS Kernel Module

• As an external Debian or rpm kernel module, as provided by a package contributor (or
hopefully by standard distros in the future).

• Via dkms. Although there is an example file contrib/mars-dkms.dkms in the official
MARS repo at https://github.com/schoebel/mars which could serve as a base for
Linux distro vendors, it would suffer from serious performance degradation if it would be
compiled without the MARS pre-patch. Don’t use such a version for any serious applica-
tion. With pre-patch, dkms would be no problem. You can check whether some already
built mars.ko kernel module has been compiled with pre-patch or not:
modinfo mars
which displays the version for the currently active kernel, or any other version via
modinfo /path/to/mars.ko
This should display something like

io_dr iver : a i o
prepatch : has_prepatch

Do not use a kernel module for production if the io_driver either reports sio in place of
aio, or if no pre-patch is detected.

• As a separate kernel module, only recommended for experienced10 sysadmins: see file
Makefile.dist (tested with some older versions of Debian; may need some extra work
with other distros).

• Following are recommended build instructions for senior sysadmins or developers, inplace
in the kernel source tree. Look into the subdirectory pre-patches/ of the MARS repo
for the right version of the pre-patches.

Here are example instructions for LTS kernel 4.4, building everything from scratch at your
Linux workstation, using git. Actions marked “for safety” are not generally necessary, but may
be appropriate for recovery from previous build failures.

1. git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
linux-stable.git

2. cd linux-stable.git

3. git checkout linux-4.4.y

4. For safety:
git pull

5. Get an appropriate old .config file. For example at some OpenSuSE distro:
cp /boot/config-4.12.14-lp151.28.13-default .config
Notice: there are several other methods which are outside the scope of this manual. When
in doubt, consult somebody with kernel build experience.

6. make oldconfig || make olddefconfig

7. cd block/

8. git clone --recurse-submodules https://github.com/schoebel/mars

9. For safety, ensure you always have the newest MARS version:
cd mars/
git checkout master
git pull
cd ..

10. Go back to the root of Linux git:
cd ..

10You should be familiar with the problems arising from orthogonal combination of different kernel versions
with different MARS module versions and with different marsadm userspace tool versions at the package
management level. Hint: modinfo is your friend.

17

https://github.com/schoebel/mars

2. HOWTO setup MARS

11. To avoid mixup of later actions with upstream patches:
git branch -D mars-patches-for-4.4 || echo IGNORE THIS ERROR
git checkout -b mars-patches-for-4.4

12. Apply all(!) the patches from block/mars/pre-patches/vanilla-$version. For exam-
ple with kernel 4.4:

a) For safety:
git reset --hard; git clean -f

b) git am block/mars/pre-patches/vanilla-4.4/*.patch

13. make menuconfig (or another variant like make xconfig)

a) Go to “Enable the block layer”

b) Select MARS as a module (by moving the cursor and then typing m)

c) A lot of sub-options for MARS will pop up. Leave them at their default.

d) Save the Kconfig options to .config and exit.

14. Build the kernel, typically something like one of:

a) For Debian / Ubuntu / etc:
make deb-pkg

b) For Redhat / CentOS / SuSE / etc:
make rpm-pkg

c) Classical with local install:
make -j 12 && make install modules_install

d) ... see some more variants and make targets:
make help

15. Copy and install the new Debian or rpm package to the destination servers, activate
them (system-dependent, like update-grub or similar), and reboot your servers with the
modified kernel.

16. Check that the MARS kernel module is installed (but do not yet load it):
modinfo mars

Further / more accurate / latest instructions may be found in README and in INSTALL. You
must not only install the kernel and the mars.ko kernel module to all of your bare metal cluster
nodes, but also the marsadm userspace tool.
Installing marsadm by hand is rather simple: just copy it to /usr/bin/ or /usr/local/bin.

For example:

• cp -a block/mars/userspace/marsadm /usr/local/bin/

• Alternatively, create a Debian or rpm package (named mars-utils or mars-tools or
similar). Since marsadm is a basic Perl script which requires no other Perl modules, the
only package dependency is from the Perl interpreter. Since Perl is typically already
installed on virtually every Linux server, leaving out this dependency won’t be a show
stopper.

With newer versions of MARS, a prepatch for vanilla kernels 3.2 through 4.9 (or even later)
is no longer needed, at least in theory. However, IO performance is currently much worse
when the pre-patch is not applied. This will be hopefully addressed in a future release. At the
moment, don’t use pre-patch-less MARS on any production system. It has extremely limited
IO parallelism because some performance-critical kernel interfaces are not accessible without
the pre-patch. The command modinfo mars will report whether the pre-patch is present at
your kernel, or not (see description of dkms above).

Pre-patches for various kernel version can be found in the pre-patches/ subdirectory of the
MARS source tree. Following are the types of pre-patches:

18

2.3. Setup Primary and Secondary Cluster Nodes

• 0001-mars-minimum-pre-patch-for-mars.patch or similar. Please prefer this one (when
present for your kernel version) in front of any old / deprecated 0001-mars-generic-pre-patch-for-mars.
patch or similar. The latter should not be used anymore, except for testing or as an emer-
gency fallback.

• 0002-mars-SPECIAL-for-in-tree-build.patch or similar. This is only needed when
building the MARS kernel module together with all other kernel modules in a single make
pass. For separate external module builds (e.g. with dkms, or with rpmbuild etc), this
patch must not be applied (but the pre-patch strongly should if somehow possible). When
using this patch, please apply the aforementioned pre-patch also, because your kernel will
be patched anyway.

• For certain kernels like 4.14, some additional fixes may be necessary. These are in the
respective vanilla-*/ subdirectory, indicated by filename *fix*. Sometimes, these are
absolutely needed. For example, an endless loop in unfixed upstream vanilla kernels >=
4.10 may occur upon network timeouts.

Starting from version mars0.1stable56 or mars0.1abeta8, submodules have been added
to the github repo of MARS. If you have an old git checkout, please say git pull --recurse-submodules=yes
or similar. Otherwise you may be missing an important future part of the MARS release, with-
out notice (depending on your local git version and its local configuration).

2.3. Setup Primary and Secondary Cluster Nodes

If you already have some production data on your bare metal servers via LVM, you may skip
some of the following subsections.
In case your data is already replicated with DRBD, you may migrate to MARS (or even

back from MARS to DRBD) if you use external11 DRBD metadata (which is not touched by
MARS). Internal DRBD metadata is reported to also work, because it resides at the end of the
block device. However, you will waste some small amount of storage.
Migrating back to DRBD is also possible, provided you re-initialize the DRBD meta-data

again.
For the following instructions to work, you must be root on your servers.

2.3.1. Setup Hardware

Do not use MARS inside of VMs. Only use at bare metal!
When using hardware RAID controllers with hardware BBU (as is highly recommended),

you will need to build your RAID sets with the corresponding tools.

Don’t set your hardware BBU cache to “writethrough” mode. This may lead to tremen-
dous performance degradation. Use the default “writeback” strategy instead. It should be
operationally safe, because in case of power loss the BBU cache content will be preserved
thanks to the battery, and/or thanks to goldcaps for saving the cache content into some flash
chips.
In the following sections, we assume that two RAID sets are already built, and are accessible

as /dev/sdb and /dev/sdc.

2.3.2. Setup the Network

Here are only brief recommendations. Network setup is outside the scope of this manual.
Recommended are the following basics:
11Internal DRBD metadata should also work as long as the filesystem inside your block device / disk already

exists and is not re-created. The latter would destroy the DRBD metadata, but even that will not hurt you
really: you can always switch back to DRBD using external metadata, as long as you have some small spare
space somewhere.

19

0001-mars-minimum-pre-patch-for-mars.patch
0001-mars-generic-pre-patch-for-mars.patch
0001-mars-generic-pre-patch-for-mars.patch
0002-mars-SPECIAL-for-in-tree-build.patch

2. HOWTO setup MARS

• Avoid layer 2 coupling between datacenters. MARS requires only TCP/IP (typi-
cally over IPv4 default ports 7776. . . 7779) for replication traffic, so layer 4 coupling (aka
routing) is sufficient. Of course, the lower layers are always present inside the same data-
center, so just avoid unnecessary lower-layer coupling between datacenters. Any problems
caused by the network and its setup are up to your own.

• As explained in architecture-guide-geo-redundancy.pdf, dedicated replication
networks are recommended for long-distance replication of hundreds or thousands of
servers.

• Best practice: ensure that each of your cluster hosts can ping to each other (which means
O(k2) potential network connections), via their pure hostname.
Example on hostA: ping hostB

• If you have only 1 server IP over 1 physical ethernet interface, classical datacenter-
internal DNS (as typically used for sysadmin ssh access etc) is sufficient. If you have a
separate replication network, e.g. a separate physical ethernet interface eth1 in addition
to classical eth0, you might omit another DNS entry theoretically. Although several
marsadm commands are supporting separate $host_ip parameters for circumvention of
DNS, working directly on IP addresses is not a best practice. Out of many alternatives,
try to avoid separate DNS names for the eth1-specific master IP, but consider to use local
routing for the MARS ports 7776 to 7779 over eth1, while other ports may remain on
eth0. Such a port-specific routing setup will make you independent from changes in the
network or hardware setup, and it will make the DNS less complex. Your scripting will
also benefit from simplicity. On the other hand, beware of (internal or external) routing
problems. However, operations of professional datacenters needs to deal with suchalike
playgrounds anyway. This MARS-specific guide cannot dive into details.

• Firewalling is also OT = Off Topic here. Recommendation: KISS = Keep It Simple and
Stupid.

• Avoid FQDNs for any testing, and do not encode domain names into any scripting.
See also section 2.4 Setup / Install OS.

2.4. Setup / Install OS

Installing a Linux distribution is outside the scope of this manual. There are dozens of methods,
each of them working differently in detail. Here are only some rough hints for avoidance of
problems with MARS:

• Hostnames need to be entered into typical installers, e.g. as used by major Linux distros.
In case you have selected a bad name, you can typically change it, e.g. via your favourite
tool like yast or zypper or yum or the equivalent Debian / Ubuntu tools, and os on, or
manally like vi /etc/hostname followed by reboot, or similar. However, do this only
before MARS is configured. Here are pitfalls you need to know:

1. As is best practice since decades: only use plain hostnames, separated from
domain names. This means: the shell command hostname (and siblings like uname
-n) must deliver exactly 1 word, without any dot. Only use this name in later
marsadm commands.

2. Of course, you may also set a domain name as is typically reported by the
shell command domainname.

20

architecture-guide-geo-redundancy.pdf

2.4. Setup / Install OS

Do not enter any domain name into the hostname field of several major Linux
distros. Typically, the entered domainname will then become part of the hostname,
which will not only ENDAGER YOUR DATA, but is also a well-known fault in the
Linux and UNIX ecosystems since decades.

Always enter any domainname separately, typically into a different field, or via
a different shell command, or similarly. If this is not possible during installation, do
it later, and do not forget it. Ensure that the shell command hostname (or any other
host-based command) will never report any part of any / the domainname!

Why? because there exist OS setups where a host can be member of multiple
domains, all in parallel.

Historically, there were several types of domains, e.g. from YP ~ NIS driven
Sun setups. Some alternate domain setups are used today, e.g. by Microsoft, or by
non-DNS driven network protocols, by CIFS, or by some printer domains, and so on.

3. Never use domain names in later marsadm commands! This will pay off, be-
cause you typically can change the domainname(s) later, e.g. when your machine
is expedited to a different location (like moves of whole datacenters), or you may
configure multiple domainnames under certain circumstances. Only the hostname
has to be treated as a unique immutable ID of your machine. Other hardware
or software configurations like MAC addresses or IP addresses or DNS zones etc will
be typically reconfigurable (when done properly).

Q: why is the hostname used as a dot-less machine ID, although there exist a
multitude of UUIDs at hardware level?
A: because defective hardware is actually repaired in big datacenters, e.g. new
mainboards, new CPUs, or even (partially) preconfigured spare machines where
nothing has survived from the old hardware. MARS supports a variety of repair
strategies by placing MARS’ machine ID into the traditional hostname, indepen-
dently from any number of domain or DNS names etc, and their contradictory short-
comings. This is a feature, not a bug, and you agreed to this built-in feature of MARS
by usage, see the GPL and its license terms and conditions like FITNESS FOR A
PARTICULAR PURPOSE.

4. Best practice: start your immutable hostname with a lowercase letter from a
to z, and avoid uppercase letters completely. Avoid non-English letters from other
languages. Avoid utf-8 etc. You may include some numbers, and the marsadm tool
will later automatically sort these parts numerically, even when the number of digits
is varying. Do not use the underscore symbol _ . When separators are necessary,
simply replace it with an infix dash.

5. Hint: use short but recognizable hostnames according to the Unix Philosophy.
You will likely type these names very often in the following years! In a huge company,
prefer a systematic naming + numbering scheme which is easyly usable by a bigger
sysadmin team.

6. Hint: for long-distance replication, you should encode the datacenter name resp
the datacenter region (or similar) with 2 or 3 lowercase letters. This makes it less
risky for humans during midnight incidents to get caught by typos!
Example: pair the hostname cpu-wc1234 with cpu-me1234 where cpu denotes the
machine class, wcmeans the “west coast” datacenter while memeans the “middle east”
datacenter, and 1234 is the cluster number, not a sequential machine number. Thus

21

2. HOWTO setup MARS

you don’t need to lookup partner machine names or numbers from some database,
even when you just woke up from your sleep at midnight.

7. Do not use silly12 hostnames like none / all / any / undefined / local /
localhost which are reserved specifiers for marsadm. When unsure, consult marsadm
--help.

8. NEVER EVER modify the hostname after and/or during MARS
is already installed, or is already running! Any (human) error is your fault!
See also the GPL: NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED INWRITING THE COPYRIGHTHOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES
OFMERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

9. You are FULLY RESPONSIBLE if you do any of the following. There is
NO WARRANTY according to the GPL. If you really need to change the host-
name, first stop all of your applications, then decommission MARS fully via marsadm
leave-resource and marsadm leave-cluster commands (see later descriptions),
and unload the MARS kernel module via rmmod mars. Afterwards, you MUST re-
create the /mars filesystem for safety, typically via mkfs.ext4. Be 100% sure that
all of this has fully succeeded. After decommisioning and deconfiguration of the stack
parts above of /dev/lv/mydata (see the following sections), you can try to change
the hostname. CHECK YOUR WHOLE SETUP, and finally you are fully responsi-
ble for re-configuration of the formerly deconfigured parts under the new hostname,
as described in the following sections.

10. Hint: by not decommissioning your disks /dev/lv/mydata, you may keep your
valuable data. However, you are also fully responsible for any error in device naming,
device location, device content, etc.

2.4.1. Setup LVM

Execute the following instructions only once after bare metal hardware deployment, or
if you want to fully re-install your server. Otherwise, you may delete existing data.

1. First step is create the LVM meta-information on the RAID sets /dev/sdc and /dev/sdc:
pvcreate /dev/sdb
pvcreate /dev/sdc

2. Check your physical volumes:
pvs

3. Create a volume group:
vgcreate vg /dev/sdb /dev/sdc

12As a protection against sillyness, the list of silly basic names in marsadm may be extended in future.

22

2.4. Setup / Install OS

4. Check your volume group:
vgs

5. Create a LV for /mars:
lvcreate -i 2 -L 100G -n mars lv

6. Check your list of LVs:
lvs

2.4.2. Setup Cluster Nodes
For your cluster, you need at least two bare metal nodes. In the following, they will be called
hostA and hostB. In the beginning, hostA will have the primary role, while hostB will be your
initial secondary. The roles may change later.

1. On each of hostA and hostB, create the /mars/ mountpoint:
mkdir /mars

2. On each host, create an ext4 filesystem on your separate disk / RAID set via mkfs.ext413
mkfs.ext4 /dev/vg/mars

3. On each host, mount that filesystem to /mars/. It is advisable to add an entry to
/etc/fstab., or to create a systemd unit mars.mount. Here we just mount it by hand:
mount /dev/vg/mars /mars

4. For security reasons, execute chmod 0700 /mars everyhwere after /mars/ has been mounted.
If you forget this step, any following marsadm command will drop you a warning, but will
fix the problem for you.

5. On hostA: marsadm create-cluster
This must be done exactly once, on exactly one node of your cluster (the first node).
Never do this twice or on different hosts, because that would create two different clusters
which would have nothing to do with each other. The marsadm tool protects you against
accidentally joining / merging two different clusters. If you accidentally created two dif-
ferent clusters, just umount that /mars/ partition and start over with step 2.

Nodenames (see uname -n and man 1 uname and man 2 uname) are
the most critical part of your setup. They must be globally unique, and they must
never change, perpetually. Any (human) error is your fault!
See also the GPL: NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

6. Except for historic versions14 of MARS, execute on both hosts hostA and hostB:
modprobe mars

13Don’t use xfs for /mars. Its late allocation strategy may lead to deadlocks and other problems, at least with
some elder kernel versions.

14Old versions of MARS before mars0.1astable101 needed a working ssh connection from hostB to hostA (as
root), and also in the opposite direction, and between all (current and future) cluster members. The following
is an advice for a historic method. Test ssh on hostB:
• ssh hostA w

This needs to work without entering a password. Ensure that it also works in the opposite direction. In
addition, rsync must be installed.

23

2. HOWTO setup MARS

7. On hostB:
marsadm join-cluster hostA

8. When not yet done, do on each of your hosts:
modprobe mars

9. Check that mars is running everywhere:
marsadm view all

10. Ignore any warnings that no resources are yet defined. But you should check that no
warnings about network connections are appearing. Both cluster nodes should be able to
communicate with each other over the MARS ports (default 7777 to 7779).

11. Additional checks, to be executed on all of your hosts:
netstat -lp --tcp | grep 777
netstat --tcp | grep 777
Both variants should show up some healthy connections. If not, fix your network config-
uration and/or firewalling etc. Details are outside of the scope of this manual.

Beware of asymmetric connections, e.g. caused by inappropriate networking or firewall
rules. Any host must be able to communicate with any other host, at least in the same cluster.
See also the big footnote 14 starting on the previous page (ending on this page).

Do not shoot yourself in your foot by the ill-belief that it would be easy to control
the (replication) network traffic and/or to manage fine-granular firewalling on hundreds or
thousands of machines, whether a single huge BigCluster or many smaller clusters, e.g. pairwise
and/or according to the current LV replica situation etc. Big systems (as such) are not only
prone to sporadics like defective hardware, they also tend to some dynamic behaviour like
growth and hardware lifecycle. Thus they need updates and housekeeping in an incremental15
manner. They aren’t static piles of metal and fibres. Networking and its configuration should
also obey: KISS = Keep It Simple and Stupid.

Well-done coarse granularity at network level is your friend.

If you try to reduce the risk, or are already hit by asymmetric MARS connections, e.g.
for some historic reasons or due to sporadic ARP-cache overflows etc: regularly check (e.g. via
monitoring, and/or via long-running background jobs) that all MARS ports are operational,
and in all combinations from each server to each other server.

2.5. Setup Housekeeping Cron Job
As explained in section The Transaction Logger, all changes to your resource data are recorded
in transaction logfiles residing on the /mars/ filesystem. These files are always growing over

Hints: very useful is ssh-agent and ssh -A preconfigured via /etc/ssh/ssh{,d}_config. Hint 2 (experi-
ences from the football project): if you don’t use ssh-agent (or if you disallow it explicitly by default and
allow it only exceptionally), then you will waste a lot of time and energy with trivial basics. marsadm has
got some provisionary workarounds, like internal fallback to an internal list of ssh ports, but suchalike isn’t
recommended. Just configure your ssh infrastructure in such a ways that it works smoothly.

Similar waste of time and energy will occur if you follow the ill-belief that (static or dynamic) firewalling
on the MARS ports 7776 to 7779 would be a “clever” idea, and/or if you “sell” some “features” like port
knocking on MARS ports to the management. The quality of such ideas could be disguised if you noticed
that your dedicated replication network is already separated by construction, or it could be done (e.g. via
simple network-level firewalling) with less effort. Simply, and frankly: do not shoot yourself in your
foot.

Another way for damaging yourself is usage of old MARS versions. Notice that MARS has drastically
improved in functional and non-functional aspects during the last years.

Some historic hint for those who want to shoot themselves, or are forced to non-productively test something
from the ancient world: in old MARS versions, you must not modprobe before join-cluster is executed. In
newer versions, it is vice versa.

15Big systems are often close to 24/7/365 und thus need incremental updates / housekeeping at every layer,
including networking and many sub-components.

24

2.5. Setup Housekeeping Cron Job

time. In order to avoid filesystem overflow, the following must be executed in regular time
intervals:

1. marsadm cron

Best practice is to run marsadm cron in a cron job, such as /etc/cron.d/mars. An
example cronjob can be found in the userspace/cron.d/ subdirectory of the git repo. Of
course, alternatives to crontab may be also used, but please ensure that marsadm cron pro-
cesses aren’t invoked in high parallelism to each other on the same cluster host. On different
hosts / distributed systems, parallelism is of course fully OK. Just avoid any unnecessary local
parallelism.

In addition, you should establish some regular monitoring of the free space present in the
/mars/ filesystem.
More detailed information about about avoidance of /mars/ overflow is in section 3.6.
Here is some more background information if you want to configure your system cronjob

manually. In most installations, a 10 minute cron interval should be sufficient. Here is an
example line, to be placed in a file like /etc/cron.d/mars:

1. */10 * * * * root if [-L /mars/uuid] ; then marsadm cron ; fi > /dev/null
2>&1

Here is some background explanation about some internal intermediate steps, as executed by
marsadm cron. The following is DEPRECATED. Use cron for operations. Skip the following
except for debugging:

1. marsadm log-rotate all
This starts appending to a new logfile on all of your resources. The logfiles are auto-
matically numbered by an increasing 9-digit logfile number. This will suffice for many
centuries even if you would logrotate once a minute.

2. marsadm log-delete-all all
This determines all logfiles from all resources which are no longer needed (i.e. which
are fully replayed, on all relevant secondaries). All superfluous logfiles are then deleted,
including all copies on all secondaries.

The current version of MARS deletes either all replicas of a logfile everywhere,
or none of the replicas. This is a simple rule, but has the drawback that one node may
hinder other nodes from freeing space in /mars/. In particular, the command marsadm
pause-replay $res (as well as marsadm disconnect $res) will freeze the space recla-
mation in the whole cluster when the pause is lasting very long.

During such space accumulation, also the number of so-called deletions will accu-
mulate in /mars/todo-global/ and sibling directories. In very big installations consisting
of thousands of nodes, it is a good idea to regularly monitor the number of deletions sim-
ilarly to the following: $(find /mars/ -name “delete-*” | wc -l) should not exceed
a limit of ~150 entries.

Please prefer the short form marsadm cron both for human usage, and as an equivalent to
scripting two separate commands marsadm log-rotate all and marsadm log-delete-all
all. The short form is not only easier to remember, but also future-proof in case some new
MARS features should be added.

Optional, only when running masses of marsadm leave-cluster or leave-resource or
split-cluster in huge masses (e.g. when running Football for hardware lifecycle or for long-
term load balancing over a very long time): newer versions of marsadm can also delete some
very old remains, which could accumulate over a very long time (typically years). Just run
marsadm cron --autoclean everywhere once per month, or once per year.

25

2. HOWTO setup MARS

2.6. Creating and Maintaining Resources
For the sake of simplicity, the underlying LV as well as its later logical resource name as well as
its later virtual device name will all be named uniformly by the same suffix mydata. In general,
you might name each of them differently, but suchalike is not recommended, since it may easily
lead to confusion in larger installations.
You may have some already pre-existing /dev/lv/mydata at the initially primary hostA.

Before using it for MARS, it must be unused for any other purpose (such as being mounted, or
used by DRBD, etc). MARS will require exclusive access to it.
If /dev/lv/mydata already exists and contains some data (e.g. previously used by DRBD),

you should skip the first three steps, otherwise you may destroy your data.

1. On both hostA and hostB, create a LV. In this example, its size is 50G:
lvcreate -i 2 -L 50G -n mydata lv

2. On each node, check that the new LV is occurring in each of the following lists:
lvs

3. Only on hostA, you may create a new filesystem:
mkfs.xfs /dev/vg/mydata
Alternatively, here is a variant for creation of a zfs filesystem:
zpool create /dev/vg/mydata
zpool export /dev/vg/mydata

4. Only on hostA, say
marsadm create-resource mydata /dev/lv/mydata
As a result, a directory /mars/resource-mydata/ will be created on hostA, containing
some symlinks. hostA will automatically start in the primary role for this resource.
Therefore, a new pseudo-device /dev/mars/mydata will appear after a few seconds.
Note that the initial content of /dev/mars/mydata will be exactly the same as in your
pre-existing LV /dev/lv/mydata.
If you like, you may now use /dev/mars/mydata for mounting your already pre-existing
data, or for creating a fresh filesystem, or for exporting via iSCSI, and so on. You may
do so even before any other cluster node has joined the resource (so-called “standalone
mode”). But you can also do so later after setup of (one or many) secondaries.

5. On hostB:
marsadm wait-cluster
Check that the directory /mars/resource-mydata/ and its symlink content is also ap-
pearing on hostB. If not, check your network and/or firewall setup.

6. On hostB:
marsadm join-resource mydata /dev/lv/mydata
As a result, the initial full-sync from node A to node B should start automatically.

7. On hostB, check that the sync is running after a few seconds:
watch marsadm view all

Of course, now any old content /dev/lv/mydata at hostB (and only there!) is overwritten
by the version from hostA. This is just what you wanted to do by setting up MARS replication.
If you didn’t check that your old contents at hostB didn’t contain any valuable data (or if you
accidentally provided a wrong LV device argument), it is too late now. Therefore, double-check
that you are running create-resource and join-resource at the right sides of your cluster,
and with the right block device names. Accidental confusion of the right sides, or accidental
confusion of LV names may overwrite valuable data with wrong data, or even with uninitialized
trash16.

In order to reduce suchalike risks, marsadm does some basic checks. It checks that the
disk device argument is really a block device, and that exclusive access to it is possible, as well
16Trying to mount unintitialized LV data is bad practice. It may even crash your kernel.

26

2.6. Creating and Maintaining Resources

as some further safety checks, e.g. whether the size is big enough. Notice that bigger replica
device sizes are allowed at secondaries, although then you will waste some space. In such a case,
marsadm view all will display a warning. This behaviour is necessary as an intermediate step
for online resizing via marsadm resize.
MARS cannot know the purpose of your generic block device. MARS (as well as DRBD) is

completely ignorant of the contents of a generic block device; it does not interpret it in any
way. Therefore, you may use MARS (as well as DRBD) for mirroring Windows filesystems, or
raw devices from databases, or virtual machines, or whatever.

Check that state Orphan is left after a while on hostB. Notice that join-resource is
only starting a new replica, but does not wait for its completion.

By default, MARS uses the so-called “fast fullsync” algorithm. It works similar to rsync,
first reading the data on both sides and computing an md5 checksum for each block. Heavy-
weight data is only transferred over the long-distance network upon checksum mismatch. This
is extremely fast if your data is already (almost) identical on both sides. Conversely, if you know
in advance that your initial data is completely different on both sides, you may choose to switch
off the fast fullsync algorithm via echo 0 > /proc/sys/mars/do_fast_fullsync in order to
save the additional IO overhead and network latencies introduced by the separate checksum
comparison steps.

1. Optionally, only for experienced sysadmins who really know what they are doing: if you
will create a new filesystem on /dev/mars/mydata after(!) having created the MARS
resource as well as after having already joined it on every replica, you may abandon
the fast fullsync phase before creating the fresh filesystem, because the old content of
/dev/mars/mydata will then be just garbage not used by the freshly created filesystem17.
Then, and only then, you may say marsadm fake-sync mydata in order to abort the sync
operation.

Never do a fake-sync unless you are absolutely sure that you really don’t need to
sync the data! Otherwise, you are guaranteed to have produced harmful inconsistencies. If
you accidentally issued fake-sync, you may startover the fast full sync at your secondary
side by saying marsadm invalidate mydata (analogously to the corresponding DRBD
command).

17It is vital that the transaction logfile contents created by mkfs is fully propagated to the secondaries and then
replayed there.

Analogously, another exception is also possible, but at your own risk (be careful, really!): when migrating
your data from DRBD to MARS, and you have ensured that (1) at the end of using DRBD both your
replicas were really equal (you should have checked that), and (2) before and after setting up any side of
MARS (create-resource as well as join-resource) nothing has been written at all to it (i.e. no usage,
neither of /dev/lv/mydata nor of /dev/mars/mydata has occurred in any way), the first transaction logfile
/mars/resource-mydata/log-000000001-$primary created by MARS will be empty. Check whether this is
really true! Then, and only then, you may also issue a fake-sync.

27

3. HOWTO operation of MARS
resources

3.1. Inspecting the State of MARS

The main command for viewing the current state of MARS is

• marsadm view mydata

or its more specialized variant

• marsadm view-$macroname mydata

where $macroname is one of the macros described in the following section Standard marsadm
view, or in section 6.2, or another macro which has been written by yourself.
You may replace the resource name mydata with the special keyword all in order to get the

state of all locally joined resources, as well as a list of all those resources.

When using the variant marsadm view all, additionally the global communication status
will be displayed. This helps humans in diagnosing problems.

Hint: use the compound command watch marsadm view all for continuous display of the
current state of MARS. When starting this side-by-side in ssh terminal windows for all your
cluster nodes, you can easily watch what’s going on in the whole cluster.

3.1.1. Standard marsadm view

The following predefined complex macros try to address the information needs of humans. Use
them only in scripts when you are prepared about the fact that the output format may change
during development of MARS.

default This is equivalent to marsadm view mydata without -maroname suffix. It shows a
one-line status summary for each resource, optionally followed by informational lines
such as progress bars whenever a sync or a fetch of logfiles is currently running. The
status line has the following fields:

%{res} resource name.

[this_count /total_count] number of replicas of this resource (see join-resource
& co), total number of cluster peers (see join-cluster & co).

%include{diskstate} see diskstate macro below.

%include{replstate} see replstate macro below.

%include{flags} see flags macro below.

%include{role} see role macro below.

%include{primarynode} see primarynode macro below.

%include{commstate} see commstate macro below.

After that, optional lines such as progress bars are appearing only when something
unusual is happening. These lines are subject to future changes. For examples,
wasted disk space due to missing resize is reported when %{threshold} is exceeded.

28

3.1. Inspecting the State of MARS

Customization via your own macros (see section 6.3) is explicitly encouraged for experi-
enced sysadmins and userspace developers. It would be nice if a vibrant user community would
emerge, helping each other by exchange of macros.

Hint: in order to produce your own customized inspection / monitoring tools, you may ask
the author for an official reservation of a macro sub-namespace such as *-yourcompanyname .
You will be fully responsible for your own reserved namespace and can do with it whatever
you want. The official MARS release will guarantee that no name clashes with your reserved
sub-namespace will occur in future.

default-global Currently, this just calls comminfo (see below). May be extended in future.

device-info When present, shows the status of /dev/mars/mydata in human-readyble form.
Shows the empty string when /dev/mars/mydata is not present.

diskstate Shows the status of the underlying disk device, in the following order of precedence1:

NotJoined (cf %get-disk{}) No underlying disk device is configured.
NotPresent (cf %disk-present{}) The underlying disk device (as configured, see

marsadm view-get-disk) does not exist or the device node is not acces-
sible. Therefore MARS cannot work. Check that LVM or other software
is properly configured and running.

Detached (cf InConsistent, NeedsReplay, %todo-attach{}, %is-attach{}) The
underlying disk is willingly switched off (see marsadm detach), and it ac-
tually is no longer opened by MARS.

Detaching (cf %todo-attach{} and %is-attach{}) Access to the underlying disk
is switched off, but actually not yet close()d by MARS. This can happen
for a long time on a primary when other secondaries are accessing the disk
remotely for syncing.

IncompleteLog[description-text] or

UnInitializedLogRecord[description-text] or

DefectiveLog[description-text] (cf %replay-code{}) Typically this indicates a
checksum error in a transaction logfile, or another (hardware / filesystem)
defect. This occurs extremely rarely in practice, but has been observed
more frequently during a massive failure of air conditioning in a datacenter,
when disk temperatures raised to more than 80° Celsius. Notice that
a secondary refuses to apply any knowingly defective logfile data to the
disk. Although this message is not directly referring to the underlying disk,
it is mentioned here because of its superior relevance for the diskstate.

Hint for expert sysadmins: when desperate, read the sourcecode of the
marsadm Perl script. The otherwise undocumented table %errno2names
could hint you at a lot of potential problems, in addition to the standard
Unix codes as documented in man errno.

A damaged transaction logfile will always affect the actuality of the
disk, but not its integrity (by itself). What to do in such cases?

1. When the damage is only at one of your secondaries, and the primary
continues working: first you should ensure that the primary has a good
logfile after a marsadm cron, wait for the secondary to get this knowl-
edge over the network, and try marsadm invalidate at the damaged
secondary. It is crucial that the primary has a fresh correct logfile
behind the error position, and that it is continuously(!) operating
correctly, without any interruption.

1When an earlier list item is displayed, no combinations with following items are possible. This kind of “hiding
effect” can lead to an information loss. In order to get a non-lossy picture from the state of your system,
please look at the flags which are able to display cartesian combinations of more detailed internal states.

29

3. HOWTO operation of MARS resources

2. When all of your secondaries are reporting DefectiveLog or relatives,
the primary could have produced a damaged logfile (e.g. in RAM, in
a DMA channel, etc) while continuing to operate, and all of your
secondaries got that defective logfile. Please consider more lowlevel
messages as reported by marsadm view mydata. Check the internet
what hardware-dependent cleartext messages might mean, or some
hints like “Bad magic has repeated pattern $some_hex_code”. When
a hex code is present, and when it is the same hex number appearing
on all of your secondaries, this might tell you something. For exam-
ple, certain hex-coded patterns may stem from various HDD or SSD
models, under certain operational conditions like uninitialized media,
or defective BBU caches, etc. What to do in such cases?
After marsadm cron, you can check this by comparing the md5sum of
the first primary logfile (having the lowest serial number) with the ver-
sions on your replicas. The problem is that you don’t know whether
the primary side has a silent corruption on any of its disks, or not.
You will need to take an operational decision whether to switchover to
a secondary via primary --force, or whether to continue operation
at the primary and invalidate your secondaries.

3. When the original primary is affected in a very bad way, such that
it crashed badly and afterwards even recovery of the primary is im-
possible2 due to this error (which typically occurs extremely rarely,
observed two times during 7 millions of operating hours on defective
hardware), you need to take an operational decision between the fol-
lowing alternatives:

a) switchover to a former secondary via primary --force, produc-
ing a split brain, and producing some (typically small) data loss.
However, integrity is more important than actuality in such an
extreme case.

b) deconstruction of the resource at all replicas via leave-resource
--force, running fsck or similar tools by hand at the underly-
ing disks, selecting the best replica out of them, and finally re-
constructing the resource again.

c) restore your backup.

Orphan The secondary cannot replay data anymore, because it has been kicked
out for avoidance of emergency mode. The data is not recent anymore.
Typically, marsadm invalidate needs to be done.
There is an exception: shortly after join-resource or invalidate, it may
take some time until state Orphan may be left, and until the newest logfile
has appeared at your secondary site (depending on the size of logfiles, and
on your network). In case of network problems, this may take very long.

This state tells you that your replica is not current, and currently
not being updated at all. Don’t forget to monitor for longer occurrences
of this state! Otherwise you may get a big surprise when you need a
forceful emergency failover, but your replica is very old or even does not
really exist at all.

NoAttach (cf %is-attach{}) The underlying disk is currently not opened by MARS.
Reasons may be that the kernel module is not loaded, or an exclusive
open() is currently not possible because somebody else has already opened
it.

2In such a rare case, the original primary (but not any other host) refuses to come up during recovery with his
own logfile originally produced by himself. This is not a bug, but saves you from incorrectly assuming that
your original primary disk were consistent - it is known to be inconsistent, but recovery is impossible due to
the damaged logfile. Thus this one replica is trapped by defective hardware. The other replicas shouldn’t.

30

3.1. Inspecting the State of MARS

InConsistent (cf %is-consistent{}) A logfile replay and/or sync is known to be
needed / or to complete (e.g. after invalidate has started) in order to
restore local consistency (for details, look at flags).

Hint: in the current implementation of MARS, this will never hap-
pen on secondaries during ordinary replay (but only when either sync has
not yet finished, or when the initial logfile replay after the sync has not
yet finished), because the ordinary logfile replay always maintains anytime
consistency once a consistent state had been reached.

Only in case of a primary node crash, and only after attempts have
failed to become primary again (e.g. IO errors, etc), this can (but need
not) mean that something went wrong. Even in such an extremely unlikely
event, chances are high that fsck can fix any remaining problems (and,
of course, you can also switchover to a former secondary).

When this message appears, simply start MARS again (e.g. modprobe
mars; marsadm up all), in whatever role you are intending. This will
automatically go into phase Recovery, i.e. try to replay any necessary
transaction logfile(s) in order to fix any inconsistency. Only if the auto-
matic fix fails and this message persists for a long time without progress,
you might have a problem. Typically, as observed at a large installation at
1&1, this happens extremely rarely, and even then it just indicated that
hardware was defective.

OutDated[FR] (cf %work-reached{}) Only at secondaries. Tells whether it is cur-
rently known that the disk has any lag-behind when compared to the
currently known state of the current designated primary (if there exists
one). Only meaningful if a current designated primary exists. Notice that
this kind of status display is subject to natural races, for example when
new logfile data has been produced in parallel, or network propagation is
very slow. Additional information is in brackets:

[F] Fetch is known to be needed.

[R] Replay is known to be needed.

[FR] Both are known to be needed.

WriteBack[amount] (cf %is-primary{} and amount via %writeback-rest{}) Ap-
pears only at actual primaries (whether designated or not), when the
writeback from the RAM buffer is active (see section 1.2). The amount
is displayed in human readable form, and may be used for a very rough
estimation of recovery time after a primary crash.

Recovery[amount] (cf %todo-primary{} and amount via %writeback-rest{}) Ap-
pears only at the designated primary before it actually has become pri-
mary. Similar to database recovery, this indicates the recovery phase after
a crash3.

EmergencyMode (cf %is-emergency{}) A current designated primary exists, and it
is known that this host has entered emergency mode. See section 3.7.

UpToDate Displayed when none of the above has been detected.

replstate Shows the status of the replication in the following order of precedence:

ModuleNotLoaded (cf %is-module-loaded{}) No kernel module is loaded, and as a
consequence no /proc/sys/mars/ does exist.

UnResponsive (cf %is-alive{%{host}}) The main thread mars_main did not do
any noticeable work for more than %{window} (default 60) seconds. No-
tice that this may happen when deleting extremely large logfiles (up to

3In some cases, primary --force may also trigger this message.

31

3. HOWTO operation of MARS resources

hundreds of gigabytes or terabytes). If this happens for a very long time,
you should check dmesg whether you might need a reboot in order to fix
the hang. The time window may be changed by --window=$seconds.

NotJoined (cf %get-disk{}) No underlying disk device is configured for this re-
source.

NotStarted (cf %todo-attach{}) Replication has not been started.

• When the current host is designated as a primary, the rest of the precedence
list looks as follows:

EmergencyMode (cf. %is-emergency{}) See section 3.7.

Replicating (cf. %is-primary{}) Primary mode has been entered.

NotYetPrimary (catchall) This means the current host should act as a primary
(see marsadm primary or marsadm primary --force), but currently
doesn’t (yet). This happens during logfile replay, before primary
mode is actually entered. Notice that replay of very big logfiles may
take a long time.

• When the current host is not designated as a primary:

PausedSync (cf. %sync-rest{} and %todo-sync{}) Some data needs to be
synced, but sync is currently switched off. See marsadm {pause,resume}-sync.

Syncing (cf. %is-sync{}) Sync is currently running.

PausedFetch (cf. %todo{fetch}) Fetch is currently switched off. See marsadm
{pause,resume}-fetch.

PausedReplay (cf. %todo{replay}) Replay is currently switched off. See marsadm
{pause,resume}-replay.

NoPrimaryDesignated (cf. %get-primary{}) A secondary command has been
given somewhere in the cluster. Thus no designated primary exists.
All resource members are in state Secondary or try to approach it.
Sync and other operations are not possible. This state is therefore
not recommended.

PrimaryUnreachable (cf. %is-alive{}) A current designated primary has
been set, but this host has not been remotely updated for more than
60 seconds (see also --window=$seconds).

Orphan The secondary cannot replay data anymore, because it has been
kicked out for avoidance of emergency mode. The data is not re-
cent anymore. Typically, marsadm invalidate needs to be done.

Replaying (catchall) None of the previous conditions have triggered.

flags For each of disk, consistency, attach, sync, fetch, and replay, show exactly one char-
acter. Each character is either a capital one, or the corresponding lowercase one, or
a dash. The meaning is as follows:

disk/device: D = the device /dev/mars/mydata is present, d = only the underlying
disk /dev/lv-x/mydata is present, - = none present / configured.

consistency: this relates to the underlying disk, not to /dev/mars/mydata! C =
locally consistent, c = maybe inconsistent (no guarantee), - = cannot
determine. Notice: this does not tell anything about actuality. Notice: like
the other flags, this flag is subject to races and therefore should be relied
on only in detached state! See also description of macro is-consistent
below.

attach: A = attached, a = currently trying to attach/detach but not yet ready
(intermediate state), - = attach is switched off.

sync: S = sync finished, s = currently syncing, - = sync is switched off.

fetch: F = according to knowledge, fetched logfiles are up-to-date, f = currently
fetching (some parts of) a logfile, - = fetch is switched off.

32

3.2. Switch Primary / Secondary Roles

replay: R = all fetched logfiles are replayed, r = currently replaying, - = replay is
switched off.

todo-role Shows the designated state: None, Primary or Secondary.

role Shows the actual state: None, NotYetPrimary, Primary, RemainsPrimary, ForcedPrimary
or Secondary. Any differences to the designated state are indicated by a prefix to
the keyword Primary: NotYet means that it should become primary, but actually
hasn’t. Vice versa, Remains means that it should leave primary state in order to
become secondary, but actually cannot do that because the /dev/mars/mydata de-
vice is currently in use . ForcedPrimary indicates that multiple cluster hosts (see
%nr-primary{}) are claiming to be in actual primary role, e.g. when another one
is in role RemainsPrimary, or when network interruption is preventing role change
information from propagating.

%todo-primary{} == 0 %todo-primary{} == 1
%is-primary{} == 0 None / Secondary NotYetPrimary
%is-primary{} == 1 RemainsPrimary Primary / ForcedPrimary

primarynode Display (none) or the hostname of the designated primary.

commstate When the last metadata communication to the designated primary is longer ago
than ${window} (see also --window=seconds option), display that age in human
readable form. See also primitive macro %alive-age{}.

syncinfo Shows an informational progress bar when sync is running. Intended for humans.
Scripts should not rely on any details from this. Scripts may use this only as an
approximate means for detecting progress (when comparing the full output text to a
prior version and finding any difference, they may conclude that some progress has
happened, how small whatsoever).

replinfo Shows an informational progress bar when fetch is running. This should not be used
for scripting at all, because it contains realtime information in human-readable form.

fetch-line Additional details, called by replinfo. Shows the amount of data to be fetched, as
well as the current transfer rate and a very rough estimation of the future duration.
When primitive macros %fetch-age{} or %fetch-lag{} exceed ${window}, their
values are also displayed for human informational purposes. See description of these
primitive macros.

replay-line Additional details, called by replinfo. Shows the amount of data to be replayed,
as well as the current replay rate and a very rough estimation of the future duration.
When primitive macro %replay-age{} exceeds ${window}, it is also displayed for
human informational purposes.

comminfo When the network communication is in an unusual condition, display it. Otherwise,
don’t produce any output.

3.2. Switch Primary / Secondary Roles

33

3. HOWTO operation of MARS resources

Planned

Handover

Temporary Node

or Network Failure
Scenario

Method
Switching

Intended

Dead Node

Forced

Switching Switching

Forced

Split Brain

Resolution Damaged Node

Destruction of

Redundancy

Rebuild of

Phase

Reconstruction

MARS distinguishes between intended and forced switching. This distinction is necessary due to
the communication architecture (asynchronous communication vs synchronous communication,
see explanation of Lamport Clock in mars-for-kernel-developers.pdf).
Asynchronous communication means that (in worst case) a message may take (almost) arbi-

trary time in a distorted network to propagate to another node. As a consequence, the risk for
accidentally creating an (unintended) split brain is increased (as compared to a synchronous
system like DRBD).
In order to minimize this risk, MARS has invested a lot of effort into an internal handover

protocol when you start an intended primary switch.

3.2.1. Intended Switching / Planned Handover
Before starting a planned handover from your old primary hostA to a new primary hostB, you
should check the replication of the resource. As a human, use marsadm view mydata. For
scripting, use the macros from section 6.2.1 (see also section 6.4; an example can be found in
contrib/example-scripts/check-mars-switchable.sh). The network should be OK, and
the amount of replication delay should be as low as possible. Otherwise, handover may take a
very long time.

Best practice is to prepare4 a planned handover by the following steps:

1. Check the network and the replication lag. It should be low (a few hundred megabytes,
or a low number of gigabytes – see also the rough time forecast shown by marsadm view
mydata when there is a larger replication delay, or directly access the forecast by marsadm
view-replinfo).

2. Only when the systemd method from section 6.1 is not used: stop your application on
hostA, then say on hostA:
umount /dev/mars/mydata

If you use the automatic handover method provided by systemd templates (see section
6.1), this step is not needed.

4Precondition for a plain marsadm primary (without systemd) is that you are up, that means in attached
and connected state (cf. marsadm up), that you are no sync target anymore, and (only when systemd isn’t
configured to automatically stop the application at the old site) that any old primary (in this case A) does
not use its /dev/mars/mydata device any longer, and that the network is healthy. If some (parts of) logfiles
are not yet (fully) transferred to the new primary, you will need enough space on /mars/ at the target side.
If one of the preconditions described in section 4.2.2 is violated, marsadm primary may refuse to start.

These preconditions try to protect you from doing silly things, such as accidentally provoking a split brain
error state. We try to avoid split brain as best as we can. Therefore, we distinguish between intended and
emergeny switching. Intended switching will try to avoid split brain as best as it can.

34

contrib/example-scripts/check-mars-switchable.sh

3.2. Switch Primary / Secondary Roles

3. Only when systemd templates are not used, and only for increased safety on hostA:
marsadm wait-umount mydata
This will reduce the risk of hanging umounts leading to long-lasting waits at the future
primary hostB. Such problems will be detected earlier, so you have more possibilties for
fixing them.

Also good practice: use lsof /dev/mars/mydata before umount for even earlier de-
tection of hanging processes.

4. Optionally, and only when the systemd method from section 6.1 is not used: on host B,
wait until marsadm view-diskstate mydata shows UpToDate. This way, you are gaining
more control over the duration of the handover. In case of unexpected network problems,
disk space problems, etc, you can script a compensation action like giving up much earlier,
and restarting your application at the old primary hostA much earlier.

5. On hostB:
marsadm primary mydata
When combined with the systemd method (see section 6.1), this will even automatically
stop the application at hostA, wait for handover, and start the application at hostB.

The most important difference to DRBD: don’t use an intermediate marsadm secondary
mydata at hostA. Although it is possible, there are severeral disadvantages5 from losing the
primary state. In case of an unexpected crash at the wrong moment, nobody might know
anymore where the primary was running before. Best practice is to always switch directly from
the old primary hostA to the new primary hostB.

If you need the local device /dev/mars/mydata to disappear everywhere in the whole
cluster, you don’t need the discouraged marsadm secondary command. marsadm detach or
marsadm down can do it also, without destroying knowledge about the former designated pri-
mary. There is only one use case where marsadm secondary is really needed: final destruction
of a resource before marsadm delete-resource is executed.

In contrast to DRBD, MARS remembers the designated primary, even when your system
crashes and reboots. With DRBD, you typically will have to re-setup the DRBD roles with
(scripted) commands like drbdadm up . . .; drbdadm primary Instead, MARS will auto-
matically resume its former roles just by saying modprobe mars. When combined with a
proper systemd setup (see section 6.1), this will even automatically re-start your application
after the crash.

Another fundamental difference to DRBD: when the network is healthy, there can only exist
one designated primary at a time. By saying marsadm primary mydata on hostB, all other
hosts (including hostA) will automatically go into secondary role after a while. You don’t
need to tell them explicitly, because MARS is automatically propagating the information for
you.

A very rough estimation of the time to become UpToDate is displayed by marsadm view
mydata or other macros (e.g. view-replinfo). However, on very flaky networks, the estimation
may be flickering.

5 marsadm secondary is discouraged for several reasons. It tells the whole cluster that nobody is des-
ignated as primary anymore. All nodes should go into secondary mode, globally. In the current version
of MARS, the secondaries will no long fetch any logfiles, since in split brain situations they don’t know
which version is the “right” one. When a primary host is designated, this is the “right” one by definition.
Syncing is also not possible when there is no designated primary. When the device /dev/mars/mydata is in
use somewhere, it will remain in actual primary mode during that time, and the secondaries will sync there
from. As soon as the local /dev/mars/mydata is released, the node will actually go into secondary mode if it
is no longer designated as primary.

35

3. HOWTO operation of MARS resources

Planned handover is refused by default when some sync is running somewhere, even at a
third hostC. By adding the option --ignore-sync, you are no longer protected by this safety
measure, and you are willing to accept that any already running sync at any hostC or hostD
will restart from point 0, in order to ensure consistency.

Tip: newer versions of mars + marsadm are supporting the option --parallel combined
with all, e.g. marsadm primary all --parallel. Instead of waiting until all the resources
have left the primary role at the old primary (barrier synchonization), the handover speed of
each resource is treated individually. Slow resources will no longer retard fast ones, minimiz-
ing total downtime. However, check that your cluster manager can deal with a rather high
parallelism degree. At the moment, the systemd interface is not yet prepared for this.

3.2.2. Forced Switching

In case of an incident, the connection to the old primary hostA may be lost for several reasons.
Then, at hostB, we just don’t know anything about its current state (which may deviate from
its last known state). The following command sequence will skip many checks (essentially you
just need to be attached and you must not be a current sync target) and tell hostB to become
primary forcefully:

1. On hostB:
marsadm pause-fetch mydata

notice that this is similar to drbdadm disconnect mydata as you might be used
from DRBD. For better compatibility with DRBD, you may use the alternate syntax
marsadm disconnect mydata instead. However, there is a subtle difference to DRBD:
DRBD will drop both sides of its single bi-directional connection and no longer try to
re-connect from any of both sides. In contrast, marsadm pause-fetch is equivalent to
pause-fetch-local, which instructs only the local host to stop fetching logfiles. Other
members of the cluster, including the former primary, are not instructed to do so. They
may continue fetching logfiles over their own private TCP connections, potentially using
many connections in parallel, potentially distributed over multiple routes, and potentially
even from any other member of the resource, if they think they can get the data from
there. In order to instruct6 all members of the resource to stop fetching logfiles, you may
use marsadm pause-fetch-global mydata instead (cf section 4.2.2).

2. On hostB:
marsadm primary --force mydata

this is the forceful failover. Depending on the current replication lag, you may lose
some data. Use --force only if you know what you are doing!

When systemd is configured properly (see section 6.1), your application will start
automatically at the new primary site.

when the replication network is interrupted while the old primary hostA continues7
running, it cannot know that hostB is the new designated primary. Therefore hostA will
continue running by default. This means that your application will run twice! Only when
the metadata exchange is working again (by default on port 7777), the old hostA will be
automatically shut down by its local systemd configuration, when configured properly (see

6Notice that not all such instructions may arrive at all sites when the network is interrupted (or extremely
slow).

7Notice: in certain network outage scenarios, you may not be able to remotely login to the console and to
check whether a server is running. Therefore it may happen that you erroneously think hostA is dead, while
in reality it continues running. Even if you would know it, you might not be able to remotely kill it in a
STONITH-like manner.

36

3.2. Switch Primary / Secondary Roles

section 6.1). In difference to the planned handover from section 3.2.1, this may happen
much later. In case of very long-last network outages, it may take even days or weeks.

Running both sites in parallel for a long time may seriously damage your business.
Ensure that any customer traffic cannot go to the old site! Be sure to configure your
BGP in a proper way, such that only, and only the new site will receive any customer
traffic from both inside and outside networks, like the internet.

3. For safety on hostB:
marsadm resume-fetch mydata

The new primary would not really need this, because primaries are producing their own
logfiles without need for fetching. This is only to undo the previous pause-fetch, in
order to avoid future surprises when the new primary will somewhen change to secondary
mode again (in the far-distant future), and you have forgotten to remember the fact that
fetching had been switched off.

Newer marsadm versions, starting from mars0.1astable113, do not need this step
anymore. After successful activation of /dev/mars/mydata, the equivalent of marsadm
up mydata is executed automatically.

When using --force, many precondition checks and other internal checks are skipped, in
particular the internal handover protocol for split brain avoidance.
In general, use of --force is likely to provoke a split brain.

Split brain is always an erroneous state which should be never entered without
reason! Once you have entered it accidentally, you must resolve it ASAP (see section 3.3),
otherwise you cannot operate your resource in the long term.

In case of connection loss (e.g. networking problems / network partitions), you may not
be able to reliably detect whether a split brain has actually occurred, or not.

Some Background (may be skipped) In contrast to DRBD, split brain situations are han-
dled differently by MARS . When two primaries are accidentally active at the same time,
each of them writes into different logfiles /mars/resource-mydata/log-000000001-hostA and
/mars/resource-mydata/log-000000001-hostB where the origin host is always recorded in
the filename. Therefore, both nodes can theoretically run in primary mode independently from
each other, at least for some time. They might even cron (historic log-rotate) independently
from each other. However, this is really no good idea. The replication to third nodes will
likely get stuck, and your /mars/ filesystem(s) will eventually run out of space. Any further
secondary node (when having k > 2 replicas) will certainly get into serious problems: it simply
does not know which split-brain version it should follow. Therefore, you will certainly loose the
actuality of your redundancy.

Split brain situations are detected passively by secondaries. Whenever a secondary
detects that somewhere a split brain has happend, it refuses to replay any logfiles behind the
split point (and also to fetch them when possible), or anywhere where something appears suspect
or ambiguous. This tries to keep its local disk state always being “as consistent as possible”,
but outdated with respect to any of the split brain versions.

marsadm primary –force is rejected in newer marsadm versions8 if your replica is
a current sync target. This is not a bug: it should prevent you from forcing an inconsistent
replica into primary mode, which will certainly lead to inconsistent data. However, in extremely
rare cases of severe damage of all of your replicas, you may be desperate. Only in such a rare
8Beware: older versions before mars0.1stable52 did deliberately skip this check because a few years ago
somebody at 1&1 placed a requirement on this. Fortunately, the requirement now has gone, so a safee
behaviour could be implemented. The new behaviour is for your safety, to prevent you from doing “silly”
things in case you are under pressure during an incident (try to safeguard human error as best as possible).

37

3. HOWTO operation of MARS resources

case, and only then, you might decide to force any of your replicas (e.g. based on their last
sync progress bar) into primary role although none of the re-syncs had finished before. In such
a case, and only if you really know what you are doing, you may use marsadm fake-sync to
first mark your inconsistent replica as UpToDate (which is a lie) and then force it to primary
as explained above. Afterwards, you will certainly need fsck or another type of repair before
you can restart your application. Good luck! And don’t forget to check the size of lost+found
afterwards. This is really your very last chance if nothing else had succeeded before.

Tip: newer versions of mars + marsadm are supporting the option --parallel combined
with all, e.g. marsadm primary --force all --parallel. This may potentially speed up
startup. However, check that your cluster manager can deal with a rather high parallelism
degree. At the moment, the systemd interface is not yet prepared for this.

3.3. Split Brain Resolution
Split brain can naturally occur during a long-lasting network outage (aka network partition)
when you (forcefully) switch primaries inbetween, or due to final loss of your old primary node
(fatal node crash) when not all logfile data had been transferred immediately before the final
crash.
In general, split brain is unavoidable in any distributed system, even if you use a

passive crossover cable with DRBD, and when the crossover cable fails at the wrong mo-
ment. Please search Wikipedia for the CAP theorem, or read the corresponding section in
mars-architecture-guide.pdf.

Remember that split brain is an erroneous state which must be resolved as soon as
possible!
Whenever split brain occurs for whatever reason, you have two choices for resolution: either

destroy one of your versions, or retain it under a different resource name.
In any of both cases, do the following steps ASAP:

1. Manually check which (surviving) version is the “right” one. Any error is up to you:
destroying the wrong version is your fault.
Newer versions of marsadm view are supporting your decision by telling you the amount
of logfile data you would destroy when destroying a certain version of a certain host.
Typically, the smaller version is a candidate for destruction. However, there are situations
where this may be wrong, such as amok-running applications running like endless loops,
or Spammer attacks against databases, or similar. MARS cannot know about this.

2. If you did not already switch your primary to the final destination determined in the
previous step, do it now (see description in section 3.2.2). Don’t use an intermediate
marsadm secondary command (as known from DRBD): directly switch to the new desig-
nated primary!

3. Unless systemd is configured properly (see section 6.1), do the following manually: on
each non-right version (which you don’t want to retain) which had been primary before,
umount your /dev/mars/mydata or otherwise stop using it (e.g. stop iSCSI or other users
of the device). Wait until each of them has actually left primary state and until their
local logfile(s) have been fully written back to the underlying disk.

4. Wait until the network works again. All your (surviving) cluster nodes must9 be able to
communicate with each other. If this is not possible, or if it would take too long, fall back
to one of the method described in appendix section 3.4, but do this only when
necessary.

The next steps are different for different use cases:
9If you are a MARS expert and you really know what you are doing (in particular, you can anticipate the effects
of the Lamport clock and of the symlink update protocol including the “eventually consistent” behaviour
including any not-yet-consistent intermediate states), you may deviate from this requirement, at your own
risk.

38

3.3. Split Brain Resolution

Destroying a Wrong Split Brain Version Continue with the following steps, each on those
cluster node(s) where you do not want to retain its split-brain version. In preference, start with
the old “wrong” primaries first (see advice at the end of this section):

5. On all affected secondary nodes hostX where SPLIT BRAIN is reported:
marsadm invalidate mydata

Typically, no split brain is reported anymore after that (via marsadm view all), and you are
done.
In rare cases (when /mars is almost full somewhere, or when emergency mode has occurred

somewhere), you may need to run marsadm cron at the primary host, and to repeat marsadm
invalidate on any SPLIT BRAIN host. In extremely rare of overloaded nodes, you may need
to repeat this several times.
In very rare cases, when things are screwed up very heavily (e.g. a partly destroyed /mars/

partition), you may try an alternate method described in appendix D.

Check that state Orphan is left after a while. Notice that invalidate is only restarting
an existing replica, but does not wait for its completion.

Retaining a Split Brain Version (optionally, typically not needed, may be skipped) On
those cluster nodes where you want to retain some SPLIT BRAIN version (e.g. for inspection
or debugging purposes, or as a kind of “emergency backup”):

5. marsadm down mydata

6. marsadm leave-resource mydata

7. After having done this on all those cluster nodes, check that the split brain is gone (e.g.
by saying marsadm view mydata at the primary). In very rare cases, you might also need
a log-purge-all at the primary (see page 59).

8. Rename the underlying local /dev/lv/mydata is into something like /dev/lv/mydata-
backup. For example:
lvrename lv mydata mydata-backup
For details, see man lvrename. This is extremely recommended to avoid confusion with
the old resource name.

9. For safety: check that each underlying local disk /dev/lv/mydata-backup is really usable
afterwards, e.g. by test-mounting it (and fsck when needed). If all is OK, don’t forget
to umount it before proceeding with the next step.

10. Finally, you may either delete your backup somewhen via lvremove, or you may create a
completely new MARS resource out of it, but under a different name. See description in
section 2.6 on page 26.

11. Optionally, if you have enough disk space (check with vgs): re-create your replica by
freshly creating a new /dev/vg/mydata with the right size, and marsadm join-resource
mydata /dev/vg/mydata.

Generally: best practice is to always keep your LV names equal to your MARS resource
names. This can avoid a lot of unnecessary confusion.

Keeping a Good Version (typically no actions needed) When you had a secondary which
did not participate in the split brain, but just got confused and therefore stopped replaying
logfiles immediately before the split-brain point, it will typically10 resume replay after the
SPLIT BRAIN has been resolved at the other nodes. Then you don’t need to do any action for
it.
10In general, such a “good” behaviour cannot be guaranteed for all secondaries. Race conditions in complex

networks may asynchronously transfer “wrong” logfile data to a secondary much earlier than conflicting
“good” logfile data which will be marked “good” only in the future. It is impossible to predict this in advance.

39

3. HOWTO operation of MARS resources

When all SPLIT BRAIN versions have disappeared from the cluster (by invalidate or
leave-resource as described before), the confusion should be over, and the secondary should
automatically resume tracking of the new unique version.
Please check that all of your secondaries are no longer stuck. You need to execute split brain

resolution only for stuck nodes.

Hint / advice for k > 2 replicas: it is a good idea to start split brain resolution first with
those (few) nodes which had been (accidentally) primary before, but are not the new designated
primary. Usually, you had 2 primaries during split brain, so this will apply only to one of them.
Leave the other one intact, by not unmounting /dev/mars/mydata at all, and keeping your
applications running. Even during emergency mode, see section 3.7. First resolve the problem
of the “wrong” primary(s) via invalidate or leave-resource. Wait for a short while. Then
check the rest of your secondaries, whether they now are already following the new (unique)
primary, and finally check whether the split brain warning reported by marsadm view all is
gone everywhere. This way, you can often skip unnecessary invalidations of replicas.

3.4. Final Destruction of a Damaged Node
When a node has eventually died (e.g. defective hardware), do not forget11 the following
steps ASAP:

1. Physically remove the dead node from your network. Unplug all network cables! Failing
to do so might provoke a disaster in case it somehow resurrects in an uncontrolled man-
ner, such as a partly-damaged /mars/ filesystem, a half-defective kernel, RAM / kernel
memory corruption, disk corruption, or whatever. Although MARS has some provisions
like md5 checksums in its transaction logfiles: don’t risk any unpredictable behaviour!

2. Manually check which of the surviving versions will be the “right” one. Any human error
is up to you: resurrecting an unnecessarily old / outdated version and/or decommissioning
the productive primary server will be your fault.

3. If you did not already switch your primary to the final destination determined in the
previous step, do it now (see description in section 3.2.2).

4. On a surviving node, give the following commands:

a) marsadm --host=your-damaged-host down mydata --force

b) marsadm --host=your-damaged-host leave-resource mydata --force

Check for misspellings, in particular the hostname of the dead node, and check the
command syntax before typing return! Otherwise, you may forcefully destroy the wrong12
node!

5. Repeat the same with all resources which were formerly present at your-damaged-host.

6. Finally, say
marsadm --host=$your_damaged_host leave-cluster --force

Now all your surviving nodes should believe that the old node $your_damaged_host does no
longer exist, and that it does no longer participate in any resource. For safety, check this via
marsadm view everywhere.
As another safeguard, any re-attempt to “surrect” a “zombie” from its “claimed death” and/or

from its “real death” should spit at you with some tons of warnings. These warnings are a feature,
11If you forget this, /mars will fill up forever. Finally, emergency mode will be triggered.
12That said, MARS appears to be rather tolerant of human errors. As long as your /dev/vg/mydata is not

removed at LVM level, you have a chance for recovery. Once a sysadmin destroyed a whole cluster by accident,
including all of its resources, and while it was continuously running in primary role. Even transaction logging
did continue on some orphan logfiles, but /mars was filling up “unexpectedly”. Fortunately, this behaviour
led to a monitoring alert and to detection of the problem. It was early enough for a correction without
causing any extraordinary customer downtime outside of accepted SLAs, and no data loss at all.

40

3.5. Online Resizing during Operation

not a bug. If you really are an expert and if you really know what you are doing, you may
ignore this AT YOUR OWN RISK.

Even if your dead node comes to life again in some way: always ensure that the mars
kernel module cannot run any more on such a zombie server. Never do a modprobe mars on a
node marked as dead this way!
Further advice for complicated cases of destruction are in appendix E and F.

3.5. Online Resizing during Operation

You need LVM or some other means of increasing the physical size of your disk (e.g. via
firmware of some RAID controllers). The network must be healthy. Do the following steps:

1. Increase your local disks (usually /dev/vg/mydata) everywhere in the whole cluster. In
order to avoid wasting space, increase them uniformly to the same size (when possible).
For example, on both hostA and hostB:
lvresize -L +100G /dev/vg/mydata

2. For safety, say on both hostA and hostB
marsadm up mydata

3. For safety, say on both hostA and hostB
marsadm wait-cluster

4. Only at the primary hostA:
marsadm resize mydata

5. A partial fast full-sync will start at hostB. Only the new portion of the block device will
be synced. Check that sync is running, or has already finished.

6. If you have intermediate layers such as iSCSI, you may need some iscsiadm update or
other commands.

7. Generally not needed, only for extreme safety / paranoia: you may wait until the partial
sync has finished. This is not really needed, but it may slightly(!) reduce the risk in case of
an unplanned incident at the primary side. If you execute the last step before the sync has
finished, some data might have been already written to the new portions of the underlying
LV. These writes will be written to the transaction log, and will be replicated. Thus there
is no real danger, and your secondary will be logically consistent in reality, although
it will be reported as InConsistent by marsadm in the meantime. If you want to avoid
confusion about state Consistent, and/or if you want extremely high protection against
damaged logfiles by hardware defects at the wrong moment (although the transaction
logfiles are already protected by md5 checksums), and/or if you are paranoid, it may be
helpful to wait until the sync has finished. Normally, this is not needed, and you may
immediately proceed to the last step:

8. Now you may increase your filesystem. This is specific for the filesystem type and docu-
mented elsewhere. Some filesystems are able to increase their size while they are mounted
and while the applications are running on top of them, but others cannot do this. For
example, an xfs online resize during operation can be triggered at primary hostA where
/dev/mars/mydata is currently mounted:
xfs_growfs /mountpoint/of/mydata

Hint: in general, the sync of the new portions is not really needed, because the new junk
data just does not care at filesystem level. If you are not paranoid and if you know what you
are doing, you may use marsadm fake-sync mydata to abort unnecessary network traffic.

41

3. HOWTO operation of MARS resources

3.6. Defending Overflow of /mars/

This section describes an important difference to DRBD. The metadata of DRBD is allocated
statically at creation time of the resource. In contrast, the MARS transaction logfiles are
allocated dynamically at runtime.
This leads to a potential risk from the perspective of a sysadmin: what happens if the /mars/

filesystem runs out of space?
In practice, no harm will occur to your data. MARS will automatically go into the so-called

emergency mode. Resolution of emergency mode is very similar to resolution of split brain
(section C.4): at all of your secondaries, type (repeatedly)
marsadm invalidate all
This is all you need to know. If you are impatient, you may now skip the rest of this section.
For some background explanations, keep reading on.
Overflow and its treatment is unavoidable for long-distance replication. If you want a system

which can survive long-lasting network outages, while keeping your replicas consistent as long
as possible (called anytime consistency), then you need dynamic storage. It is impossible to
solve with static pre-allocated memory13. A true solution would need infinite memory. But
suchalike does not exist on earth.
It would be an even worse idea to statically pre-allocate a lot of space for each of your

resources. The latter would waste a lot of space, because some resources will likely fill much
more quickly than others. MARS deals with this by using a common filesystem /mars which is
shared by the transaction logs of all of your resources.
Although the size of /mars is statically allocated at cluster generation time, there is a

workaround for the problem. When /mars fills up during a network outage, and you have
some spare space on your VG, and when the network outage will be repaired shortly, you may
decide to dynamically extend /mars during operation.
Because of these fundamental differences, DRBD and MARS have different application areas.

If you just want a simple system for mirroring your data over short distances via passive14
crossover cable, and when failures of the crossover cables are very unlikely, DRBD will be a
suitable choice. However, if you need to replicate over longer distances, or if you need higher
levels of reliability even when multiple failures may accumulate (such as network loss during a
resync of DRBD), the transaction logs of MARS can solve it, but at some cost.

3.6.1. Countermeasures against overflow

3.6.1.1. Dimensioning of /mars/

The first (and most important) measure against overflow of /mars/ is simply to dimension it
large enough to survive longer-lasting problems, preferably one weekend.
Recommended size is at least one dedicated disk, residing at a hardware RAID controller with

BBU (see section 2.1). During normal operation, that size is needed only for a small fraction,
typically a few percent or even less than one percent. However, it is your safety margin. Keep
it high enough!

3.6.1.2. Monitoring

The next (equally important) measure is monitoring in userspace.
Following is a list of countermeasures both in userspace and in kernelspace, in the order of

“defensive walling”:

1. Regular userspace monitoring must throw an INFO if a certain freespace limit l1 of /mars/
is undershot. Typical values for l1 are 30%. Typical actions are automated calls of
marsadm cron.

13The bitmaps used by DRBD cannot preserve the order of write operations. They cannot do that, because
their space is O(k) for some constant k. In contrast, MARS preserves the order. Preserving the order as such
(even when only facts about the order were recorded without recording the actual data contents) requires
O(n) space where n is infinitely growing over time.

14Notice: newer generation 10GBit technologies like SFP+ are no longer passive. They involve some active
chips, which may fail independently from your servers. In case of a failure, the CAP theorem property P is
violated, and you only have the choice between C and A. For details, see mars-architecture-guide.pdf.

42

3.6. Defending Overflow of /mars/

2. Regular userspace monitoring must throw a WARNING if a certain freespace limit l2 of
/mars/ is undershot. Typical values for l2 are 20%. Typical actions are (in addition to
cron) alarming human supervisors via SMS and/or further stronger automated actions.

Frequently large space is occupied by files stemming from debugging output, or from
other programs or processes. A hot candidate is “forgotten” removal of debugging output
to /mars/. Sometimes, an rm -rf $(find /mars/ -name “*.log”) can work miracles.

Another source of space hogging is a “forgotten” pause-sync or disconnect. There-
fore, a simple marsadm up all may also work miracles (if you didn’t want to freeze some
mirror deliberately).

If you just wanted to freeze a mirror at an outdated state for a very long time, you
simply cannot do that without causing infinite growth of space consumption in /mars/.
Therefore, a marsadm leave-resource $res at exactly that(!) secondary site where the
mirror is frozen, can also work miracles.

Hint: you can / should start some of these measures even earlier at the INFO level
(see item 1), or even earlier.

3. Regular userspace monitoring must throw an ERROR if a certain freespace limit l3 of
/mars/ is undershot. Typical values for l3 are 10%. Typical actions are alarming the
CEO via SMS and/or even stronger automated actions. For example, you may choose
to automatically call marsadm leave-resource $res on some or all secondary nodes,
such that the primary will be left alone and now has a chance to really delete its logfiles
because no one else is any longer potentially needing it.

4. First-level kernelspace action, automatically executed when /proc/sys/mars/required_
free_space_4_gb + /proc/sys/mars/required_free_space_3_gb + /proc/sys/mars/
required_free_space_2_gb + /proc/sys/mars/required_free_space_1_gb is under-
shot:
a warning will be issued.

5. Second-level kernelspace action, automatically executed when /proc/sys/mars/required_
free_space_3_gb + /proc/sys/mars/required_free_space_2_gb + /proc/sys/mars/
required_free_space_1_gb is undershot:
all locally secondary resources will delete local copies of transaction logfiles which are no
longer needed locally. This is a desperate action of the kernel module.

6. Third-level kernelspace action, automatically executed when /proc/sys/mars/required_
free_space_2_gb + /proc/sys/mars/required_free_space_1_gb is undershot:
all locally secondary resources will stop fetching transaction logfiles. This is a more
desperate action of the kernel module. You don’t want to get there (except for testing).

7. Last desperate kernelspace action when all else has failed and /proc/sys/mars/required_
free_space_1_gb is undershot:
all locally primary resources will enter emergency mode (see description below in sec-
tion 3.7). This is the most desperate action of the kernel module. You don’t want to get
there (except for testing).

In addition, the kernel module obeys a general global limit /proc/sys/mars/required_total_
space_0_gb + the sum of all of the above limits. When the total size of /mars/ undershots
that sum, the kernel module refuses to start at all, because it assumes that it is senseless to try
to operate MARS on a system with such low memory resources.

The current level of emergency kernel actions may be viewed at any time via /proc/sys/
mars/mars_emergency_mode.

43

/proc/sys/mars/required_free_space_4_gb
/proc/sys/mars/required_free_space_4_gb
/proc/sys/mars/required_free_space_3_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_3_gb
/proc/sys/mars/required_free_space_3_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_total_space_0_gb
/proc/sys/mars/required_total_space_0_gb
/proc/sys/mars/mars_emergency_mode
/proc/sys/mars/mars_emergency_mode

3. HOWTO operation of MARS resources

3.6.1.3. Throttling

This not generally recommended. It may harm the IO performance from the viewpoint of
your customers. Thus use it only as a desperate defense against overflow, by throttling your
performance pigs.
Motivation: in rare cases, some users with ssh access can do very silly things. For example,

• some users are creating their own backups via user-cron jobs, and they do it every 5
minutes. Some example guy created a zip archive (almost 1GB) by regularly copying his
old zip archive into a new one, then appending deltas to the new one, and finally deleting
the old archive. Every 5 minutes. Although almost never any new files were added to
the archive. Essentially, he copied over his archive, for nothing. This led to massive bulk
write requests, for ridiculous reasons.

• another user wrote his own shell script for his own private backup of his website, although
there already is a daily system backup. He regularly made a complete copy of his entire
webspace (more than 60GiB) via cp -a, then created a tarball out of the copy, uploaded
it into the cloud, finally removed both the tarball and the complete filesystem copy. Each
time, about 100GB was temporarily allocated (and replicated via MARS).

Typically, your hard disks / RAID systems allow much higher write IO rates than you can
ever transport over a standard TCP network from your primary site to your secondary, at least
over longer distances. Therefore, it is easy to create a such a high write load that it will be
impossible to replicate it over the network, by construction.
MARS has some mechanism for throttling bulk writers whenever the network is weaker than

your IO subsystem. It is off by default.

Notice that DRBD will always throttle your writes whenever the network forms a bot-
tleneck, due to its synchronous operation mode. In contrast, MARS allows for buffering of
performance peaks in the transaction logfiles. Only when your buffer in /mars/ runs short (cf
subsection 3.6.1.1), MARS may be used for throttling your application writes.
There are a lot of screws named /proc/sys/mars/write_throttle_* with the following

meaning:

write_throttle_start_percent Whenever the used space in /mars/ is below this threshold,
no throttling will occur at all. Only when this threshold is exceeded, throttling will start
slowly. Default value is 0, which means “off”. Practical values for this could be around
80%.

write_throttle_end_percent Maximum throttling will occur once this space threshold is
reached, i.e. the throttling is now at its maximum effect. A practical value is 90%, which is
the default. When the actual space in /mars/ lies between write_throttle_start_percent
and write_throttle_end_percent, the strength of throttling will be interpolated linearly
between the extremes. In practice, this should lead to an equilibrum between new input
flow into /mars/ and output flow over the network to secondaries.

write_throttle_size_threshold_kb (readonly) This parameter shows the internal strength
calculation of the throttling. Only write15 requests exceeding this size (in KB) are throt-
tled at all. Typically, this will hurt the bulk performance pigs first, while leaving ordinary
users (issuing small requests) unaffected.

write_throttle_ratelimit_kb Set the global IO rate in KB/s for those write requests which
are throttled. In case of strongest16 throttling, this parameters determines the input
flow into /mars/. The default value is 10.000 KB/s. Please adjust this value to your
application needs and to your environment.

write_throttle_rate_kb (readonly) Shows the current rate of exactly those requests which
are actually throttled (in contrast to all requests).

15Read requests are never throttled at all.
16In case of lighter throttling, the input flow into /mars/ may be higher because small requests are not throttled.

44

3.7. Emergency Mode and its Resolution

write_throttle_cumul_kb (logically readonly) Same as before, but the cumulative sum of all
throttled requests since startup / reset. This value can be reset from userspace in order
to prevent integer overflow.

write_throttle_count_ops (logically readonly) Shows the cumulative number of throttled
requests. This value can be reset from userspace in order to prevent integer overflow.

write_throttle_maxdelay_ms Each request is delayed at most for this timespan. Smaller
values will improve the responsiveness of your userspace application, but at the cost of
potentially retarding the requests not sufficiently.

write_throttle_minwindow_ms Set the minimum length of the measuring window. The mea-
suring window is the timespan for which the average (throughput) rate is computed (see
write_throttle_rate_kb). Lower values can increase the responsiveness of the controller
algorithm, but at the cost of accuracy.

write_throttle_maxwindow_ms This parameter must be set sufficiently much greater than
write_throttle_minwindow_ms. In case the flow of throttled operations pauses for some
natural reason (e.g. switched off, low load, etc), this parameter determines when a com-
pletely new rate calculation should be started over17.

3.7. Emergency Mode and its Resolution
This section explains some implementation details. You may skip it.
When /mars/ is almost full and there is really absolutely no chance of getting rid of any local

transaction logfile (or free some space in any other way), there is only one exit strategy: stop
creating new logfile data.
This means that the ability for replication gets lost.
When entering emergency mode, the kernel module will execute the following steps for all

resources where the affected host is acting as a primary:

1. Do a kind of “logrotate”, but create a hole in the sequence of transaction logfile numbers.
The “new” logfile is left empty, i.e. no data is written to it (for now). The hole in
the numbering will prevent any secondaries from replaying any logfiles behind the hole
(should they ever contain some data, e.g. because the emergency mode has been left
again). This works because the secondaries are regularly checking the logfile numbers for
contiguity, and they will refuse to replay anything which is not contiguous. As a result,
the secondaries will be left in a consistent, but outdated state (at least if they already
were consistent before that).

2. The kernel module writes back all data present in the temporary memory buffer (see
figure in section 1.2). This may lead to a (short) delay of user write requests until
that has finished (typically fractions of a second or a few seconds). The reason is that
the temporary memory buffer must not be increased in parallel during this phase (race
conditions).

3. After the temporary memory buffer is empty, all local IO requests (whether reads or
writes) are directly going to the underlying disk. This has the same effect as if MARS
would not be present anymore. Transaction logging does no longer take place.

4. Any sync from any secondary is stopped ASAP. In case they are resuming their sync
somewhen later, they will start over from the beginning (position 0).

In order to leave emergency mode, the sysadmin should do the following steps:

1. Free enough space. For example, delete any foreign files on /mars/ which have nothing
to do with MARS, or resize the /mars/ filesystem, or whatever.

17Motivation: if requests would pause for one hour, the measuring window could become also an hour. Of
course, that would lead to completely meaningless results. Two requests in one hour is “incorrect” from
a human point of view: we just have to ensure that averages are computed with respect to a reasonable
maximum time window in the magnitude of 10s.

45

3. HOWTO operation of MARS resources

2. The following control is intended for testing. If /proc/sys/mars/mars_reset_emergency
is off, now is the time to set it. By default, it should be already set.

3. Notice: as long as not enough space has been freed, a message containing “EMEGENCY MODE
HYSTERESIS” (or similar) will be displayed by marsadm view all. As a consequence, any
sync will be automatically halted. This applies to freshly invoked syncs also, for example
created by invalidate or join-resource.

4. On the secondaries, use marsadm invalidate $res in order to request updating your
outdated mirrors.

5. On the primary: marsadm cron

6. As soon as enough space has been freed everywhere to leave the EMEGENCY MODE HYSTERESIS,
sync should really start. Until that it had been halted.

7. Recommendation: check at secondaries that state Orphan has been left after a while.

Alternatively, there is a more complicated method, which keeps more intermediate emergency
backup replicas:

1. On all of your secondaries hostX:
marsadm leave-resource mydata

2. At the primary hostA:
marsadm cron

3. Wait until df /mars shows no longer an overflow.

4. On the first secondary hostB:
marsadm join-resource mydata /dev/lv/mydata

5. Wait until sync has finished at hostB.

6. If you have more than 2 replicas in total: proceed with step 4 at hostC, and so on. This
time, you could join multiple resources in parallel, because you already have a life replica
at hostB.

Expert advice, if you have only 2 replicas, and provided you have enough VG space: anal-
ogously to paragraph 3.3 on page 39 you may use lvrename for keeping an outdated emergency
backup before creating a new LV with the old name, and before re-joining the latter. Don’t
forget to remove your backup LV after sync has finished!

46

/proc/sys/mars/mars_reset_emergency

4. Working with marsadm commands

This chapter is a kind of reference about the marsadm tool. The sub-commands of marsadm are
grouped according to the topic they deal with.
Since MARS work asynchronously at metadata propagation level (which is necessary for

long-distance replication over flaky networks), several commands are only triggering an action,
but do not wait for its completion.
Such cases are indicated by the term “after a while”. Please be aware that this “while” may

last very long in case of network outages or bad firewall rules.
In the following tables, column “Cmp” means compatibility with DRBD. Please note that

100% exact compatibility is not possible, because of the asynchronous communication paradigm.
The following table documents common options, typically working in combination with (al-

most) any marsadm command (unless documented differently):

Option Cmp Description

--dry-run no Run the command without actually creating symlinks or touching files
or executing rsync. This option should be used first at any dangerous
command, in order to check what would happen.

Don’t use in scripts! Only use by hand!
This option does not change the internal waiting logic for this commands
which emulate synchronous behaviour on top of the asynchronous com-
munication paradigm. Many commands are waiting until the desired
effect has succeeded. However, with --dry-run the desired effect will
never happen, so the command may wait forever (or abort with a time-
out).
In addition, this option can lead to additional aborts of the commands
due to unmet conditions, which cannot be met because the symlinks are
not actually created / altered.
Thus this option can give only a rough estimate of what would happen
later.

--force almost Some preconditions are skipped, i.e. the command will / should work
although some (more or less) vital preconditions are violated.
Instead of giving --force, you may alternatively prefix your command
with force-

THIS OPTION IS DANGEROUS!
Use it only when you are absolutely sure that you know what you are
doing!
Use it only as a last resort if the same command without --force has
failed for no good reason!

--parallel no Only makes sense in combination with all. This is roughly equivalent
to forking a bunch of parallel marsdm processes, like in pseudo shell
script notation: for i in $resource_list; do marsadm $parameters $i
& done; wait.

Several cluster managers are not re-entrant and
may deadlock. First check whether this option is usable
in your concrete environment!

--parallel=$number no Like --parallel, but limit the parallelism degree to a maximum number
of parallel processes. This may be useful for limiting the parallelism of
startup processes, e.g. when kernel caches are cold, so the machine
would get overloaded when too many resources would be starting in
parallel.

Several cluster managers are not re-entrant and
may deadlock. First check whether this option is usable
in your concrete environment!

Option Cmp Description

47

4. Working with marsadm commands

Option Cmp Description

--ignore-sync no Use this for a planned handover instead of --force. Only one precon-
dition is relaxed: some sync may be running somewhere.

Careful when using this on extremely huge LVs where the sync
may take several days, or weeks. It is your sysadmin decision what you
want to prefer: restarting the sync, or planned handover.

--ignore-deleted-peers=$numberno Only for experts - usually not needed - may be harmful - read the

sourcecode!
--verbose no Some (few) commands will become more speaky.

--timeout=$seconds no Some commands require response from either the local kernel module,
or from other cluster nodes. In order to prevent infinite waiting in case
of network outages or other problems, the command will fail after the
given timeout has been reached.
When $seconds is -1, the command will wait forever.
When $seconds is 0, the command will not wait in case any precondition
is not met, und abort without performing an action..
The default timeout is 5s.

--window=$seconds no The time window for checking the aliveness of other nodes in the net-

work. When no symlink updates have been transferred from the other

host since more than the window time, the host is considered dead.

Default is 60s.
--stuck-seconds=$seconds no Silencing period. When replay is hanging unecpectedly for a longer

time, spit a WARNING. Nevertheless, there might be valid reasons,

such as completely overloaded hardware. Therefore the default is much

higher than --window, around 3600s (1 hour).
--keep-backup-hours=$hours no Only relevant for cron and link-purge-all. Old remains from dead /

unreachable machines, and some backup data produced by join-cluster

and split-cluster (potentially useful for experts), will be purged after

this age. Default is 24 * 7 hours.
--autoclean no Only relevant for cron. Very old historic remains from decommissioned

machines will be purged after this age. Default is an age of the remains

of more than 1 month.
--threshold=$size no The macros containing the substring -threshold- or -almost- are us-

ing this as a default value for approximation whether some data trans-
fer (e.g. logfile and/or sync) has approximately completed. Default is
10MiB.
Notice: when data is continuously appended to the logfile, completeness
may never be reached. Some data may always fly around somewhere in
the network transfer channels.
The $size argument may be a number optionally followed by one the
lowercase characters k m g t p for indicating kilo mega giga tera or peta
bytes as multiples of 1000. When using the corresponding uppercase
character, multiples of 1024 are formed instead.

--host=$host no The command acts as if the command were executed on another host
$host. This option should not be used regularly, because the local in-
formation in the symlink tree may be outdated or even wrong. Ad-
ditionally, some local information like remote sizes of physical devices
(e.g. remote disks) is not present in the symlink tree at all, or is wrong
(reflecting only the local state).

THIS OPTION IS DANGEROUS!
Use it only for final destruction of dead cluster nodes, see section 3.4.

--ssh-port=$number no (deprecated) Only useful when the old ssh-based or rsync-based

{join,merge,split}-cluster or join-resource commands are used.

When newer mars.ko and marsadm versions are installed throughout the

whole cluster, this is not needed anymore.
--no-ssh no Avoid any potential timeouts / hangs caused by networks or firewalls,

by explicitly disabling the old ssh-based communication method, and

relying on the new MARS communication protocol (by default on port

7777).
Option Cmp Description

48

4.1. Cluster Operations

Option Cmp Description

--ip=$ip or

--ip-$peer=$ip

no Override the IP information for the local host or $peer at the command
line. When this option is not given, the following rules apply in the
following order:

1. lookup the IP for $peer from the symlink tree in directory
/mars/ips/.

2. so-called probe data from other hosts in the cluster. This tries
to retrieve preliminary information as best as possible. It can
however only work when the other peers are reachable, which
also implies that in turn their currently configurred local peer
IP must be correct.

3. Backups in /mars/backup-$timestamp/ as automatically created
by several commands like merge-cluster and split-cluster.
When multiple historic backups are available, the youngest ver-
sion will always win.

4. fallback to a DNS query via /usr/bin/host.

5. all local network interfaces are scanned by /sbin/ip for IPv4
addresses, and the first one is taken. This may lead to wrong
decisions if you have multiple network interfaces.

In order to override this type of error-prone automatic IP detection and
to explicitly tell the IP address of your storage network (which might
be different from the ordinary IP address of your host), please use this
option for maximum safety.

Usually you will need this only at {create,join,merge}-cluster
to determine any not yet known addresses. Typically,
{leave,split}-cluster are able to automatically detect historic
information from the backups.

--verbose no Some (few) commands will become more speaky.

Option Cmp Description

4.1. Cluster Operations

Command / Params Cmp Description

create-cluster no Precondition: the /mars/ filesystem must be mounted and it must be
empty (mkfs.ext4, see instructions in section 2.4.2). The mars.ko kernel
module must not be loaded.
Postcondition: the initial symlink tree is created in /mars/. Addition-
ally, the /mars/uuid symlink is created for later distribution in the clus-
ter. It uniquely identifies the cluster in the world.
This must be called exactly once at the initial primary.
Hint: use the --ip= option if you have multiple network interfaces.
Example on hostA: marsadm --ip=192.168.2.101 create-cluster

Nodenames (see uname -n and man 1 uname
and man 2 uname) are the most critical part of your setup. They
must be globally unique, and they must never change, per-
petually. Any (human) error is your fault!
See also the GPL: NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE
OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

Command / Params Cmp Description

49

4. Working with marsadm commands

Command / Params Cmp Description

join-cluster
$host

-or-
join-cluster

$host
$host_ip

no Preconditions: the cluster must have been already created with
create-cluster at another node $host (optionally supplying an alter-
native IP address $host_ip). At your local node, the /mars/ filesystem
must be mounted and it must be empty (mkfs.ext4, see instructions in
section 2.4.2). , The mars.ko kernel module must be loadeda.
Postcondition: the initial symlink tree /mars/ is replicated from the
remote host $host, and the local host has been added as another cluster
member.
This must be called exactly once at every initial secondary node.
Hint: use the --ip= option if you have multiple interfaces on your local
hostB, and thus the local IP detection is not unique. Be sure to use
the right IP, e.g. if you have a dedicated replication network. Similarly,
use the optional $host_ip parameter if the current primary hostA also
has multiple IP addresses, and thus the partner IP (in the replication
network) is also not uniquely deducable from the hostname.
Full example on hostB: marsadm --ip=192.168.2.102 join-cluster
hostA 192.168.2.101

aIn ancient MARS versions before mars0.1astable101 the kernel mod-
ule must not be loaded, and a working ssh connection to $host must
work as root (without password), and rsync must be installed at all
cluster nodes. PROVISIONARY: in some newer MARS versions >=
mars0.1astable101, the old ssh-based method is automatically used
as a fallback when the kernel module is forgotten to load; however
this provisionary workaround shall disappear in future.

Command / Params Cmp Description

50

4.1. Cluster Operations

Command / Params Cmp Description

leave-cluster no Precondition: the /mars/ filesystem must be mounted and it must con-
tain a valid MARS symlink tree produced by the other marsadm com-
mands. The local node must no longer be member of any resource (see
marsadm leave-resource). The kernel module should be loaded and the
network should be operating in order to also propagate the effect to the
other cluster nodes.
Postcondition: the local node is removed from the replicated symlink
tree /mars/ such that other nodes will cease to communicate with it after
a while. The converse it not true: the local node may continuea pas-
sively fetching the symlink tree. In order to really stop all communica-
tion, the kernel module should be unloaded afterwards (rmmod mars).
The local /mars/ filesystem should be manually destroyed thereafte,r,
e.g. for decommissioning of hardware. This is strongly receommended
for preventing “zombies” to resurrect by accident (human error, which
is always AT YOUR RSIK).
In case of an unintended hardware destruction (e.g. fire, water, ...)
this command should be used on another healthy cluster node $helper
in order to finally remove $damaged from the cluster via the com-
mand marsadm leave-cluster --host=$damaged --force. An example is
explained in section 3.4 on page 40.

Before leave-cluster, ensure that all other cluster
nodes know that it is no longer participating in any re-
source!
Hint: this can be usually achieved by marsadm leave-resource $resource
--host=$damaged --force

In case you cannot use leave-cluster for any reason (e.g. com-
plete network shutdown, no communication anymore possible at all),
here is an ADVICE for a last resort AT YOUR RISK: destroy the
/mars/ filesystem on the host $deadhost you want to remove (e.g. by
mkfs), or take other measures to ensure that it cannot be accidentally
re-used in any way (e.g. physical destruction of the underlying RAID,
lvremove, etc). On all other hosts, do rmmod mars, then delete the sym-
link /mars/ips/ip-$deadhost everywhere by hand, and finally modprobe
mars again.

Notice that the last leave-resource operation does not delete the
cluster as such. It just creates an empty cluster which has no longer
any members. In particular, the cluster ID /mars/uuid is not removed,
deliberatelyb.

Before you can re-use any left-over /mars/ filesystem for re-joining
the old cluster, or for creating / joining a new / different cluster, you
must create a fresh filesystem (see instructions in section 2.4.2) via
mkfs.ext4.

aReason: leave-cluster removes only its own IP address from
/mars/ips/, but does not destroy the usual symmetry of the sym-
link tree by leaving the other IPs intact. Therefore, the local node
will continue fetching updates from all nodes present in /mars/ips/.
As an effect, the local node will passively mirror the symlinks of
other cluster members, but not vice versa. There is no communica-
tion from the local node to the other ones, turning the local node
into a whitness according to some terminology from Distributed
Systems. This is a feature, not a bug. It could be used for porst-
mortem analysis, or for monitoring purposes. However, deletions of
symlinks are not guaranteed to take place, so your whitness may ac-
cumulate thousands of old symlinks over a long time. If you want to
eventually stop all communication to the local node, just run rmmod.

bThis is a feature, not a bug. The uuid is created once, but alterered
anywhere. An exception is marsadm merge-cluster (see there). The
only way to get rid of the uuid is external deletion (not by marsadm)
together(!) with all other contents of /mars/. This prevents you
from accidentally merging half-dead remains which could have sur-
vived a disaster for any reason, such as snapshotting filesystems /
VMs or whatever.

Command / Params Cmp Description

51

4. Working with marsadm commands

Command / Params Cmp Description

merge-cluster

$host

no Preconditions: The set of resources at the local cluster (transitively) and
at the other cluster as addressed by some foreign member $host (tran-
sitively) must be disjoint. All(!) hosts must be mutually reachable via
the MARS ports (default 7777 to 7779). Since mars0.1astable114, ssh
and rsync are no longer required, provided that both clusters have been
fully updated. Otherwise ssh must be working between all members of
both clusters, without password (e.g. via ssh-agent).
Create the union of both clusters, consisting of the union of all partic-
ipating machines (transitively). Resource memberships are unaffected.
This is useful for creating a “virtual LVM cluster” where resources can
be migrated later via join-resource / leave-resource operations. Usage
examples can be found in the Football sub-project of MARS.

Attention! use a newer version of MARS. The old branch 0.1.y
does not scale well in number of cluter members, because it evolved from
a lab prototype with O(n2) behaviour at metadata exchange. Never
exceed the maximum cluster members as described in appendix B on
page 105. For safety, you should better stay at 1/2 of the numbers
mentioned there. Use split-cluster for going back to smaller clusters
again after your background data migration has completed.

Future versions of MARS will be constructed for very big clusters
in the range of thousands of nodes. Development has not yet stabi-
lized there, and operational experiences are missing at the moment. Be
careful until official announcements are appearing in the ChangeLog, re-
porting of operational experiences from the 1&1 big cluster at metadata
level.

merge-cluster-check

$host

no Check in advance whether the set of resources at the local cluster and

at the other cluster $host are disjoint.

split-cluster no This is almost the inverse operation of merge-cluster: it determines the
minimum sub-cluster groups participating in some common resources.
Then it splits the cluster memberships such that unnecessary connec-
tions between non-related nodes are interrupted.
Use this for avoidance of too big clusters.
Since mars0.1astable114, ssh and rsync are no longer required, pro-
vided that all hosts are mutually reachable over the default metadata
communication port 7777.

wait-cluster no See section 4.3.3.

update-cluster no See section 4.3.3.

create-uuid no Deprecated. Only for compatibility with very old version
light0.1beta05 or earlier. Will disappear somewhen in
future.
Precondition: the /mars/ filesystem must be mounted. A uuid (such
as automatically created by recent versions of marsadm create-cluster)
must not already exist; i.e. you have a very old and outdated symlink
tree.
Postcondition: the /mars/uuid symlink is created for later distribution
in the cluster. It uniquely identifies the cluster in the world.
This must be called at most once at the current primary.

Command / Params Cmp Description

4.2. Resource Operations
Common precondition for all resource operations is that the /mars/ filesystem is mounted,
that it contains a valid MARS symlink tree produced by other marsadm commands (including
a unique uuid), that your current node is a valid member of the cluster, and that the kernel
module mars.ko is loaded. When communication is impossible due to network outages or bad
firewall rules, most commands will succeed, but other cluster nodes may take a long time to
notice your changes.
Instead of executing marsadm commands several times for each resource argument, you may

give the special resource argument all. This work even when combined with --force, but
be cautious when giving dangerous command combinations like marsadm delete-resource
--force all.
In newer versions of marsadm, you may give a comma-separated list of resource names in

place of all. This way, you have more fine-grained control over the set of resource names you
want to use.

Beware when combining this with --host=somebody. In some very rare cases, like
final destruction of a whole datacenter after an earthquake, you might need a combination like

52

4.2. Resource Operations

marsadm --host=defective delete-resource --force all. Don’t use such combinations if
you don’t need them really ! You can easily shoot yourself in your head if you are not carefully
operating such commands!

4.2.1. Resource Creation / Deletion / Modification

Command / Params Cmp Description

create-resource

$res

$disk_dev

[$mars_name]

[$size]

no Precondition: the resource argument $res must denote a new (not yet
existing) resource name in the cluster. The argument $disk_dev must
denote an absolute path to a usable local block device, its size must
be greater zero. When the optional $mars_name is given, that name
must not already exist on the local node; when not given, $mars_name
defaults to $res. When the optional $size argument is given, it must
be a number, optionally followed by a lowercase suffix k, m, g, t, or p
(denoting size factors as multiples of 1000), or an uppercase suffix K,
M, G, T or P (denoting size factors as multiples of 1024). The given size
must not exceed the actual size of $disk_dev. It will specify the future
resource size as shown by marsadm view-resource-size $res.
Postcondition: the resource $res is created, the initial role of the current
node is primary. The corresponding symlink tree information is asyn-
chronously distributed in the cluster (in the background). The device
/dev/mars/$mars_name should appear after a while.
Notice: when $size is strictly smaller than the size of $disk_dev, you
will unnecessarily waste some space..
This must be called exactly once for any new resource.

join-resource

$res

$disk_dev

[$mars_name]

no Precondition: the resource argument $res must denote an already ex-
isting resource in the whole cluster (i.e. its symlink tree information
must have been received; use marsadm wait-cluster for achieving this).
The resource must have a designated primary, and it must no be in
emergency mode. There must not exist a split brain in the cluster. The
local node must not be already member of that resource. The argument
$disk_dev must denote an absolute path to a usable (but currently un-
used) local block device, its size must be greater or equal to the logical
size of the resource. When the optional $mars_name is given, that name
must not already exist on the local node; when not given, $mars_name
defaults to $res.
Postcondition: the current node becomes a member of resource $res,
the initial role is secondary. The initial full sync should start after a
while.
Notice: when the size of $disk_dev is strictly greater than the size of
the resource, you will unnecessarily waste some space.

After a while, state Orphan should be left. Don’t forget to
regularly monitor for longer occurrences of Orphan!

leave-resource

$res

no Precondition: the local node must be a member of the resource $res;
its current role must be secondary. It must be detached (see marsadm
down). The kernel module should be loaded and the network should
be operating in order to also propagate the effect to the other cluster
nodes.
Postcondition: the local node is no longer a member of $res.
Notice: as a side effect for other nodes, their cron (or historic
log-delete) may now become possible, since the current node does no
longer count as a candidate for logfile application. As another side
effect, split brain situation may be (partly) resolved by this.

Please notice that this command may likely resolve split brain
(but cannot guarantee in general).

The contents of the disk is not changed by this command. Before
issuing this command, check whether the disk appears to be locally
consistent (see view-is-consistent)! After giving this command, any
internal information indicating the consistency state will be gone, and
you will no longer be able to guess consistency properties.

When you are sure.that the disk was consistent before (or is now
by manually checking it), you may re-create a new resource out of it via
create-resource.
In case of an eventual node loss (e.g. fire, water, ...) this command
needs to be used on another node $helper in order to finally remove
all the resources $damaged from the cluster via the command marsadm
leave-resource $res --host=$damaged --force. Details are in section
3.4 on page 40.

Command / Params Cmp Description

53

4. Working with marsadm commands

Command / Params Cmp Description

delete-resource

$res

no Precondition: the resource must be empty (i.e. all cluster members
must have left via leave-resource). This precondition is overridable
by --force, increasing the danger to maximum! It is even possible
to combine --force with an invalid resource argument and an invalid
--host=somebodyelse argument in order to desperately try to destroy
remains of incomplete or physically damaged hardware.
Postcondition: all cluster members will somewhen be forcefully removed
from $res. In case of network interruptions, the forced removal may take
place far in the future.

THIS COMMAND IS VERY DANGEROUS!
Use this only in desperate situations, and only manually. Don’t call
this from scripts. You are forcefully using a sledgehammer, even without
--force! The danger is that the true state of other cluster nodes cannot
be known in general, e.g. network problems etc. Even when it were
known, it could be compromised by byzantine failures.
It is strongly advised to try this command with --dry-run first.
When combined with --force, this command will definitely murder
other cluster nodes, possibly after a long while, and even when they
are operating in primary mode / having split brains / etc. However,
there is no guarantee that other cluster nodes will be really dead – it is
(theoretically) possible that they remain only half dead. For example,
a half dead node may continue to write data to /mars/ and thus lead to
overflow somewhen.

This command implies a forceful detach, possibly
destroying consistency.
It is similar in spirit to STONITH, but on cluster level, affection all
known resource members. In particular, when a cluster node was op-
erating in primary mode (/dev/mars/mydata being continuously in use),
the forceful detach cannot be carried out until the device is completely
unused. In the meantime, the current transaction logfile will be ap-
pended to, but the file might be already unlinked (orphan file filling up
the disk). After the forceful detach, the underlying disk need not be
consistent (although MARS does its best). Since this command deletes
any symlinks which normally would indicate the consistency state, no
guarantees about consistency can be given after this in general! Always
check consistency by hand!
When possible / as soon as possible, check the local state on the other
nodes in order to really shutdown the resource everywhere (e.g. to
really unuse the /dev/mars/mydata device, etc).
After this command, you should rebuild the resource under a different
name, in order to avoid any clashes caused by unexpected resurrection
of “dead” or “half-dead” zombie nodes (beware of snapshot / restores on
virtual machines!!). MARS does its best to avoid problems even in case
the new resource name should equal the old one, but there can be no
guarantee in all possible failure scenarios / usage scenarios.

Whenever possible, prefer leave-resource over this kind of sledge-
hammer!

activate-guest

$res

no Precondition: the current host must be a cluster member (see com-
mands join-cluster and merge-cluster), but need not (yet) be a re-
source member. The resource must exist somewhere else in the cluster.
No additional storage is needed, except a few kilo or megabytes (typi-
cally) for the symlink tree.
Postcondition: symlink updates with other resource members and/or
guests are more frequently.
Consequently, marsadm commands and macros with the --host= option
may be used for remote state inspection, etc.
marsadm view all will display the guest and its status.

deactivate-guest

$res

no Precondition: the resource must exist.
Postcondition: any previous pure activate-guest is rolled back.

After about a month„ marsadm cron will also remove the guest re-
lationship. This is to protect you from long-term accumulation of un-
necessary guest relationships, which are intended only for temporary
purposes (in contrast to full resource memberships requiring storage
space for keeping persistent replicas).

wait-resource

$res

{is-,}{attach,

primary,

device}{-off,}

no See section 4.3.3.

Command / Params Cmp Description

54

4.2. Resource Operations

4.2.2. Operation of the Resource
Common preconditions are the preconditions from section 4.2, plus the respective resource $res
must exist, and the local node must be a member of it. With the single exception of attach
itself, all other operations must be started in attached state.
When $res has the special reserved value all, the following operations will work on all

resources where the current node is a member (analogously to DRBD).
With newer versions of marsadm, you can also give a list of comma-separated resource names

in place of all.

Command / Params Cmp Description

attach

$res

yes Precondition: the local disk belonging to $res is not in use by anyone
else. Its contents has not been altered in the meantime since the last
detach.

Mounting read-only is allowed during the detached phase.

However, be careful! If you accidentally forget to give the right
readonly-mount flags, if you use fsck in repair mode inbetween, or alter
the disk content in any other way (beware of LVM snapshots / restores
etc), you will almost certainly produce an unnoticed inconsistency
(not reported by view-is-consistent)! MARS has no chance to notice
suchalike!
Postcondition: MARS uses the local disk and is able to work with it
(e.g. replay logfiles on it).
Note: the local disk is opened in exclusive read-write mode. This should
protect against most common misuse, such as opening the disk in par-
allel to MARS.

However, this does not necessarily protect against non-exclusive
openers.

detach

$res

yes Precondition: the local /dev/mars/mydata device (when present) is no
longer opened by anybody.
Postcondition: the local disk belonging to $res is no longer in use.

In contrast to DRBD, you need not explicitly pause syncing, fetch-
ing, or replaying to (as apposed to from) the local disk. These processes
are automatically paused. Another difference to DRBD: the fetch / re-
play processes etc will usually automatically resume after re-attach, as
far as possible in the respective new situation. This will usually work
even over rmmod or reboot cycles, since the internal symlink tree will
automatically persist all todo switches for you (c.f. section 1.3).

Notice: only local transfer operations to the local disk are
paused by a detach. When another node is remotely running a sync
from your local disk, it will likely remain in use for remote reading.
The reason is that the server part of MARS is operating purely pas-
sively, in order serve all remote requests as best as possible (similar to
the original Unix philosophy). In order to really stop all accesses, do
a pause-sync on all other resource member where a sync is currently
running. You may also try pause-sync-global.

WARNING! After this, and other having paused any remote
data access, you might use the underlying disk for your own purposes,
such as test-mounting it in readonly mode. Don’t modify its contents
in any way! Not even by an fscka! Otherwise, you will have inconsis-
tencies guaranteed. MARS has no way for knowing of any modifications
to your disk when bypassing /dev/mars/*.

In case you accidentally modified the underlying disk at the pri-
mary side, you may choose to resolve the inconsistencies by marsadm
invalidate $res on each secondary.

aSome (but not all) fsck tools for some filesystems have options to
start only a test repair / verify mode / dry run, without doing
actual modifications to the data. Of course, these modes can be
used. But be really sure! Double-check for the right options!

Command / Params Cmp Description

55

4. Working with marsadm commands

Command / Params Cmp Description

pause-sync

$res

partly Equivalent to pause-sync-local.

pause-sync-local

$res

partly Precondition: none additionally.
Postcondition: any sync operation targeting the local disk (when not yet
completed) is paused after a while (cf section 1.3). When successfully
completed, this operation will remember the switch state forever and
automatically become relevant if a sync is needed again (e.g. invalidate
or resize).

pause-sync-global

$res

partly Like *-local, but operates on all members of the resource.

resume-sync

$res

partly Equivalent to resume-sync-local.

resume-sync-local

$res

partly Precondition: additionally, a primary must be designated, and it must
not be in emergency mode.
Postcondition: any sync operation targeting the local disk (when not yet
completed) is resumed after a while. When completed, this operation
will remember the switch state forever and become relevant if a sync is
needed again (e.g. invalidate or resize).

resume-sync-global

$res

partly Like *-local, but operates on all members of the resource.

pause-fetch

$res

partly Equivalent to pause-fetch-local.

pause-fetch-local

$res

partly Precondition: none additionally. The resource should be in secondary
role. Otherwise the switch has no immediate effect, but will come
(possibly unexpectedly) into effect whenever secondary role is entered
later for whatever reason.
Postcondition: any transfer of (parts of) transaction logfiles which are
present at another primary host to the local /mars/ storage are paused
at their current stage.

This switch works independently from {pause,resume}-replay.
pause-fetch-global

$res

partly Like *-local, but operates on all members of the resource.

resume-fetch

$res

partly Equivalent to resume-fetch-local.

resume-fetch-local

$res

partly Precondition: none additionally. The resource should be in secondary
role. Otherwise the switch has no immediate effect, but will come
(possibly unexpectedly) into effect whenever secondary role is entered
later for whatever reason.
Postcondition: any (parts of) transaction logfiles which are present at
another primary host shouldl be transferred to the local /mars/ storage
as far as not yet locally present.

This works independently from {pause,resume}-replay.
resume-fetch-global

$res

partly Like *-local, but operates on all members of the resource.

pause-replay

$res

partly Equivalent to pause-replay-local.

pause-replay-local

$res

partly Precondition: none additionally. The resource should be in secondary
role. Otherwise the switch has no immediate effect, but will come
(possibly unexpectedly) into effect whenever secondary role is entered
later for whatever reason.
Postcondition: any local replay operations of transaction logfiles to the
local disk are paused at their current stage.

This works independently from {pause,resume}-fetch resp.
{dis,}connect.

pause-replay-global

$res

partly Like *-local, but operates on all members of the resource.

resume-replay

$res

partly Equivalent to pause-replay-local.

resume-replay-local

$res

partly Precondition: must be in secondary role.
Postcondition: any (parts of) locally existing transaction logfiles
(whether replicated from other hosts or produced locally) are started
for replay to the local disk, as far as they have not yet been applied.

Command / Params Cmp Description

56

4.2. Resource Operations

Command / Params Cmp Description

resume-replay-global

$res

partly Like *-local, but operates on all members of the resource.

connect

$res

partly Equivalent to connect-local and to resume-fetch-local.

Note: although this sounds similar to DRBD’s drbdadm connect,
there are subtle differences. DRBD has exactly one connection per
resource, which is associated with pairs of nodes. In contrast, MARS
may create multiple connections per resource at runtime, and these
are associated with the target host (not with pairs of hosts). As a
consequence, the fetch may potentially occur from any other source host
which happens to be reachable (although the current implementation
prefers the current designated primary, but this may change in future).
In addition, marsadm disconnect does not stop all communication. It
only stops fetching logfiles. The symlink updates running in background
(default port 7777) are not stopped, in order to always propagate as
much metadata as possible throughout the cluster. In case of a later
incident, chances will be higher for a better knowledge of the real state
of the cluster.

connect-local

$res

partly Equivalent to resume-fetch-local.

connect-global

$res

partly Equivalent to resume-fetch-global.

disconnect

$res

partly Equivalent to disconnect-local and to pause-fetch-local.

See above note at connect.
disconnect-local

$res

partly Equivalent to pause-fetch-local.

disconnect-global

$res

partly Equivalent to pause-fetch-global.

up

$res

yes Equivalent to attach followed by resume-fetch followed by

resume-replay followed by resume-sync.

down

$res

yes Equivalent to pause-sync followed by pause-fetch followed by
pause-replay followed by detach.

Hint: consider to prefer plain detach over this, because detach will
remember the last state of all switches, while down will not.

Command / Params Cmp Description

57

4. Working with marsadm commands

Command / Params Cmp Description

primary

$res

almost There are three variants:

Variant 1: planned handover (no --force)
Precondition: sync must have finished at any resource member. All
relevant transaction logfiles must be either already locally present, or
be fetchable (see marsadm up, or low-level commands resume-fetch and
resume-replay). When some logfile data is locally missing, there must
be enough space on /mars/ to fetch it. Any replay must not have been
interrupted by a replay error (see macro %replay-code{} or diskstate
DefectiveLog). The current designated primary must be reachable over
network. When there is no designated primary (i.e. marsadm secondary
had been executed before, which is explicitly not recommended), at
least the old primary must be reachable. The (old) primarie’s vir-
tual device /dev/mars/mydata must not be in use any more (see marsadm
wait-umount). A split brain must not already exist.
Postcondition: the current host is in primary role; /dev/mars/$dev_name
appears locally and is usable; the equivalent of marsadm up $res has
been executed as a safeguard against any forgotten previous pause-*
operations.
Switches the designated primary.
Description of the Handover protocol (when --force is not given):
when another host is currently primary, it is first asked to leave its
primary role. When systemd templates are active, this will be auto-
matically triggered via systemctl stop $stop_unit. Otherwise, you are
resposible for stopping the load yourself, and you dhoulf use marsadm
wait-umount in advance for checking. Anyway, the handover procol s
waiting until the former primary has actually become secondary. After
that, the local host is requested to become primary. Before actually
becoming primary, all relevant logfiles are transferred over the network
and replayed, in order to avoid accidental creation of split brain as best
as possiblea. Only after that, /dev/mars/$dev_name will appear. When
network transfers of the symlink tree are very slow (or currently impos-
sible), this command may take a very long time.
In case a split brain is already detected at the initial situation, the local
host will refuse to switch the designated primary without --force.

In case of k > 2 replicas: if you want to handover between host A
and B while a sync is currently running at host C, you have the following
options:

1. wait until the sync has finished (see macro sync-rest, or marsadm
view in general).

2. do a leave-resouce on host C, and later join-resource after the
handover completed successfully.

3. use the option --ignore-sync, which leads to a restart of the
running sync from position 0.

Variant 2: planned handover (no --force) with sync
abort (--ignore-sync)
2) Handover ignoring running syncs, by adding the option
--ignore-sync. Any running syncs will restart from scratch, in order to
ensure consistency. Use this only when the planned handover is more
important than the sync time.

Variant 3: unplanned failover (--force)
3) Forced switching: by giving –force while pause-fetch is active (but
not pause-replay), most preconditions are ignored, and MARS does its
best to actually become primary even if some logfiles are missing or
incomplete or even defective.

primary --force is a potentially harmful variant, because it will
provoke a split brain in most cases, and therefore in turn will lead to
data loss because one of your split brain versions must be discarded
later in order to resolve the split brain (see section 3.3).

Never call primary --force when planned handover via primary
without --force is sufficient! If primary without --force complains that
the device is in use at the former primary side, take it seriously! Don’t
override with --force, but rather umountb the device at the other side!

Only use primary --force when something is already broken, such
as a network outage, or a node crash, etc. During ordinary operations
(network OK, nodes OK), you should never need primary --force!

If you umount /dev/mars/mydata on the old primary A, and then
wait until marsadm view (or another suitable macro) on the target host B
shows that everything is UpToDate, you have some chance for avoiding a
split brain even with primary --force. However, there is no guarantee.

primary --force switches the designated primary. In some ex-
tremely rare cases, when multiple faults have accumulated in a weird
situation, it might be impossible becoming the / an actual primary.
Typically you may be already in a split brain situation. This has not
been observed for a long operations time on recent versions of MARS,
but in general becoming primary via --force cannot be guaranteed al-
ways, although MARS does its best. In split brain situations, or if
you ever encounter such a problem, you must resolve the split brain
immediately after giving this command (see section 3.3).

Hint in case of k > 2 replicas: marsadm invalidate cannot resolve
a split brain at other secondaries (which are neither the old nor the
new designated primary). Therefore, prefer the leave-resource method
described in section 3.3, starting with a leave-resource phase at the old
primary, and proceeding to “unrelated” secondaries step by step, until
the split brain is gone. Don’t join-resource again before the split brain
is gone! This way, all these replicas will remain consistent for now, but
of course outdated (or potentially even a “wrong” split-brain version,
but potentially usable in case you get under pressure in some way).
In the hopefully unlikely case that you should later discover that you
accidentally forced the wrong replica via primary --force, you will have
a chance for recovery by either forcing the “correct” host to primary (if
it did not already leave the resource), or by creating a completely fresh
resource out of the “correct” local disk.

Generally: in case of primary --force, the preconditions are dif-
ferent. The fetch must be switched off (see pause-fetch), in order to get
stable logfile positions. See section 3.2.2. For your safety, --force does
not work in newer marsadm (after mars0.1stable52) when your replica
is a current sync target. More explanations see section 3.2.2 on page 36.

aNote that split brain avoidance is best effort and cannot be guar-
anteed in general. For example, it may be impossible to avoid split
brain in case of long-lasting network outages.

bA common misconception is when people think that they can keep
their filesystem mounted without provoking a split brain, because
they have their application stopped and thus don’t write any data
into the filesystem. This is a wrong idea, because filesystems may
write some metadata, like booking information, even after hours or
days of inactivity. Therefore MARS insists that the device is no
longer in use before any handover can take place.

Command / Params Cmp Description

58

4.2. Resource Operations

Command / Params Cmp Description

secondary

$res

almost Precondition: the local /dev/mars/$dev_name is no longer in use (e.g.
umounted).
Postcondition: There exists no designated primary any more. During
split brain and when the network is OK (again), all actual primaries
(including the local host) will leave primary ASAP (i.e. when their
/dev/mars/mydata is no longer in use). Any secondary will start following
(old) logfiles (even from backlogs) by replaying transaction logs if it is
uniquely possible (which is often violated during split brain). On any
secondary, /dev/mars/$dev_name will have disappeared.

Notice: in difference to DRBD, you don’t need and you should
not use this command during normal operation, including handover.
Any resource member which is not designated as primary will automat-
ically go into secondary role. For example, if you have k = 4 replicas,
only one of them can be designated as a primary. When the network is
OK, all other 3 nodes will know this fact, and they will automatically
go into secondary mode, following the transaction logs from the (new)
primary.

Hint: avoid this command. It turns off any primary, globallya.
You cannot start a sync after that (e.g. invalidate or join-resource
or resume-sync), because it is not unique wherefrom the data shall be
fetched. In split brain situations (when the network is OK again), this
may have further drawbacks. It is much better / easier to directly
switch the designated primary from one node to another via the
primary command. See also section 3.2.2.

There is only one valid use case where you really need
this command: before finally destroying a resource via the last
leave-resource (or before forcefully killing your resource via the dan-
gerous delete-resource).

aA serious misconception among some people is when they believe
that they can switch “a certain node to secondary”. It is not possi-
ble to switch individual nodes to secondary, without affecting other
nodes! The concept of “designated primary” is global throughout a
resource!

wait-umount

$res

no See section 4.3.3.

log-purge-all

$res

no Precondition: none additionally.
Postcondition: all locally known logfiles and version links are removed,
whenever they are not / no longer reachable by any split brain version.
Rationale: remove hindering split-brain /
leave-resource leftovers.

Usually, you don’t need this. leave-resource and invalidate are
already doing a similar logfile cleanup for you.
Use this only as a desperate last resort when split brain does not go
away by means of leave-resource (which could happen in very weird
scenarios such as MARS running on virtual machines doing a restore of
their snapshots, or otherwise unexpected resurrection of dead or half-
dead nodes).

THIS IS POTENTIALLY DANGEROUS
This command might destroy some valuable logfiles / other information
in case the local information is outdated or otherwise incorrect, as could
be the case during very awkward disaster scenarios, such as corrupted
/mars filesystems. MARS does its best for checking anything, but there
cannot be an absolute guarantee.

That said, no single incident has been observed during
millions of operation hours.
Hint: use --dry-run beforehand for checking!

err-purge-all

$res

no Precondition: none additionally.
Postcondition: errors reported by marsadm view $res --verbose are
deleted after a while. However notice that some error reports may soon
re-appear in case the error condition is persisting.

link-purge-all

$res

no Precondition: none additionally.
Postcondition: all deletable links withspeical value .deleted, which have
been fully replicated throughout the whole cluster, will be deleted even-
tually. This is necessary to prevent inode overflow on /mars.

Notice: marsadm cron will do this also.
Command / Params Cmp Description

59

4. Working with marsadm commands

Command / Params Cmp Description

resize

$res

[$size]

almost Precondition: The local host must be primary. All disks in the cluster
participating in $res must be physically larger than the logical resource
size (e.g, by use of lvm; can be checked by macros %disk-size{} and
%resource-size{}). When the optional $size argument is present, it
must be smaller than the minimum of all physical sizes, but larger than
the current logical size of the resource.
Postcondition: the logical size of /dev/mars/$dev_name will reflect the
new size after a while.

Command / Params Cmp Description

4.2.3. Logfile Operations

Command / Params Cmp Description

cron no Do all necessary housekeeping tasks.
This needs to be regularly called by an external cron job or similar.

log-rotate

$res

no Historic. Please use cron instead.

log-delete

$res

no Historic. Please use cron instead.

log-delete-one

$res

no Historic. Please use cron instead.

log-delete-all

$res

no Historic. Please use cron instead.

Command / Params Cmp Description

4.2.4. Consistency Operations

Command / Params Cmp Description

invalidate

$res

no Precondition: the local node must be in secondary role at $res. A
designated primary must exist, and it must be reachable over network.
Postcondition: the local disk is marked as InConsistent, and a fast
fullsync from the designated primary will start after a while. Any local
split brain (deviation from the designated primary) will be resolved, but
any other split brain at other secondaries will not be affected. When
the fullsync has finished successfully, the local node will be consistent
again.

After a while, state Orphan should be left. Don’t forget to
regularly monitor for longer occurrences of Orphan!

fake-sync

$res

no Precondition: the local node must be in secondary role at $res.
Postcondition: when a fullsync is running, it will stop after a while,
and the local node will be marked as consistent as if it were consistent
again.

THIS IS HIGHLY DANGEROUS FOR DATA CONSISTENCY!

ONLY USE THIS IF YOU REALLY KNOW WHAT YOU ARE
DOING!
See the WARNING in section 2.6
Use this only before creating a fresh filesystem inside /dev/mars/$res.

set-replay no ONLY FOR ADVANCED HACKERS WHO KNOW WHAT

THEY ARE DOING!

This command is deliberately not documented. You need the compe-

tence level RTFS (“read the fucking sources”).
Command / Params Cmp Description

4.3. Further marsadm Operations

4.3.1. Inspection Commands

60

4.3. Further marsadm Operations

Command / Params Cmp Description

view-macroname

$res

no Display the output of a macro evaluation. See section 3.1 for a thorough

description.

view

$res

no Equivalent to view-default.

role

$res

no Deprecated, will vanish. Use view-role instead.

state

$res

no Deprecated, will vanish. Use view-state instead.

cstate

$res

no Deprecated, will vanish. Use view-cstate instead.

dstate

$res

no Deprecated, will vanish. Use view-dstate instead.

status

$res

no Deprecated. Use view-status instead.

show-state
$res

no Deprecated, will vanish. Don’t use it. Use view-state instead, or other

macros.
show-info

$res

no Deprecated, will vanish. Don’t use it. Use view-info instead, or other

macros.

show

$res

no Deprecated, will vanish. Don’t use it. Implement your own macros

instead.

show-errors

$res

no Deprecated, will vanish. Use view-the-err-msg or view-resource-err

similar macros.

cat

$file

no Write the file content to stdout, but replace all occurrences of numeric

timestamps converted to a human-readable format. Thus is most useful

for inspection of status and log files, e.g. marsadm cat /mars/5.total.log

Command / Params Cmp Description

4.3.2. Setting Parameters
4.3.2.1. Per-Resource Parameters

Command / Params Cmp Description

set-emergency-limit

$res n

no The argument n must be percentage between 0 and 100 %. When

the remaining store space in /mars/ undershoots the given percentage,

the resource will go earlier into emergency mode than by the global

computation described in section 3.6. 0 means unlimited.
get-emergency-limit

$res

no Inquiry of the preceding value.

set-connect-pref-list

$res host1,host2,hostn

no Provisionary and deprecated - this command should hopefully disappear
somewhen in future. Avoid it.
Set the order of preferences for connections (in DRBD-like speak) when
there are more than 2 hosts participating in a resource (aka peers). Of
course, these peers need also to be cluster members. The last argument
must be a comma-separated list of node names (aka peer names).

get-connect-pref-list

$res

no Provisionary and deprecated - this command should hopefully disappear
somewhen in future.
Inquiry of the preceding value.

Command / Params Cmp Description

4.3.2.2. Global Parameters

Command / Params Cmp Description

set-global-sync-limit-value

n

no Limit the concurrency of sync operations to some maximum number. 0

means unlimited.
get-global-sync-limit-valueno Inquiry of the maximum sync concurrency. See also the primitive macro

%global-sync-limit-value{}.
Command / Params Cmp Description

61

4. Working with marsadm commands

Command / Params Cmp Description

set-global-enabled-log-compressions

$features

no Tell the whole cluster which compression features to use globally for

logfile compression. The effective value can be checked via marsadm

view-enabled-log-compressions. See marsadm view-potential-features

and marsadm --help for a list of compression feature names, which must

be separated by | symbols. Details are described in section Data Com-

pression and Checksumming (Digests).
set-global-enabled-net-compressions

$features

no Tell the whole cluster which compression features to use glob-

ally for network transport compression. The effective value can

be checked via marsadm view-enabled-net-compressions. See marsadm

view-potential-features and marsadm --help for a list of compression

feature names, which must be separated by | symbols. Details are de-

scribed in section Data Compression and Checksumming (Digests).

,

set-global-disabled-digests

$features

no Tell the whole cluster which digests to disable globally for checksum-

ming of transaction logfile data. The effective value can be checked via

marsadm view-disabled-digests. See marsadm view-potential-features

and marsadm --help for a list of compression feature names, which must

be separated by | symbols. Details are described in section Data Com-

pression and Checksumming (Digests).

,

Command / Params Cmp Description

4.3.3. Waiting
For scripting, these commands are often needed for race avoidance. MARS’ symlink are not
propagated immediately throughout the whole cluster, but will take some time (also called
eventually consistent using a so-called Lamport clock). The following commands can be
used for triggering a status update, and then waiting until information is recent enough.

Command / Params Cmp Description

wait-cluster no Precondition: the /mars/ filesystem must be mounted and it must con-
tain a valid MARS symlink tree produced by the other marsadm com-
mands. The kernel module must be loaded.
Postcondition: none.
Wait until all relevant nodes in the cluster have sent a status update of
their version of the symlink tree, or until timeout. The default timeout
is 30 s (exceptionally) and may be changed by --timeout=$seconds

Use this for avoidance of rance conditions in the cluster, for nodes
pariticipating in some of the local resources. This command does its
best to get the current status from the other cluster members.

This works only for resources which have been already joined.
It you want to do a join-resource, use update-cluster instead for fetch-
ing / updating the not-yet-joined symlink information also.

update-cluster no Precondition: the /mars/ filesystem must be mounted everywhere and it
must contain a valid MARS symlink tree produced by the other marsadm
commands. The network must be healthy. The kernel module must be
loaded everywhere.
Postcondition: none.
Wait until all nodes in the whole cluster have sent a status update of
their full symlink tree, including any joined or non-joined information,
or until timeout. The default timeout is 30 s (exceptionally) and may
be changed by --timeout=$seconds

Use this before join-resource to ensure that all symlink informa-
tion is recent.

Command / Params Cmp Description

62

4.3. Further marsadm Operations

Command / Params Cmp Description

wait-resource

$res

{is-,}{attach,

primary,

device}{-off,}

no Precondition: the local node must be a member of the resource $res.
Postcondition: none.
Wait until the local node reaches a specified condition on $res, or
until timeout. The default timeout of 60 s may be changed by
--timeout=$seconds. The last argument denotes the condition. The
condition is inverted if suffixed by -off. When preceded by is- (which
is the most useful case), it is checked whether the condition is actually
reached. When the is- prefix is left off, the check is whether another
marsadm command has been already given which tries to achieves the
intended result (typically, you may use this after the is- variant has
failed).

wait-connect

$res

almost This is an alias for wait-cluster waiting until only those nodes are

reachable which are particiapting at $res (instead of waiting for all

hosts participating in any of the locally joined resources).
wait-umount

$res

no Precondition: none additionally.
Postcondition: /dev/mars/$dev_name is no longer in use (e.g. umounted).

Command / Params Cmp Description

4.3.4. systemd Control Commands
These are optional commands when you want to use systemd for control of your services running
on top of MARS, and for more automated handover / failover. The concept is described in
section The systemd Template Generator.

Command / Params Cmp Description

systemd-trigger no Tell the macro processor engine of marsadm that some systemd

templates and/or configurations have changed. This will au-

tomatically re-compute any necessary systemd units residing in

/run/systemd/system/ from template files provided in one of the di-

rectories from @MARS_PATH/$SYSTEMD_SUBDIR/, and will automatically re-

move any instances (not templates) which are no longer needed. Fi-

nally, systemctl reload-daemon is executed, and any necessary units are

started / stopped according to the new situation.

The macro language behind the template engine is described in section

The systemd Template Generator.

When combined with --force, this will forcefully re-compute any

template instances, even when already created before. Without --force,

there is an internal check whether re-creation is necessary. This check

might be fooled by manual intervention into /run/systemd/system/, so

--force will repair it.
set-systemd-unit

$res

$start_unit

$stop_unit

no Assign new start and unit names to a resource, or delete any existing

names when the empty string “” is provided as $start_unit. Afterwards,

a systemd-trigger is executed, which causes start / stop operations ac-

cording to the new situation.

get-systemd-unit

$res

Report the current assignment of start and stop unit names to the given

resource.

set-systemd-want

$res

$hostname

Manually override the host where $start_unit should appear. This is

useful for a temporary stop of the applicatiom stack when $hostname

has the special value “(none)”. See the fsck example in section The

systemd Template Generator.

In split brain situations, it might be useful for manual override,

but notice that marsadm primary –force should be preferred because it

switches both the designated primary and the application stack. No-

tice that the application stack won’t actually start at a location where

/dev/mars/$res is not present.
get-systemd-want

$res

no Report the current systemd start location for the given resource.

Command / Params Cmp Description

63

4. Working with marsadm commands

4.3.5. Low-Level Expert Commands
These commands are for experts and advanced sysadmins only. The interface is not stable, i.e.
the meaning may change at any time. Use at your own risk!

Command / Params Cmp Description

set-link no RTFS.

get-link no RTFS.

delete-file no RTFS.

Command / Params Cmp Description

The following commands are for manual setup / repair of cluster membership. Only to be
used by experts who know what they are doing! In general, cluster-wide operations on IP
addresses needs to be repeated at all hosts in the cluster iff the communication is not (yet)
possible and/or not (yet) actually working (e.g. firewalling problems etc).

Command / Params Cmp Description

lowlevel-ls-host-ips no List all configured cluster members together with their cur-

rently configured IP addresses, as known in /mars/ips/ lo-

cally.
lowlevel-set-host-ip

$hostname

$ip

no Change the assignment of IP addresses in /mars/ips/ at
least locally, and try to push the information also to other
known peers (which is unreliable in general). This may be
used when hosts are moved to different network locations, or
when different network interfaces are to be used for replica-
tion (e.g. dedicated replication IPs). Notice that the names
of hosts must not change at all, only their IP addresses may
be changed, or new peers may be manually added this way.
Tip: check active connections with netstat & friends. Up-
dates may need some time to proceed (socket timeouts etc).
Hint: for safety, call this on all members of a cluster to
ensure consistency. Otherwise it may happen that some
cluster members do not know the new IP address where to
fetch the new information from. See also the description of
the --ip-$peer=$peer_ip option.

For creation of new cluster memberships, always
prefer join-resource. It checks for any uuid mismatches
and for any resource name clashes / violations of resource
name uniqueness, which could be extremely dangerous
for your data.

lowlevel-delete-host

$hostname

no Please prefer leave-resource followed by
leave-cluster instead. This is only a fallback for
experts.
Useful for decommissioning of dead / physically destroyed
hosts after a disaster. Removes a host from the cluster mem-
bership in /mars/ips/ at least locally, together with its IP
address assignment. It also tries to push the deletion to
other cluster members (which is unreliable in general). This
does not remove any further information. In particular, re-
source memberships are untouched.

Please use leave-resource --host=$name --force
first. Repeat this for all former resource memberships. Oth-
erwise you may produce left-over “zombie resource mem-
berships”, which in turm may prevent marsadm cron from
deleting logfile data, and consequently filling up /mars/ for-
ever. When all replicas of any such resource are decom-
missioned eventually, also use delete-resource --force and
friends, and/or marsadm cron --autoclean after a retention
period of 1 month or more.

Have a serious look at leave-resource
--host=$hostname, first without --force, and also
leave-cluster --host=$hostname, first without --force,
which are checking for some common pitfalls.

Command / Params Cmp Description

64

4.3. Further marsadm Operations

4.3.6. Senseless Commands (from DRBD)
For completeness, here is a list of commands which do not make sense with MARS. Some of
them are syntactically parsed for scrpting compatibility, but are not doing anything.

Command / Params Cmp Description

syncer no

new-current-uuid no

create-md no

dump-md no

dump no

get-gi no

show-gi no

outdate no

adjust yes Implemented as NOP (not necessary with MARS).

hidden-commands no

Command / Params Cmp Description

4.3.7. Forbidden Commands (from DRBD)
These commands are not implemented because they would be dangerous in MARS context:

Command / Params Cmp Description

invalidate-remote no This would be dangerous in case you have multiple secondaries. A

similar effect can be achieved with the --host= option.
verify no This would cause unintended side effects due to races between log-

file transfer / application and block-wise comparison of the underly-

ing disks. However, marsadm join-resource or invalidate will do the

same as DRBD verify followed by DRBD resync, i.e. this will automat-

ically correct any found errors;. Note that the fast-fullsync algorithm

of MARS will minimize network traffic.
Command / Params Cmp Description

65

5. Tuning, tips and tricks

5.1. IO Performance Tuning

There exist some use cases where MARS can deliver better IO performance than a raw block
device. However, this cannot be expected in general. In some other cases the performance may
be lower than with a single local raw device.

For demonstration, we use the blkreplay tool from http://blkreplay.org and a load which
has been captured from a real datacenter (1&1 Ionos ShaHoLin = Shared Hosting Linux).
The load already contains a parallelism degree of 20 LXC containers running in parallel at
the same iron. This corresponds to about 60,000 web spaces running on 20 Apache instances,
already in parallel. In difference to artificial benchmarks (like pure random IO or pure sequential
IO), this benchmark is much more close to real server operations, while artificial benchmarks
are not meaningful for practice in general, because they can deviate from real server operations
by factors or even by orders of magnitude.

In order to determine the limits of the test candidates, the timing of the original workload was
converted to a linear ramp-up, simulating an overloaded system. Otherwise benchmarking
would not be possible.

The following blkreplay benchmarks were executed on an otherwise unloaded Dell R630
with 40 CPU threads on 2 sockets, 192 GB RAM, a Dell R730 hardware RAID controller
with 2 GB BBU cache, and 10 spindles Dell 1.8 TB 2.5 inch SAS disks configured as RAID-
6. All data, including the /mars directory, was located on the hardware RAID via LVM2.
/dev/vginfong/lv-0 was assigned a size of 8 TiB. For testing, vanilla kernel 4.9.x with the
MARS pre-patch and mars0.1astable72 was used.

The blkreplay parameters were as follows:

output_label="MARS"

input d e s c r i p t i o n
i n pu t_ f i l e_ l i s t="http :// b lk r ep l ay . org / loads / natura l /1and1/ shared−host ing /2016/ShaHoLin_from_bare_metal/x20/ shahol in−x20−ramped/ shaho l in−x20 . ad jacent . ramped−100. load . gz"
replay_durat ion=110
speedup=10
threads=512
cmode=with−c o n f l i c t s
s chedu l e r="noop"

hardware setup
rep lay_host_l i s t="icpu5133 "
rep lay_dev i c e_l i s t="/dev/ vg in fong / lv −0"

output d e s c r i p t i o n
enable_graph=1
graph_options="−−no−s t a t i c −−dynamic"

We start with the raw device /dev/vginfong/lv-0 which had a size of 8 TiB. The through-
put is about 1418 IOPS, and the latency diagram shows that the system is overloaded, but can
cope with that overload:

66

http://blkreplay.org

5.1. IO Performance Tuning

As you can see in the filename, the NOOP kernel IO scheduler was used, and the kernel
parameter nr_requests was left at its default value of 128. When you read the specs of the
Dell R730 hardware RAID controller, you will notice that it can handle a much higher IO
request parallelism of almost 1024 requests in parallel.
So the first natural tuning attempt is nr_requests=1020, in order to release the “kernel IO

handbrake”. This results in an improved throughput of 1562 IOPS, and even the maximum
latencies are improved, but the average latencies are becoming a little bit worse:

It is well known since decades that there is a principal tradeoff between throughput and latencies
in IO systems. Thus it is not a surprising result.
On servers, overload situations should be rare, and during overload throughput is typically

67

5. Tuning, tips and tricks

much more important than latencies, as long as latencies are not exceedingly high. Thus we
can recommend nr_requests=1000 for production.
However, some sysadmins might be tempted to question why the NOOP scheduler has been

used. On the internet, there are a ton of claims that other IO schedulers like CFQ are much
better.
Well, testing with CFQ instead of NOOP is no problem for blkreplay. However, the result

is very surprising. While the IOPS are 1539, which is only a slight decrease which could result
from measurement tolerances, the latencies are now turning almost into a disaster:

In production, you should never encounter IO latencies of almost 15 seconds. So what is going
wrong here?
Here is an explanation. A hardware RAID controller already has an internal IO scheduler.

This IO scheduler is hidden in a black box, such that many sysadmins don’t know of its existence.
If you add another IO scheduler at kernel level, you will have two different IO schedulers
running in parallel, and sometimes taking contradictory decisions.
These contradictory IO scheduling decisions may lead to problems in certain cases and sce-

narios.
There is another risk of interference with a third IO scheduler, which is MARS’ internal

asymmetric writeback scheduler. The latter is currently well-tuned for co-working with a BBU
cache and its internal scheduler, running on bare metal.

Never use MARS inside of VMs! There you will have several additional IO schedulers
and further types of IO bottlenecks1 inbetween, even if you try to disable some of them.
While kernel-level IO schedulers like CFQ certainly have their merits at improving your work-

station’s IO behaviour, they are counter-productive at servers with hardware RAID controllers.
So the advice is clear: switch them off in such a case.
Even if you have a software RAID, check with blkreplay that any IO schedulers are re-

ally improving things. Notice that device driver restrictions like nr_requests may also work
similarly to an IO scheduler. When possible, use your real workload, captured with blktrace.

Never use a benchmark which only delivers IOPS! As demonstrated, inappropriate IOPS
1Example: data container formats like qcow2 can act as serious bottlenecks. Never place /mars on top of
them! Potential exceptions (after well-founded investigations) are functional testing, and certain non-critical
workstation-like workloads. In general, never plan to place unknown or enterprise-critical workloads on top
of them!

68

5.1. IO Performance Tuning

tuning (or choice of inappropriate components) can worsen latencies so much that production
can be endangered!

Always look at both IOPS and latencies!

Average latencies, even when enriched with standard deviation, are not enough. Classical
statistics does not clearly describe operational problems like hangs and exceptionally high
latency requests, which may occur only rarely, but can then lead to serious incidents. Use
a tool which can clearly display any faulty behaviour, such as blkreplay’s latency diagrams!
Now we come to benchmarking /dev/mars/lv-0 placed on top of /dev/vginfong/lv-0.

Notice that MARS needs to write all write requests twice: once into the transaction logfile, and
a second time by writeback into /dev/vginfong/lv-0.
So you might expect that performance of /dev/mars/lv-0 could be worse than at the un-

derlying raw device.
Nevertheless, the throughput is now measured 4338 IOPS, which means that performance

has more than doubled. You can also see it by the duration of the benchmark at the x axis.
Even the latencies have improved in many cases:

How is it possible to be faster than a RAW device? How can this be explained?
Look at the graphics and at the explanations from section 1.2 on page 11. The key to local

IO performance is the re-ordering of writeback according to ascending sector numbers. This
can reduce mechanical seek times of hard disks considerably, and even by factors, such that
it can over-compensate the doubled writes to the transaction logfile, and even when both are
residing at the same RAID set.
Since RAID-6 is has more expensive write operations due to its CRC computations and

updates, RAID-6 will much more profit from this effect. Other RAID modes like RAID-10 may
show a lower throughput improvement.
Notice: this effect is not only dependent from total RAM size and from the maximum size of

the MARS temporary memory buffer (tuning parameter /proc/sys/mars/mars_mem_percent
which defaults to a limit of 20%). It is also highly dependent from the actual seek behaviour
of the workload.
For example, if you use dd for sequentially overwriting /dev/mars/lv-0 with a parallelism

degree of 1, the writeback optimization of MARS cannot be exploited. However, dd is no
appropriate benchmarking tool, and has almost nothing to do with real workloads occuring in

69

5. Tuning, tips and tricks

datacenters, which typically are neither sequential, nor do they have a parallelism degree of
only 1.

Please don’t try to lead any discussions about this: simply use blktrace to capture your
real server workload, and compare it to a run of dd. Only if you encounter the same behaviour
as dd, only then you can really claim that your workload is like dd.

Any assumptions about workloads are very dangerous: they can deviate from prac-
tice not only by factors, but sometimes even by orders of magnitude. There no substitute for
real measuments of actual workload behaviour.
Notice: the writeback optimization of MARS can typically only improve performance of

HDDs, but not of SSDs.

By placing /mars onto its own physical device with appropriate speed, you can compensate
the doubled writes to some degree.

Depending on the workload and on RAID parameters, /mars may be better placed onto
SSDs, or better be placed on HDDs. There is no general rule. Just use blktrace on your
real workload, and check several configuration alternatives (also different RAID levels etc) with
blkreplay.

5.2. Data Compression and Checksumming (Digests)
Data compression can reduce the amount of data which needs to be piped through long-
distance or other network bottlenecks. It is available in newer MARS versions, starting from
mars0.1astable91. You also need to install the corresponding new version of marsadm across
the whole cluster.
The locally compiled-in compression and checksumming features as compiled into your cur-

rently running mars.ko can be queried via

marsadm view-implemented-features

The output may depend on your kernel compile options, such as the enabled crypto algorithms
of your kernel. Typical output should look like

CHKSUM_MD5_OLD|CHKSUM_MD5|CHKSUM_CRC32C|CHKSUM_CRC32|CHKSUM_SHA1|COMPRESS_
LZO|COMPRESS_LZ4|COMPRESS_ZLIB

In case you get less options, check your kernel .config for the corresponding crypto algorithms,
which can be compiled into your kernel firmly, or as a module. When necessary, re-compile
your kernel with more crypto options enabled (see build instructions in section section §2.2).
When the compile-time option CONFIG_MARS_BENCHMARK=y is enabled, modprobe mars will

show you a list of benchmark results for each enabled crypto algorithm, in units of nanoseconds.
Smaller numbers are better. Notice that results may depend on your processor model, and on
availability of hardware acceleration (as supported by the crypto infrastucture of your kernel).

Take the benchmark results with a grain of salt. The performance of some crypto algo-
rithms may heavily depend on the compressibility of the data to be compressed. CONFIG_MARS_BENCHMARK
uses a rather artifical test data pattern, which may deviate from the compressibility of your
real productive data. Take the results with similar caution than BOGOMIPS, which are also
not comparable with other benchmarks in general.
In order to work properly, all cluster members must have loaded a newer version of mars.ko.

During rolling upgrade to newer MARS versions, mixed operation of different MARS versions
is supported, even in combination with some old versions supporting only the traditional CHK-
SUM_MD5_OLD (which has some shortcomings and should not be used anymore in future).
Only common features are actually usable. You can query the commonly usable options via
the commands

marsadm view-usable-compressions

70

CHKSUM_MD5_OLD|CHKSUM_MD5|CHKSUM_CRC32C|CHKSUM_CRC32|CHKSUM_SHA1|COMPRESS_LZO|COMPRESS_LZ4|COMPRESS_ZLIB
CHKSUM_MD5_OLD|CHKSUM_MD5|CHKSUM_CRC32C|CHKSUM_CRC32|CHKSUM_SHA1|COMPRESS_LZO|COMPRESS_LZ4|COMPRESS_ZLIB

5.2. Data Compression and Checksumming (Digests)

and

marsadm view-usable-digests

These should should show you a (possibly empty) list of those options which are really usable
at the moment. By installing newer / better versions of mars.ko and marsadm, the list may
become longer.
An overview of currently usable options, as well as the actually used algorithms, are displayed

at the headings produced by marsadm view all.

5.2.1. Network Transport Compression

By default, network transport compression is disabled, since it may worsen the CPU consump-
tion. You can enabled it for the whole cluster via

marsadm set-global-enabled-net-compressions\
“COMPRESS_LZO|COMPRESS_LZ4|COMPRESS_ZLIB”

(or a shorter list of compress options), and you can disable it globally by supplying an empty
list:

marsadm set-global-enabled-net-compressions “”

Notice: this will compress the data payloads of network traffic, both for (incremental) logfile
traffic (by default on port 7778), and for sync traffic (by default on port 7779).

5.2.2. Logfile Payload Compression

By default, logfile data compression is disabled, since it may worsen the CPU consumption,
and may worsen local IO performance. You can enable it for the whole cluster via

marsadm set-global-enabled-log-compressions\
“COMPRESS_LZO|COMPRESS_LZ4|COMPRESS_ZLIB”

(or a shorter list of compress options), and you can disable it globally by supplying an empty
list:

marsadm set-global-enabled-log-compressions “”

In difference to network compression, this does not apply to sync data. It compresses the logfile
payload before it is written to the transaction logfile. As a side effect, it also reduces network
traffic, because the logfiles are usually smaller. Additionally, your /mars directory may run out
of space less quickly.

However, as a major drawback, this may slow down the IO latencies of writes consider-
ably, and thus may drastically reduce local IO performance (depending on performance of your
crypto hardware, and on compressibility of data, etc). In particular, ZLIB is known to be a
very slow algorithm (but to compress somewhat better than others), while LZO is a very old
but very fast algorithm. In many cases, LZO or LZ4 are preferable. Do not enable this option
blindly. Always observe the performance of your system afterwards.

5.2.3. Logfile Payload Digests

By default, all of these options are enabled, because most users want to checksum the logfile
data for detection of hardware errors, such as BBU cache failures, or silent corruption during
the network transport of logfile data. When your secondaries encounter a checksum mismatch,
they will refuse to apply the defective data, and will report DefectiveLog or similar
message in the diskstate part of marsadm view all (see section Standard marsadm view).
Most people view this behaviour as a feature. It protects you from some types of data

corruption.
If you want to disable some or all of the logfile digest algorithms, you can do via

71

5. Tuning, tips and tricks

marsadm set-global-disabled-log-digests\
“CHKSUM_MD5_OLD|CHKSUM_MD5|CHKSUM_CRC32C|CHKSUM_CRC32|CHKSUM_SHA1”

Disabling all of these options may improve local IO performance, but at the cost of less reli-
ability. However, several compression algorithms are already doing some internal checksumming
upon decompression. For maximum performance on weak hardware, it may pay off to enable
compression, while disabling separate digesting. Please check what is the best combination for
your hardware, your load, etc.

If you decide to keep the logfile digests, e.g. when HA SLAs are more important than max-
imum performance: notice that checksumming is done at the input data before any compression
is applied. This increases safety against (potential / theoretical) problems with compression /
decompression errors.

5.2.4. Network Payload Digests

By default, all of these options are enabled, because checksumming over the network at fast
full-sync cannot be disabled by concept. At least one of the network digests must always
remain enabled. If you try to disable all of them, an automatic fallback to CHKSUM_MD5_OLD
will occur. Since this a rather slow and non-optimum algorithm, disabling the faster ones (such
as CHKSUM_CRC32C) is no good idea.
If you want to disable some of the network digest algorithms, you can do similarly to

marsadm set-global-disabled-net-digests\
“CHKSUM_MD5|CHKSUM_CRC32C|CHKSUM_CRC32|CHKSUM_SHA1”

5.3. The /proc/sys/mars/ and other Expert Tweaks

In many cases, you will not need to deal with tweaks in /proc/sys/mars/ because everything
should already default to reasonable predefined values. This is not a “stable” interface. It may
change during development of MARS. It allows access to some internal kernel variables of the
mars.ko kernel module at runtime.
This means, all values modified via /proc/ are not persistent. They will be reset to default

at rmmod mars or at reboot. If you need some persistence, implement it by yourself, e.g. at
startup scripts.
This section describes only those tweaks which could be helpful for sysadmins, but not those

for developers / very deep internals.

5.3.1. Tuning Network Performance

Since a few years, a feature called “socket bundling” is available.
It is mostly intended for lines showing high packet loss. By using multiple TCP sockets in

parallel for emulating a single logical connection, throughput can be significantly increased.
Example for setting the socket parallelism to 4:

• echo 4 > /proc/sys/mars/parallel_connections

The following graphics shows the throughput of a non-fast2 fullsync of a single 100GiB resource
over a loaded long-distance line between Europe/Germany and USA/Midwest. In order to
compensate highly varying load at the line, all the experiments were repeated more than 10
times and averaged. Each bar shows the throughput for a particular socket parallelism.

2The fast fullsync algorithm would not saturate the eth0 link with traffic from a single resource.

72

5.3. The /proc/sys/mars/ and other Expert Tweaks

Notice that the uplinks of the two servers are only 1 GBit/s respectively. When the uplink
is saturated, about 100 MByte/s is the maximum possible peak throughput in theory. You
can easily recognize that the peak throughput is almost reached with a parallelism degree of 2,
but using even more sockets appears to be slightly counter-productive. One of the reasons is
that more sockets will increase contention on the line, and thus increasing packet loss. Another
potential reason is that higher parallelism at sockets will lead to higher parallelism in disk
reads, in turn leading to more permutations of disk read positions (more random reads instead
of purely sequential reads), which is counter-productive for disk readahead strategies.
The next graphics shows the same, but over a medium distance of about 50km. This line is

even more heavily loaded with respect to the number of TCP connections running in parallel
(probably some 10,000 or even 100,000 if not more), and there is some kind of “traffic shaping”
at some intermediate network gear which will “punish” those traffic sources disproportionally
increasing overall packet loss. This can explain the even higher counter-productive effect of
using too much sockets and thus injecting additional packet loss:

In general, the optimum value for /proc/sys/mars/parallel_connections may depend
on many runtime factors such as other load running over some (parts of) physical equipment.
You will need to determine optimum values yourself.

Notice that socket bundling is conceptually the “opposite” of traffic shaping. You are
trying to get more bandwidth, at the cost of other traffic competing for the same network
resources.

If you are operating masses of servers, don’t set the MARS socket parallelism too high
everywhere. You might “steal” too much bandwidth from other applications when starting
masses of syncs in parallel, e.g. after an incident. Best practice is to start with a default value
of 1, and to increase it only on demand, and/or preferably only at those servers where high
load really occurs or where some urgent actions need a temporary boost.

Experts in networking may try to load-balance the parallel TCP connections over multiple

73

5. Tuning, tips and tricks

physical paths, for example by hashing over the dynamic source port numbers. However, we
currently have no experience with suchalike setups.

5.3.2. Syslogging

All internal messages produced by the kernel module belong to one of the following classes:

0 debug messages

1 info messages

2 warnings

3 error messages

4 fatal error messages

5 any message (summary of 0 to 4)

5.3.2.1. Logging to Files

This feature will likely disappear when MARS goes to kernel upstream. It was mostly intended
for debugging during early beta phases and is no longer needed for stable operation. Developers
may use it for spotting potential problems.
The classes may be used to produce status files $class.*.status in the /mars/ and/or in

the /mars/resource-mydata / directory / directories.
When you create a file $class.*.log in parallel to any $class.*.status, the *.log file

will be appended forever with the same messages as in *.status. The difference is that *.sta-
tus is regenerated anew from an empty starting point, while *.log can (potentially) increase
indefinitely unless you remove it, or rename it to something else.

Beware, any permanently present *.log file can easily fill up your /mars/ partition
until the problems described in section 3.6 will appear. Use *.log only for a limited time,
and only for debugging!

5.3.2.2. Logging to Syslog

The classes also play a role in the following /proc/sys/mars/ tweaks:

syslog_min_class (rw) The minimum class number for permanent syslogging. By default,
this is set to -1 in order to switch off perment logging completely. Permanent logging
can easily flood your syslog with such huge amounts of messages (in particular when
class=0), that your system as a whole may become unusable (because vital kernel
threads may be blocked too long or too often by the userspace syslog daemon).
Instead, please use the flood-protected syslogging described below!

syslog_max_class (rw) The maximum class number for permanent syslogging. Please use the
flood-protected version instead.

syslog_flood_class (rw) The minimum class of flood-protected syslogging. The maximum
class is always 4.

syslog_flood_limit (rw) The maximum number of messages after which the flood protection
will start. This is a hard limit for the number of messages written to the syslog.

syslog_flood_recovery_s (rw) The number of seconds after which the internal flood counter
is reset (after flood protection state has been reached). When no new messages
appear after this time, the flood protection will start over at count 0.

The rationale behind flood protected syslogging: sysadmins are usually only interested in
the point in time where some problems / incidents / etc have started. They are usually not

74

5.3. The /proc/sys/mars/ and other Expert Tweaks

interested in capturing each and every single error message (in particular when they are flooding
the system logs).

If you really need complete error information, use the *.log files described above, compress
them and save them to somewhere else regularly by a cron job. This bears much less overhead
than filtering via the syslog daemon, or even remote syslogging in real time which will almost
surely screw up your system in case of network problems co-inciding with flood messages, such as
caused in turn by those problems. Don’t rely on real-time concepts, just do it the old-fashioned
batch job way.

5.3.2.3. Tuning Verbosity of Logging

show_debug_messages Boolean switch, 0 or 1. Mostly useful only for kernel developers. This
can easily flood your logs if our are not careful.

show_log_messages Boolean switch, 0 or 1.

show_connections Boolean switch, 0 or 1. Show detailed internal statistics on sockets.

show_statistics_local / show_statistics_global Only useful for kernel developers. Shows
some internal information on internal brick instances, memory usage, etc.

5.3.3. Tuning the Sync
sync_flip_interval_sec (rw) The sync process must not run in parallel to logfile replay, in

order to easily guarantee consistency of your disk. If logfile replay would be paused
for the full duration of very large or long-lasting syncs (which could take some days
over very slow networks), your /mars/ filesystem could overflow because no replay
would be possible in the meantime. Therefore, MARS regulary flips between actually
syncing and actually replaying, if both is enabled. You can set the time interval for
flipping here.
Increasing this value may improve overall sync throughput, at the cost of some more
space required by /mars.

sync_limit (rw) When > 0, this limits the maximum number of sync processes actually run-
ning parallel. This is useful if you have a large number of resources, and you don’t
want to overload the network and/or your local IO system with too many sync pro-
cesses running in parallel.

sync_nr (ro) Passive indicator for the number of sync processes currently running.

sync_want (ro) Passive indicator for the number of sync processes which demand running.

5.3.4. Lowlevel TCP Tuning (Networking Experts Only)
When CONFIG_MARS_SEPARATE_PORTS and CONFIG_MARS_IPv4_TOS are enabled, MARS uses
the following types of traffic:

MARS_TRAFFIC_META (by default on port 7777 with IPTOS_LOWDELAY) This can be tuned in
directory /proc/sys/mars/tcp_tuning_0_meta_traffic/.

MARS_TRAFFIC_REPLICATION (by default on port 7778 with IPTOS_RELIABILITY) This can be
tuned in directory /proc/sys/mars/tcp_tuning_1_replication_traffic/.

MARS_TRAFFIC_SYNC (by default on port 7779 with IPTOS_MINCOST) This can be tuned in
directory /proc/sys/mars/tcp_tuning_2_sync_traffic/. Attention: since the advent
of DSCP, this bit (hex 0x2 in host byte order) is suppressed by the kernel, and yields DS0.

In each of these directories, the following tunables are available (only for networking experts
who know what they are doing):

ip_tos As explained above. Notice: hex constants from /usr/include/linux/ip.h must be
converted to decimal before forwarding to the /proc interface.

75

5. Tuning, tips and tricks

tcp_window_size Current default is 8 * 1024 * 1024.

tcp_nodelay Current default is 0.

tcp_timeout Current default is 2.

tcp_keepcnt Current default is 3.

tcp_keepintvl Current default is 3.

tcp_keepidle Current default is 4.

Further tuning parameters are in the standard Linux kernel. Notice that IP_TOS is inter-
nally converted to DSCP, which in turn can be further manipulated by netfilter / iptables
and/or by qdisc (tc) and/or by further (external) networking components. The ancient TOS
settings are meant as a default starting point for further customization to your needs.

Typically, public internet transports are flattening / ignoring or otherwise manipulating3
the TOS / DSCP fields. There it will not work. Anyway, you should never route unencrypted
MARS traffic over public transports, for obvious security reasons. Notice: MARS replication is
meant for company-internal networks like internal replication networks (or storage networks)
where some networking department has control of.

Playing with the above settings can easily tear down your whole (replication) network if
you don’t know exactly what you are doing. Please test any changes in the lab first. Mass rollout
should be done in incremental phases, each in power of 10 units. There might be unexpected
effects like packet storms, or packet loss, etc. Some of these effects may only show up when a
certain number of hosts is exceeded, or when certain load conditions are hammering the overall
Distributed System. Some very old routers / switches are known to break down unexpectedly
when overloaded in certain ways. Be careful in a production environment!

3DSCP markings can be only made reliable on private networks (possibly requiring some effort). Public Internet
service and transit providers do not necessarily treat the TOS values or DSCP markings with any form of
priority and may also remove or change them without any notice. Some internet service or transit providers
also do use specific DSCP markings to mark packets for being dropped, which may result in hard to find
transmission errors.

If want to use MARS on a public internet connection, you should use encrypted VPN with different
DSCP markings, and coordinate them with your network services provider.

76

6. Advanced users: automation and the
macro processor

6.1. The systemd Template Generator
Starting with mars0.1astable79 (much better with mars0.1astable119), you may use systemd
as a cluster manager at the Mechanics Layer. MARS will replicate any systemd-relevant state
information across the (big) cluster, achieving some remote control. In particular, automated
handover triggered by marsadm primary $resource is supported. More features are likely to
be added to future releases.

6.1.1. Why systemd?
All major Linux distributions are now systemd based. It is the new quasi standard. Although
there have been some discussions in the OpenSource community about its merits and its short-
comings, now it appears to be accepted in large parts of the Linux world.
Systemd has a few advantages:

1. It is running as init process under the reserved pid=1. If it ever would die, then your
system as a whole would die. There is no need for adding yet another MARS cluster-
manager daemon marsd or similar, which could fail independently from other parts of the
system.

2. Although systemd has been criticised as being “monolithic” (referring to its internal soft-
ware architecture), its usage by sysadmins is easily decomposable into many plugins called
units.

3. Local LXC containers, local VMs, iSCSI exports, nfs exports and many other parts of
the system are often already controlled by systemd. Together with udev and other parts,
it already controls devices, LVM, mountpoints, etc. Since MARS is only a particular
component in a bigger complicated stack, it is an advantage to use the same (more or less
standardized and well-integrated) tools for managing the whole stack.

4. Personal experience: the unit dependency engine of systemd is extremely elaborated1
and useful. Management of complex transitive dependencies is relatively easy (though not
always fully intuitive). Writing your own dependency engine would be a huge effort, which
can be saved by just using standard systemd and learning how to configure it properly
for your applications.

In the opinion of the author, systemd has a few disadvantages, such as:

1. It is not accepted everywhere. Therefore the systemd template extensions of marsadm
are not mandatory for MARS operations. You can use or implement your own alternatives
when necessary.

2. Interfacing to third-party software may become hairy. systemd appears to assume that
more or less everything is controlled by systemd. Pre-existing software would sometimes
need to be adapted to systemd, but this isn’t always possible in practice. For example,
systemd-notify assumes that you can alter some third-party-controlled executables or
complex third-party systems, which often isn’t easily possible in practice2.

1The author misses only one feature: a new dependency type, or an object type like a “semaphore” or “mutex”
for expressing “mutual exclusion”, without any other side effects as for example caused by Conflicts= .

2The problem is that systemd-notify needs to be inserted into the control flow of your third-party software.
This doesn’t work if your third-party software doesn’t have the right hooks in the right places, or when there
exists no local control flow at some (failure) conditions. Therefore, any status inquiry would need to be

77

6. Advanced users: automation and the macro processor

3. Sometimes it can be messy to deal with. In particular, it can sometimes believe that
some parts of the system were in a particular state, although in reality they aren’t. The
current version of systemd lacks an important property called Idempotence3, which is
more or less standard in industrial automation and control (e.g. big industry plants).
Compensation via native systemd units and dependencies may become hairy, if possible
at all4. MARS can workaround these shortcomings via a pseudo unit type .script which
allows you to directly call some (wrapper) scripts, or to write some adaptors to third-
party software.

4. Usability / reporting: in my experience it is less usable for getting an overview over
a bigger local system, and less usable (out-of-the-box) for managing a bigger cluster at
cluster level. Monitoring needs to be done separately.

6.1.2. Execution Model of systemd and marsadm

marsadm and systemd are playing together and communicating with each other in the following
way:

configurable at systemd units, not by any modifications of third-party software. Unfortunately, the current
systemd does not have appropriate features like ExecCheckState=/my/state-reporting-script.pl or .py or
similar.

3In industrial automation and control, it is quite standard that you specify the desired target state, without
having to obey the current state. For example, if a big fan or a big pump is already running, or if a valve
is already open, there will be no error if somebody tries to “start” it (for whatever reason, or when induced
from a higher level in the control hierarchy). Unfortunately, systemctl often reports an error code if you try
to start a unit when it is currently running, or when it believes that it were already running (whether this
is actually true or not). Sometimes, there is a workaround by first stopping, and then restarting, or similar.
However, this is clearly an absolute no-go for HA where uptime and interruption-free service is often a
MUST. For humans who have worked in complex industry plants, it is easy to become desperate about this
confusing (and sometimes “unpredictable”) behaviour of systemd, with no easy chance to compensate these
deficiencies.

4According to man sd_notify, there exists a clearly defined message type STOPPING=1, but I cannot find a
clearly defined and reliable equivalent of STOPPED=1 for reporting that the unit has actually completed
the stopping, and that now it is actually (re-)startable (again). Notice that some third-party software needs
some external preconditions to be met before it can be started. From the sd_notify docs, it is unclear to me
whether ERRNO=0 could be misused for such a report. By reading some systemd sourcecode, I cannot easily
tell, because the internal state model of systemd appears to be extremely complex, and the message passing
model looks even more complex, like a huge finite state automaton with additional non-trivial transitional
conditions. Semantically unspecified generic messages like STATUS=”freetext_message” cannot not help me
for achieving a clearly defined and reliable behaviour.

Notice that some third-party software does not use long-running daemons at all, or only in certain places.
Then messages like MAINPID= are not useful at all. There exist use cases where dynamic polling of actual
state would be a very simple and easy solution in place of a complex state-keeping / state transition / message
passing model, for example a new unit directive like ExecCheckState=/my/state-reporting-script.pl or
.py or similar.

78

6.1. The systemd Template Generator

marsadm systemd−trigger

/run/systemd/system/ /mars/todo−global/systemd−trigger

/etc/marsadm/systemd−templates/

/mars/resource−$res/systemd−trigger

mars−trigger.path mars−$res−trigger.path

marsadm systemd−trigger−extern marsadm systemd−trigger−extern $res

systemctl start/stop ... systemctl start/stop ...$res...

global−unit ALWAYS_RUNNING
$res−unit DEFAULT_START

$res−unit DEFAULT_STOP

$res−unit.script

Communication between marsadm to systemd is done in the following ways:

• by instanting a template residing in /etc/marsadm/systemd-templates (or in another
configurable location) and generating an instantiated unit into /run/systemd/system/
as documented in man systemd.unit. The method from man systemd.generator is
currently not yet supported (but possibly in a future release).

• by replicating the following triggers across the mars cluster:

• by touching the cluster-global file /mars/userspace/systemd-trigger which in turn is
watched at each cluster members by the systemd unit mars-trigger.path, which in turn
activates mars-trigger.service, which in turn executes ExecStart=/usr/bin/marsadm
systemd-trigger-extern everywhere in the cluster.

• similarly for multiple per-resource triggers, by touching any of the resource-specific trig-
ger files /mars/resource-$res/systemd-trigger which is turn is watched by systemd
units mars-$res-trigger.path at each resource member, which then in turn activates
mars-$res-trigger.service, which finally executes ExecStart=/usr/bin/marsadm
systemd-trigger-extern $res everywhere in the cluster.

• In turn, marsadm systemd-trigger-extern $res will start or stop the units as con-
figured via marsadm set-systemd-unit $res $start_unit_name $stop_unit_name, as
described later.

This architecture looks somewhat complicated, but it was found to be necessary to assure lock-
less parallel starting and stopping of multiple resources without conflicts. Apparently, systemd
is not a fully asynchronous system, while a Distributed System (like the MARS replication) is
always a fully asynchronous system by its very nature. The above triggers are used to translate
from the fully asynchronous Distributed System to the less asynchronous systemd execution
model.

79

6. Advanced users: automation and the macro processor

Fortunately, you don’t need to deal too much with these details if you take the exam-
ple templates from systemd-icpu/ and adapt them to your application (see section Example
systemd Templates).

6.1.3. Working Principle of the Template Generator for systemd

systemd already has some basic templating capabilities. It is possible to create unit names
containing the @ symbol, which can then be expanded under certain circumstances, e.g. to tty
names etc. However, automatic expansion is only done when somebody knows the instance
name already in advance. The author has not found any way for creating instance names out
of “thin air”, such as from dynamically created MARS resource names. Essentially, an inference
machine for systemd template names does not yet exist.
This lacking functionality is completed with the following macro processing capabilities of

marsadm (see section 6.2 on page 88):
Some ordinary or templated systemd unit files (see man systemd.unit)

can be installed into one of the following directories: ./systemd-templates,
$HOME/.marsadm/systemd-templates/, /etc/marsadm/systemd-templates/,
/usr/lib/marsadm/systemd-templates/, /usr/local/lib/marsadm/systemd-templates/.
Further places can be defined by overriding the $MARS_PATH environment variable.
From these directories, ordinary systemd unit files will be just copied into

/run/systemd/system/ (configurable via $SYSTEMD_TARGET_DIR) and then picked up by
systemd as ordinary unit files.
Template unit files are nothing but unit files, optionally containing @{varname } or

@escvar{varname } parts or other macro definitions in their filename, and possibly also in
their bodies, at arbitrary places. These @{...} parts are substituted by the marsadm macro
processing engine.
The following macro capabilities are currently defined:

@{varname } Expands to the value of the variable. This can be used both in template filenames
and and in content of template files. Predefined are the following variables:

@{res} The MARS resource name.

@{resdir} The MARS resource directory /mars/resource-$res/.

@{host} The local host name as determined by marsadm, or as overridden by the --host=
parameter.

@{cmd} The marsadm command as given on the command line (only reasonable for de-
bugging or for error messages).

@{varname } Further variables as defined by the macro processor, see section 6.3.3 on
page 101, and as definable by %let{varname }{...} statements, see also section
6.2.1 on page 89.

@eval{text } Calls the MARS macro processor as explained in section 6.2 on page 88, and
substitutes its output. Notice that systemd template variables occurring in the macro
processor text must be accessed via the macro processor syntax %{varname}, because
the macro processor uses % as an escape symbol, while the systemd template engine uses
@ instead. This is necessary for distinction of both layers. Notice that variables defined
via the macro processor syntax %let{varname}{value} can be afterwards accessed by
the template engine via @{varname} syntax, once the macro engine has finished working
on text .

^{varname } This is a matching operator, binding a string to a variable. It can be used in tem-
plate filenames only. First, any @{othername } are substituted. Finally, any ^{varname }
are matched against the actual filename like a shell wildcard *. The matching part of
the filename is assigned to varname , and can be later used at @{varname } substitutions
occurring in the content of the file.

@esc{text } Calls the systemd-escape tool for conversion of pathnames following the systemd
naming conventions (see man systemd-escape). For example, a dash is converted to \x2d.

80

6.1. The systemd Template Generator

Omission of systemd-escape can lead to problems when your resource names are
containing special characters like dashes or other special symbols (in the sense of systemd).
Bugs of this kind are hard to find and to debug. Either forbid special characters in your
installation, or don’t forget to test everything with some crude resource names!

Example snippet from a .path unit. Please notice where escaping is needed and
where it must not be used (also notice that a dash is sometimes a legal part of the .mount
unit name, but except from the resource name part):

[Path]
PathExists=/dev/mars/@{ r e s }
Unit=vol−@escvar{ r e s } .mount

Another source of crude bugs is the backslash character in the systemd-escape
substitution, such as from \x2d. When passed to a shell, such as in certain ExecStart=
statements like /bin/bash -c $args, the backslash will be removed. Therefore, don’t
forget to either replace any single backslash with two backslashes, or to put the whole
pathname in single quotes, or similar. Always check the result of your substitutions! It
depends on the target (such as bash, as opposed to systemd) whether further escaping of
the escapes is needed, or whether it must not be applied.

Become a master of the escaping hell by inserting debug code into your scripts (re-
porting to /dev/stderr or to log files) and do thorough testing like a devil.

@escvar{varname } Equivalent to @esc{@{varname }}. This is often used in template filenames
to ensure that MARS resource names containing special symbols like dashes, are prop-
erly converted to systemd naming conventions where a dash has a different pre-defined
meaning.

When creating a new resource via marsadm create-resource, or when adding a new
replica via marsadm join-resource or similar, the template system will automatically create
new instances for the new resource or its replicas. Conversely, marsadm leave-resource and
its friends like delete-resource etc will automatically remove the corresponding template
instances from /run/systemd/system/.

6.1.4. Template Markers
Starting with mars0.1astable119, you may use some special markers in comments of systemd
templates. These comments are ignored by systemd, but interpreted by the marsadm template
engine. The marker syntax is somewhat stricter than in usual comments:

Exactly one hash symbol exactly at the start of the line, optionally followed by
whitespace, followed by the marker in CAPITAL letters.

The requirement of exactly one hash symbol allows you to comment out markers by using two
hash symbols or more. Here is a table of markers and their meaning:

Marker Meaning
ALWAYS_DISABLED The unit instance will be generated, but neither enabled

nor started by marsadm (except when exclicitly using it
as an argument to set-systemd-unit). Useful for gen-
eration of units you want to control by some other tools.

ALWAYS_START This is the opposite of ALWAYS_DISABLED: this unit
will always be enabled and started, regardless what
marsadm get-systemd-want is telling you. If it is no
longer in use after leave-resource, only then it will be
stopped. Useful for permanent tasks such as .path path
watcher units, etc.

81

6. Advanced users: automation and the macro processor

KEEP_RUNNING This unit will always be enabled and started. If the unit
is no longer in use after leave-resource, it will be only
be disabled (protection against accidental restart), but
otherwise stay untouched by marsadm. In particular, it
will not be stopped if it is currently running. Useful for
important HA-like services which need to be controlled
by another means. Also useful for global units which are
independent from any resources.

${NAME}_START This can be used for simplification of the
set-systemd-unit command. In place of providing a full
template name with all of its escape characters and all of
its risky typos, simply say marsadm set-systemd-unit
mydata DEFAULT. This will search for templates marked
with DEFAULT_START and DEFAULT_STOP, and
use the corresponding @escvar{res} substitutions for
starting and stopping.
HINT: by inventing other marker ${NAME}s, you may
ease discrimination of multiple operation modes.
Notice: ^{...} pattern matching is currently NYI, only
@{res} and variants like @escvar{res} are currently im-
plemented.

${NAME}_STOP See description of # ${NAME}_START.

6.1.5. Special .script Pseudo Units

Howto use .script When a template name ends in .script and has execute permissions,
the marsadm template generator will write the instantiated script (with all @{...} vari-
ables substituted) into the directory /etc/marsadm/systemd-generated/ directory in place
of /run/systemd/systemd/.
In place of systemctl start $unit, the script /etc/marsadm/systemd-generated/$unit.script

start is called with single parameter start, and similarly for stop.
This way, the author found it easy to program idempotent scripts, like adaptors to third-party

software.

Motivation for .script The author has spent a lot of time (several months) for getting standard
systemd units to work in a fully asynchronous Distributed System consisting of hundreds of
machines, where any type of event may appear at any time.
Although this big effort resulted in a somewhat working system, the result is was not fully

HA.
Notice that HA is defined by a single number like 99.99% (see mars-architecture-guide.pdf).

In practice, true HA typically means that the total system, including its controlling components,
must be more reliable than (some or any) of its worker sub-components. Notice that systemd
is one one of these components.
The problem with systemd was that it created failures on its own. Compensation of these

failures became very hairy with the current version, as used for the experiments (Debian Buster).
Apparently, systemd does not tolerate certain types of parallelism. For example, while

systemd daemon-reload is currently executing, a parallel systemctl start $other_unit
may fail, although it normally works without problems.
Even more unfortunate, sometimes systemd did no longer know the actual state of a unit,

as the following example output snippet from systemctl status mnt-test-lv\x2d0.mount
is demonstrating:

Dec 24 17:00:48 c1 systemd[1]: Mounting MARS TESTING local mount on /mnt/test/lv-0...
Dec 24 17:00:58 c1 systemd[1]: mnt-test-lv\x2d0.mount: Mount process finished, but there is no mount.
Dec 24 17:00:58 c1 systemd[1]: mnt-test-lv\x2d0.mount: Failed with result ’protocol’.
Dec 24 17:00:58 c1 systemd[1]: Failed to mount MARS TESTING local mount on /mnt/test/lv-0.

This failure report was wrong, because the mount had actually succeeded in reality, but
systemd wrongly assumed the opposite. Neither start nor stop was possible afterwards, even
after systemctl reset-failed.

82

6.1. The systemd Template Generator

Possibly this may be a bug, which could be fixed. However, HA systems are expected to even
work in the presence of bugs, as best as possible.
If you ever encounter a similar problem, you may get stuck in a dead end, at least for a while.

Apparently, systemd is repairing the state of failed mount units after some timeout, but in the
meantime true HA with many nines is endangered. Other unit types appear to show similar
failure behaviour.
What is the reason for this behaviour?
The author is no systemd expert5, but here is an attempt to analyze the problems at concept

level, and to suggest some solutions.
The following may be of interest for systemd developers, and for very advanced users of

systemd. All others may skip the rest of this paragraph, and just use the .script workaround
as explained before.
From observation, and from man systemctl it appears to me that a systemctl command

invocation (aka job) is not fully equivalent to an ExecStart= directive. According to the
docs, Exec= and some sister directives are obeying dependencies to any queued or already
running jobs. However, I found no obvious way for obeying dependencies when starting jobs
via systemctl commands manually. There is an option --job-mode= which defaults to the
value replace, documenting the bad behaviour I have observed: it may disturb a currently
running or conflicting job.
In worst case, the conflicting unit may fail “unexpectedly” from a user’s viewpoint due to

the default --job-mode=replace, and I have observed cases where it was neither startable
nor stoppable immediately afterwards (maybe this could depend on further properties of called
Exec= scripts, which may stem from a third party, and are not constructed for being called by
systemd: eventually I got desperate after investing a lot of time).
Conclusions: there appear multiple non-trivial HA problems with the current version of

systemd. While some of them may be bugs which could be fixed, others appear to reside at
concept level :

1. Jobs seem to be uniquely identified by unit names. Thus it is not possible to address
multiple different jobs belonging to the same unit.
An example: systemctl start unitA is currently running, taking a long time to ex-
ecute. During this, another command systemctl stop unitA is started in parallel
(e.g. from another commandline shell). According to the documented default behaviour
--job-mode=replace, the old job may be interrupted in favour of the new one. How-
ever, interruption of a job may be interpreted as a job failure, possibly leading to state
failed. However, a failed unit can no longer be stopped, it seems to be treated like if
it were already stopped. It is possible to reset a failed unit via systemctl reset-failed
unitA, but then I found that it is also treated as if it were already stopped, such that
systemctl stop unitA just reports “success” without doing anything. This may lead to
serious problems in a HA world.
An example: unitA was executing a script scriptA.sh in oneshot mode. Unit failure
typically meant that the script was killed by a signal. Even if scriptA.sh had a signal
handler doing proper application cleanup, and even if there were no final SIGKILL which
eventually killed the running signal handler, the application may get stuck in some unde-
fined application state. But afterwards, one is unable to queue a stop job for cleanup6,
as explained before. Notice that queuing a start job in place of a cleanup job is no option
in general, at least in a HA world.
According to the docs, there exists no --job-mode=append or similar option, which would
just queue / delay any new job for any unit, until all conflicting previous jobs are gone.
Notice that this would be always mathematically possible (e.g. resulting in a strictly
sequential job order). An implementation should be technically possible, but currently it
seems not implemented in systemd according to the docs. This lack of full dependency
awareness for entering new jobs causes numerous other problems, not only the previously

5The author might have overlooked further possibilities for solutions. This rises the question how the usability
of systemd could be improved.

6Possibly, a new directive ExecCleanup= could help. However, this could mean that a new command variant
systemctl cleanup unitA would need to be introduced. This would complicate the user interface. Instead,
the author would prefer Idempotence, because Idempotences allows to use systemctl stop unitA for cleanup.
This results in a much simpler end-user interface.

83

6. Advanced users: automation and the macro processor

described ones.
Possibly (the author has checked7, which resulted in some behavioral improvements) the
--job-mode=fail option can be used for a self-programmed busy-wait submission loop,
in order to approach (but not to guarantee in HA sense) disturbance-free addition of new
systemctl jobs obeying all specified dependencies, and without causing side effects on al-
ready queued / running jobs. However, this trick did not always help in the presence
of the above mount unit failure example, triggered by transitive dependencies. Another
remaining problem is the exit code: there is no documented difference showing the reason
of the failure. Was it a conflict with another queued job caused by --job-mode=fail, or
did the unit itself fail?

2. Not only in the presence of multiple jobs for the same unit (possibly submitted in parallel
to each other), query operations like systemctl is-active unitA (or is-failed etc)
are prone to races. A potential future solution could be externally visible job IDs for
identifying jobs. Similar concepts are for example used in printer job spoolers for decades.
Of course, information about terminated jobs have to be kept for some time, or until
some maximum job entries are exhausted. In addition, true asynchronous invocation via
--no-block and later polling the job ID would also become possible.

3. Systemd lacks an important property called Idempotence. Idempotence is a very common
feature in big industry plants, where hundreds of human workers may act on controlling
hundreds of facilities. Each alarm call may cause a different person to try to “fix” a prob-
lem. Idempotence is a must in such an industry environment. Idempotence means that
“start” and “stop” are always working when possible at all, regardless of the previous
state of the machinery (not of some software state). For operations stuff, there is no
need to obey any previous state. When pressing a “start” button, it means “ensure that
the machine including all of of its sub-components will be running”, regardless whether
it was running before, or not, or only half-running, or only an arbitrary subset of sub-
components was running before. So the button press does not declare an operation, it
declares a target state.
It is the task of the Idempotence controller software to ensure that the target state is
being reached somehow. This does not specify a particular way for reaching the target
state. In general, there might be multiple ways. Very sophisticated controller software
may even try multiple ways, until one of them succeeds in reaching the specified target
state.

A future Idempotence feature of systemd could be implemented as follows:

1. In the unit file, an option for declaration of the Idempotence property could be added.
Backwards compatibility: the semantics of conventional non-idempotent units should not
be changed unless idempotence is declared explicitly.

2. When Idempotence is declared, systemctl start or systemctl stop will always execute
a start/stop job somewhen later, obeying all dependencies. Optionally, this could also
mean that in worst case all conflicting previous jobs might need to terminate first. More
sophisticated variants might provide mechanisms for controlled abortion of startup
operations, provided that they usually do not lead to failure at all. Care must be taken
that failures caused by aborts will not occur too frequently for HA. When failures caused
by aborts are occurring too frequently, the concept of abort should be disabled.

3. When ExecStart= or ExecStop= is declared in an Idempotent unit, the script will be
always executed, regardess of the previous internal systemd state of the unit. It is up to
the script writer to ensure idempotence at his/her script code. This means, the script
has to approach the application’s target state independently from the previous application
state, and has to report in its exit code whether the target state has been actually reached.

7The documentation man systemd explains a subtle difference. The conflicts causing --job-mode=fail to fail
seem to be different from general conflicts in unit dependencies. Although not precisely documented, the
observed behaviour luckily appears to make HA more likely. There remains some uncertainty caused by the
documented failure possibility. A new option called --job-mode=append or --job-mode=wait could resolve
this, for example by resulting in strict sequential operations in place of “unnecessary” failures.

84

6.1. The systemd Template Generator

4. A very helpful addition to any systemd unit (not only to Idempotent ones) would be a
new directive ExecCheck= . In place of keeping a copy of the application state inside
of systemd, it would allow to directly poll the actual application state via callback,
whenever it becomes necessary. The user could provide a state-checking script which
has no side effects, other than querying the actual state of the application. This feature
would be extremely helpful for turning any conventional unit into an idempotent one,
likely without need for changing anything else (e.g. in third-party software, even when it
lacks idempotence). Only when actual state checking is available and when it does not
fail, Idempotent units may be allowed to skip the execution of other ExecStartOrStop=
actions.

In ideal case, ExecCheck= or another measure for achieving true HA idempotence might make
the above *.script workaround superfluous.

6.1.6. Example systemd Templates
These can be found in the MARS repo in the systemd-testing/ and the systemd-icpu/
subdirectories. Until systemd is supporting idempotence natively, any newbee is advised to
take one of the examples systemd-testing/mnt-test-@escvar{res}-testload.script and
systemd-icpu/nodeagent-@escvar{res}.script as a basis for own modifications.
At the moment, the following templates are available (subject to further extension and im-

provements without notice):

daemon-reload.service A helper unit which ensures that systemctl daemon-reload is not
triggered in parallel to itself. It also reduces the risk for parallel execution with some
other units, but unfortunately cannot provide full mutual exclusion with everything else.
Hopefully a future version of systemd will allow specification of full mutual exclusion.

mars.path This ensures that the mountpoint /mars/ is already mounted before mars.service
is started.

mars.service This starts and stops the MARS kernel module, provided that /mars is (some-
how) mounted. The latter can be ensured by classical /etc/fstab methods, or by .mount
units like your own hand-crafted mars.mount unit.

mars-trigger.path This is used for remote triggering of the marsadm template engine
from another MARS cluster member, e.g. when executing marsadm join-resource
or leave-resource or set-systemd-unit. Local triggering is also possible via
touch /mars/userspace/systemd-trigger. When triggered, the command marsadm
systemd-trigger-extern (without --force) will be executed. In turn, this will re-
compute all systemd templates when necessary.

mars-trigger.service An intermediate helper unit, sitting inbetween mars-trigger.path
and marsadm systemd-trigger-extern. It also ensures that the marsadm command is
never called in parallel to itself.

mnt-test-@escvar{res}.path This path unit is used for generic triggering of any
resource-specific systemd unit as set by marsadm set-systemd-unit $res $unit
(see below in section 6.1.7).

Pitfall: systemd’s path unit watchers are based on the inotify infrastructure of
the kernel. By default, many kernels are configured to a rather low number of inotify
watches. When using more than 20 MARS resources, or when userspace also consumes
inotify watches, some of the path watches may not start up (typical systemctl status
messages are hinting at “resource” or similar). You may need some kernel tweaks, such as
echo 4096 > /proc/sys/fs/inotify/max_user_instances and/or relatives.

mnt-test-@escvar{res}.service Similarly to mars-trigger.service, this sits inbetween
the per-resource trigger and the executed command marsadm systemd-trigger-extern
@{res} , which in turn either calls systemctl for actually starting / stopping the per-
resource units, or in turn it directly calls any .script workaround. See the overview
picture in section Execution Model of systemd and marsadm.

85

6. Advanced users: automation and the macro processor

mnt-test-@escvar{res}-testload.script This is an academic example for testing and for
inspection, not intended for production. It shows the currently recommended script
workaround for achieving idempotence. Fully automatic activation / deactivation of this
target during handover via marsadm primary $res can be configured via one of the fol-
lowing commands: marsadm set-systemd-unit mydata DEFAULT or by the long form
marsadm set-systemd-unit mydata mnt-test-mydata.script.

Note that the previous *trigger*{path,service} native units remain necessary
for getting *.script to work. Any potential races in their activation are automatically
healed by idempotent re-triggering of this .script workaround.

The following native templates might be used in place of this workaround, but I have
to warn that the following native systemd units are not fully passing various stress tests, while
the corresponding .script workaround has passed them.

mnt-test-@escvar{res}.mount or ^{mntname}-@escvar{res}.mount This is one of the pos-
sible native systemd execution targets configurable by marsadm set-systemd-unit. For
fully automatic activation / deactivation of this alternative target during handover via
marsadm primary $res, you can configure a very basic test with something like marsadm
set-systemd-unit mydata vol-mydata.mount or similar.

Notice: the template notation ^{mntname} can be used for mount-
ing to an arbitrary mountpoint, such as /another/mountdir/mydata, by using
the corresponding systemd template syntax in marsadm set-systemd-unit mydata
another-mountdir-mydata.mount.

Look into the template file ^{mntname}-@escvar{res}.mount. In the first line, there
is the following macro call:
@eval{%let{mntpath}{%subst{%{mntname}}{-}{/}}}
This is a trick for conversion of any systemd template name mntname into into an ordinary
filesystem pathname mntpath. While subdirectories in a path are separated by slashes,
the systemd unit naming conventions (as required by systemd) are using dashes in place
of slashes.

Do not confuse @{mntname} with @{mntpath}. Depending on the type of argument
to be substituted, you may need either systemd unit naming conventions, or classical Unix
pathname conventions.

mnt-test-@escvar{res}-testload.service This is an academic example for testing
and for inspection, not intended for production. Here you can see in com-
ments how a transitive dependency chain could be configured. In its body,
this template contains a BindsTo= plus After= reference to another template
^{mntname}-@escvar{res}-delay.service, which in turn contains a BindsTo= plus
After= reference to mnt-test-@escvar{res}.mount.

Do not confuse Requires= with BindsTo= (see man systemd.unit). If you want
to automatically stop your entire unit stack via a single command systemctl stop
vol-mydata.mount, then you most likely need the stronger BindsTo= directive plus
After= in place of weaker ones like Requires= or similar.

In most cases (but not always), you also need an After= directive. Otherwise you
will unintentionally program a hard to debug race condition, which can extinct your
last hair. Be sure to understand the corresponding details in the systemd documentation.

In general, it is good practice to have a consistent name scheme. Always use the logically
same name (modulo some escaping conventions for special characters), e.g. for the underlying

86

6.1. The systemd Template Generator

LV (called disk in MARS terminology), equal to the MARS resource name, equal to the last
part of the mountpoint, equal to the IQN of an iSCSI export, equal to the NFS share name,
equal to the LXC container name, equal to the KVM/qemu virtual machine name, and so on.
Messing around with non-systematic naming conventions can easily result in a hell.

6.1.7. Fully Automatic Handover using systemd

First, you need to install your systemd templates into one of the template directories mentioned
in section 6.1.3. In case you have never used the template engine before, you can create the
first instantiation via marsadm systemd-trigger. Afterwards, inspect /run/systemd/system/
for newly created template instances (and /etc/marsadm/systemd-generated/ for any .script
workarounds) and check them.
For each resource $res, you should set systemd targets in one of the following variants:

• short form: marsadm set-systemd-unit $res DEFAULT

• long form, using the .script workaround: marsadm set-systemd-unit $res
mnt-test-$res-testload.script

• most general form: marsadm set-systemd-unit $res “$start_unit” “$stop_unit”.

Except for .script workarounds, $start_unit and $stop_unit will typically denote different
targets for start and stop (with few exceptions) for the following reason:

Example: assume your native systemd-controlled stack consists of vol-@escvar{res}.mount
and nfs-export-@escvar{res}.service. Before the filesystem can be exported via nfs,
it first needs to be mounted. At startup, systemd can do this automatically for you: just
add a Requires= or BindsTo= dependency between both targets, or similar. Then, simply
use nfs-export-mydata.service as your start unit. Whenever it (thinks that it) needs
to be started, systemd will automatically analyze its dependencies and automatically
start vol-mydata.mount. However, stopping is different. Theoretically, systemctl stop
nfs-export-mydata.service could work in some cases, but in general it doesn’t work
this way. Reason: there might be other sister units which also depend on the mount.
In some cases, you may not necessarily notice any sisters, because systemd can add
further (internal) targets automatically. The problem is easily solvable by using BindsTo=
and/or PartOf= dependencies, preferably augmented with After=, and then systemctl
stop vol-mydata.mount will automatically tear down all dependencies in reverse order.
Therefore, use the bottom of the stack (usually a mount unit) as your stop unit.

For maximum safety, $start_unit should always point at the tip of your stack, while
$stop_unit should always point at the bottom (but one level higher than /dev/mars/$res).
Removing any systemd targets is also possible via marsadm set-systemd-unit $res “” .

Tip: groups of units can be controlled via .target units, see man systemd.target.
When everything is set up properly, the following should work:

1. Issue marsadm primary $res on another node which is currently in secondary role.

2. As a consequence, systemctl stop “$stop_unit” should be automatically executed at
the old primary side.

3. After a while, the MARS kernel module will notice that /dev/mars/$res is no longer
opened. You can check this manually via marsadm view-device-opened $res which
will tell you a boolean result.

In case the device is not closed for any reason, ordinary handover cannot proceed,
because somebody could (at least potentially) write some data into it, even after the
handover, which would lead to a split brain. Therefore MARS must insist that the device
is closed before ordinary handover can proceed.

In order to not leave you with a failed service, umount failures will be detected after

87

6. Advanced users: automation and the macro processor

a timeout. Handover by marsadm will then automatically restart the old start unit at the
old primary side where the the device was not released.

In case an ordinary handover is not possible due to hanging device openings, you
have the following options:

a) Check your systemd configuration or other sources of error why the device is not
closed. Possible reasons could be hanging processes or hanging sessions which might
need a kill or a kill -9 or similar. Notice that lsof does not catch all possible
sources like (recursive or bind-) mounts occupied by foreign kernel namespaces.

b) Do a failover via primary --force, which will likely provoke a split brain.

4. Once /dev/mars/$res has disappeared, the ordinary MARS handover from the old pri-
mary to the new site should proceed as usual.

5. After /dev/mars/$res has appeared at the new site, systemctl start “$start_unit”
should be executed automaticy. In turn, this should bring up your configured services.

Details depend on your systemd configuration / templates. For example, you can configure
systemd targets for activation of VMs, or for LXC containers, or for iSCSI exports, or for nfs
exports, or for glusterfs exports, or for whatever you need. For true geo-redundancy, you
will likely have to include some quagga or bird or other BGP configurations into your systemd
unit stack.

In general, marsadm tries to keep your services running whenever a handover failure
occurs, or when you re-attach after a detach, or when your machine reloads mars.ko after a
crash reboot, etc. This is regarded as a feature.

However, this feature could become boring if you intentionally(!) want to stop your ser-
vices, for example when you need to run an fsck. Do not use marsadm secondary, because this
would make /dev/mars/mydata to disappear. Although marsadm set-systemd-unit mydata
“” would solve the problem, this could make you forget the old start and stop unit names (if
you don’t use markers like DEFAULT etc). You could workaround by some wrapper script
remembering the old names via marsadm get-systemd-unit, but this is not necessary:

There is a simple solution: marsadm set-systemd-want “(none)” will temporarily stop
the whole systemd unit stack, while keeping /dev/mars/mydata accessible. After your fsck
/dev/mars/mydata has finished, simply use an idempotent marsadm primary mydata for
restart of your services.

6.2. The macro processor
The macro processor is a very flexible and versatile tool for customizing. Conceptually, two
levels of macros are discriminated:

1. primitive macros: these are firmly built into marsadm.

2. complex macros: these can be defined via the macro language of marsadm.

Some complex macros are already pre-defined, for example the standard marsadm view all
(see section 3.1.1 on page 28).
From the commandline, any macro can be called via marsadm view-$macroname mydata.

The short form marsadm view mydata is equivalent to marsadm view-default mydata.

In general, the command marsadm view-$macroname all will first call the macro
$macroname in a loop for all resources we are a member locally. Finally, a trailing macro
$macroname -global will be called with an empty %{res} argument, provided that such a
macro is defined. This way, you can produce per-resource output followed by global output
which does not depend on a particular resource.

88

6.2. The macro processor

6.2.1. Predefined Primitive Macros
6.2.1.1. Intended for Humans

In the following, shell glob notation {a,b} is used to document similar variants of similar macros
in a single place. When you actually call the macro, you must choose one of the possible variants
(excluding the braces).

the-err-msg Show reported errors for a resource. When the resource argument is missing or
empty, show global error information.

all-err-msg Like before, but show all information including those which are OK. This way,
you get a list8 of all potential error information present in the system.

{all,the}-wrn-msg Show all / reported warnings in the system.

{all,the}-inf-msg Show all / reported informational messages in the system.

{all,the}-msg Show all / reported messages regardless of its classification.

{all,the}-global-msg Show global messages not associated with any resource (the resource
argument of the marsadm command is ignored in this case).

{all,the}-global-{inf,wrn,err}-msg Ditto, but more specific.

{all,the}-pretty-{global-,}{inf-,wrn-,err-,}msg Ditto, but show numerical times-
tamps in a human readable form.

{all,the}-{global-,}{inf-,wrn-,err-,}count Instead of showing the messages, show their
count (number of lines).

errno-text This macro takes 1 argument, which must represent a Linux errno number, and
converts it to human readable form (similar to the C strerror() function).

todo-{attach,sync,fetch,replay,primary,secondary} Shows a boolean value (0 or 1) in-
dicating the current state of the corresponding todo switch (whether on or off). The
meaning of todo switches is illustrated in section 1.3. Exceptions: todo-primary
is not reporting the boolean value of a switch, but means that the designated pri-
mary string as reported by get-primary is equal to the current host. Similarly,
todo-secondary means that no designated primary exists throughout the cluster,
indicating that get-primary equals to the special string value (none).

get-resource-{fat,err,wrn} Access to the internal error status files. This is not an official
interface and may thus change at any time without notice. Use this only for human
inspection, not for scripting!

These macros, as well as the error status files, are likely to disappear in future
versions of MARS. They should be used for debugging only. At least when merging
into the upstream Linux kernel, only the *-msg macros will likely survive.

get-resource-{fat,err,wrn}-count Ditto, but get the number of lines instead of the text.

replay-code Indicate the current state of logfile replay / recovery:

(empty) Unknown.

0 No replay is currently running.

1 Replay is currently running.

2 Replay has successfully stopped.

< 0 See Linux errno code. Typically this indicates a damaged logfile, or an-
other filesystem error at /mars.

<= -10000 See the Perl hash from the marsadm script, describing some MARS-
specific error codes.

8The list may be extended in future versions of MARS.

89

6. Advanced users: automation and the macro processor

is-{attach,sync,fetch,replay,primary,secondary,module-loaded} Shows a boolean
value (0 or 1) indicating the actual state, whether the corresponding action has
been actually carried out, or not (yet). Notice that the values indicated by is-*
may differ from the todo-* values when something is not (yet) working. Notice:
is-primary (or its negation is-secondary) means that the transaction logger has
(resp. not) reached a working state, but the corresponding /dev/mars/mydata
prosumer device need not (yet) have appeared (somewhere else). More explanations
can be found in section 1.3.

is-split-brain Shows whether split brain (see section 3.3) has been detected, or not.

is-consistent Shows whether the underlying disk is in a locally consistent state, i.e. whether
it could be (potentially) detached and then used for read-only test-mounting9. Don’t
confuse this with the consistency of /dev/mars/mydata, which is by construction
always locally consistent once it has appeared10. By construction of MARS, the disk
of secondaries will always remain in a locally consistent state once the initial sync
has finished as well as the initial logfile replay. Notice that local consistency does not
necessarily imply actuality.

is-emergency Shows whether emergency mode (see section 3.7) has been entered for the named
resource, or not.

nr-{attach,sync,fetch,replay,primary,secondary} Show the total number of resource
members which are in corresponding state %is-$something {}.

rest-space (global, no resource argument necessary) Shows the logically available space in
/mars/ measured and rounded down in GiB, which may deviate from the physically
available space as indicated by the df command. The difference to df is intended for
safeguarding. Computational details may change in future MARS releases.

total-space (available since mars0.1astable140, global, no resource argument necessary)
Shows the logically present space in /mars/, which may deviate from the physi-
cally available space as indicated by the df command. Similarly to rest-space but
independently from it, this is also safeguarded and rounded down in units of GiB.
Computational details may change in future MARS releases.

get-{disk,device} Show the name of the underlying disk, or of the /dev/mars/mydata device
(if it is available).

{disk,device}-present Show (as a boolean value) whether the underlying disk, or the
/dev/mars/mydata device, is available.

device-opened Show (as a number) how often /dev/mars/mydata has been actually opened,
e.g. by mount or by some processes like dd, or by iSCSI, etc.

device-{ops,amount}-rate Show the number of current IOPS, esp. the current throughput
in KiB/s.

device-nrflying Show the number of currently flying IO requests. This is an indicator of
queueing at the low-level device. When it is permanently very high, it may point at
IO problems, such as RAID degradation.

9Notice that the writeback at the primary side is out-of-order by default, for performance reasons. Therefore,
the underlying disk is only guaranteed to be consistent when there is no data left to be written back. Notice
that this condition is racy by construction. When your primary node crashes during writeback and then
comes up again, you must do a modprobe mars first in order to automatically replay the transaction logfiles,
which will automatically heal such temporary inconsistencies.

10Exceptions are possible when using marsadm fake-sync. Even in split brain situations, marsadm primary
--force tries to prevent any further potential exception as best as it can, by not letting /dev/mars/mydata
to appear and by insisting on split brain resolution first. In future implementations, this might change if
more pressure is put on the developer to sacrifice consistency in preference to not waiting for a full logfile
replay.

90

6.2. The macro processor

disk-error Show a negative Linux errno code, or a mars-specific code when lower than -10000.
In addition to some explanation text, it shows the first known IO error, as reported
upwards to applications, and before it was reset for whatever reason. For example,
it may be the last open() error on the underlying disk, or something else may have
occurred during operations, and sometimes it may have corrected itself. Normally,
this should be always zero. When < 0 according to return-code conventions as
explained at %replay-code{}, this typically indicates a hardware or LVM problem,
etc.

device-error Show a negative Linux errno code, or a mars-specific code when lower than
-10000. In addition to some explanation text, it shows the first known IO error,
as reported upwards to applications, and before it was reset for whatever reason.
Normally, this should be always zero. When < 0 according to return-code conventions
as explained at %replay-code{}, this typically indicates a hardware (or network)
problem.

{potential,implemented,usable}-features Show a list of flag names, indicating the compression
/ digest features (see description in section section §5.2) as either as known to the cur-
rent version of marsadm, or as implemented in the currently running kernel module,
or as the minimum feature set currently available in the whole cluster.

{implemented,usable}-{digests,compressions} Same as before, but more specifically related to
either compressions or digests.

enabled-{log|net}-compressions Show which compression features have been set by marsadm
set-global-enabled-*-compressions.

disabled-{log|net}-digests Show which digest features have been disabled by marsadm
set-global-disabled-*-digests.

used-{log,net}-{digest,compression} Show which digest or compression features are currently
actually used by $host, either for logfile or for network purposes.

6.2.1.2. Intended for Scripting

While complex macros may output a whole bunch of information, the following primitive macros
are outputting exactly one value. They are intended for script usage (cf. section 6.4). Of course,
curious humans may also use them :)
In the following, shell glob notation {a,b} is used to document similar variants of similar

macros in a single place. When you actually call the macro, you must choose one of the possible
variants (excluding the braces).

Memberships, Name Querying and their Counts

is-member Boolean, indicating whether %{host} is a storage member of the resource %{res}.

is-guest Boolean, indicating whether %{host} is currently a dynamic guest of resource
%{res}.

cluster-peers Show a newline-separated list of all host names appearing in
/mars/ips/ip-$peername. Please prefer this macro in place of direct access
to filesystem data: future MARS features might need some changes in the low-level
naming conventions, and/or in the hierarchical filesystem layout, or even the
replacement of the /mars/ filesystem by different data container formats, etc.

resource-peers Show a newline-separated list of all host names participating in the particular
resource %{res}. Notice that this is typically a subset of %cluster-peers{}.
Note: stray data, e.g. as produced by forgotten / interrupted leave-resource & co
may lead to some mismatches.

guest-peers Show a newline-separated list of all host names which are currently dynamically
added as guests to resource %{res}.

91

6. Advanced users: automation and the macro processor

count-{cluster,resource,guest}-peers Show the corresponding number of hosts, accord-
ingly.

{my,all}-resources Show a newline-separated list of either all resource names exist-
ing in the cluster, or only those where the current host %{host} is a stor-
age member. Optionally, you may specify the hostname as a parameter, e.g.
%my-resources{otherhost }.

{my,all}-members Show a newline-separated list of storage members existing in the cluster.
There is a very subtle difference to *-resources: there may exist resources which
have no storage members. This may for example occur when all storage members
have left via leave-resource, but delete-resource has not yet been executed.

{my,all}-guests Show a newline-separated list of currently dynamically added guests.

count-{my,all}-{resources,members,guests} Show the corresponding number of resources
or storage members or guests, accordingly.

fetch−rest

fetch−size
work−size

deletable−size

replay−rest

100%

occupied−size

work−rest

replay−pos

0%

work−pos

replay−pos

replay−size

fetch−pos

replay−logcount

replay−lognrreplay−basenr fetch−lognr work−lognr

fetch−logcount
work−logcount

Figure 6.1.: overview on amounts / cursors

Amounts of Data Inquiry The following macros are meaningful for both primary and sec-
ondary nodes:

deletable-size Show the total amount of locally present logfile data which could be
deleted by marsadm cron. This differs almost always from both replay-pos and
occupied-size due to granularity reasons (only whole logfiles can be deleted). Units
are bytes, not kilobytes.

occupied-size Show the total amount of locally present logfile data (sum of all file sizes).
This is often roughly approximate to fetch-pos, but it may differ vastly (in both
directions) when logfiles are not completely transferred, when some are damaged,
during split brain, after a join-resource / invalidate, or when the resource is in
emergency mode (see section 3.7).

disk-size Show the size of the underlying local disk in bytes.

resource-size Show the logical size of the resource in bytes. When this value is lower than
disk-size, you are wasting space.

device-size At a primary node, this may differ from resource-size only for a very short
time during the resize operation. At secondaries, there will be no difference.

The following macros are only meaningful for resources in primary mode:

writeback-rest Show the amount of data which is already in the transaction logfile, but has
not yet been written back to the underlying disk. This may be used for estimation
of recovery time after a potential primary crash. The writeback buffer is explained
by the graphics at 1.2 on page 11.

92

6.2. The macro processor

The following macros are only meaningful for resources in secondary mode. By information
theoretic limits, they can only tell what is locally known. They cannot reflect the “true (global)
state11” of a cluster, in particular during network partitions.

{sync,fetch,replay,work}-size Show the total amount of data which is / was to be pro-
cessed by either sync, fetch, or replay. work-size is equivalent to fetch-size.
replay-size is equivalent to fetch-pos (see below). Units are bytes, not kilobytes.

{sync,fetch,replay,work}-pos Show the total amount of data which is already processed
(current “cursor” position). work-pos is equivalent to replay-pos.

The 0% point is the locally contiguous amount of data since the last create-resource,
join-resource, or invalidate, or since the last emergency mode, but possibly shortened by
cron. Notice that the 0% point may be different on different cluster nodes, because their re-
source history may be different or non-contiguous during split brain, or after a join-resource,
or after invalidate, or during / after emergency mode.

{sync,fetch,replay,work}-rest Shows the difference between *-size and *-pos (amount
of work to do). work-rest is therefore the difference between fetch-size and
replay-pos, which is the total amount of work to do (regardless whether to be
fetched and/or to be replayed).

{sync,fetch,replay,work}-reached Boolean value indicating whether *-rest dropped
down to zero12.

{fetch,replay,work}-threshold-reached Boolean value indicating whether *-rest
dropped down to %{threshold}, which is pre-settable by the --threshold=size
command line option (default is 10 MiB). In asynchronous use cases of MARS, this
should be preferred over *-reached for human display, because it produces less
flickering by the inevitable replication delay.

{fetch,replay,work}-almost-reached Boolean value indicating whether *-rest almost /
approximately dropped down to zero. The default is that at lease 990 permille are
reached. In asynchronous use cases of MARS, this can be preferred over *-reached
for human display only, because it produces less flickering by the inevitable replication
delay. However, don’t base any decisions on this!

{sync,fetch,replay,work}-percent The cursor position *-pos as a percentage of *-size.

{sync,fetch,replay,work}-permille The cursor position *-pos as permille of *-size.

{sync,fetch,replay,work}-rate Show the current throughput in bytes13 per second.
work-rate is the maximum of fetch-rate and replay-rate.

11Notice that according to Einstein’s law, and according to observations by Lamport, the concept of “true state”
does not exist at all in a distributed system. Anything you can know in a distributed system is always local
knowledge, which races with other (remote) knowledge, and may be outdated at any time.

12MARS can only guarantee local consistency, but cannot guarantee actuality in all imaginable situations.
Notice that a general notion of “actuality” is undefinable in a widely distributed system at all, according to
Einstein’s laws.

Let’s look at an example. In case of a node crash, and after the node is up again, a modprobe mars has
to occur, in order to replay the transaction logs of MARS again. However, at the recovery phase before, the
journalling ext4 filesystem /mars/ may have rolled back some internal symlink updates which have occurred
immediately before the crash. MARS is relying on the fact that journalling filesystems like ext4 should do
their recovery in a consistent way, possibly by sacrifycing actuality a little bit. Therefore, the above macros
cannot guarantee to deliver true information about what is persisted at the moment.

Notice that there are further potential caveats.
In case of {sync,fetch}-reached, MARS uses bio callbacks resp. fdatasync() by default, thus the

underlying storage layer has told us that it believes it has committed the data in a reboot-safe way. Whether
this is really true does not depend on MARS, but on the lower layers of the storage hierarchy. There exists
hardware where this claim is known to be wrong under certain circumstances, such as certain hard disk
drives in certain modes of operation. Please check the hardware for any violations of storage semantics
under certain circumstances such as power loss, and check information sources like magazines about the
problem area. Please notice that such a problem, if it exists at all, is independent from MARS. It would also
exist if you wouldn’t use MARS on the same system.

13Notice that the internal granularity reported by the kernel may be coarser, such as KiB. This interfaces
abstracts away from kernel internals and thus presents everything in byte units.

93

6. Advanced users: automation and the macro processor

{sync,fetch,replay,work}-remain Show the estimated remaining time for completion of the
respective operation. This is just a very raw guess. Units are seconds.

{sync,fetch,replay}-{ops,amount}-rate Show the current IOPS of sync / fetch / replay,
or its corresponding throughput in KiB/s.

summary-vector Show the colon-separated CSV value %replay-pos{}:%fetch-pos{}:%fetch-size{}.

replay-basenr Get currently first reachable logfile number (see figure 6.1 on page 92). Only
for curious humans or for debugging / monitoring - don’t base any decisions on this.
Use the *-{pos,size} macros instead.

{replay,fetch,work}-lognr Get current logfile number of replay or fetch position, or of the
currently known last reachable number (see figure 6.1 on page 92). Only for curious
humans or for debugging / monitoring - don’t base any decisions on this. Use the
*-{pos,size} macros instead.

{replay,fetch,work}-logcount Get current number of logfiles which are already replayed,
or are already fetched, or are to be applied in total (see figure 6.1 on page 92). Only
for curious humans or for debugging / monitoring - don’t base any decisions on this.
Use the *-{rest} macros instead.

alive-timestamp Tell the Lamport Unix timestamp (seconds since 1970) of the last metadata
communication to the designated primary (or to any other host given by the first
argument). Returns −1 if no such host exists.

{fetch,replay,work}-timestamp Tell the Lamport Unix timestamp (seconds since 1970)
when the last progress has been made. When no such action exists, −1 is returned.
%work-timestamp{hostname } is the maximum of %fetch-timestamp{hostname }
and %replay-timestamp{hostname }. When the parameter hostname is empty,
the local host will be reported (default). Example usage: marsadm view all
--macro=”%replay-timestamp{%todo-primary{}}” shows the timestamp of the
last reported14 writeback action at the designated primary.

{alive,fetch,replay,work}-age Tell the number of seconds since the last respective action,
or −1 if none exists.

{alive,fetch,replay,work}-lag Report the time difference (in seconds) between the last
known action at the local host and at the designated primary (or between any other
hosts when 2 parameters are given). Returns −1 if no such action exists at any of
the two hosts. Attention! This need not reflect the actual state in case of networking
problems. Don’t draw wrong conclusions from a high {fetch,replay}-lag value: it
could also mean that simply no write operation at all has occurred at the primary
side for a long time. Conversely, a low lag value does not imply that the replication
is recent: it may refer to different write operations at each of the hosts; therefore it
only tells that some progress has been made, but says nothing about the amount of
the progress.

Device Information

get-device Tell the device name, which is /dev/mars/%{res} in the current MARS imple-
mentation.

device-present Boolean, telling whether /dev/mars/%{res} is currently appearing at
%{host} or not.

device-opened Tell the number of times /dev/mars/%{res} is currently opened (e.g.
mounted) at %{host}. Upon non-exclusive access by multiple readers / writers in
parallel (which is potentially very dangerous), the number may grow greater than 1.
You may exploit this for monitoring / supervision.

14Updates of this information are occurring with lower frequency than actual writebacks, for performance
reasons. The metadata network update protocol will add further delays. Therefore, the accuracy is only in
the range of minutes.

94

6.3. Creating your own Macros

device-ops-rate Tell the current request throughput, aka IOPS. This is actually changing
much more frequently than can be reported by the kernel, but anyway may be useful
for getting some impression on what is going on.

device-error Tell the Unix error code when any IO error has occurred in the past, or 0 when
no error is known. Useful for debugging and fault analysis.

device-nrflying Tell the number of currently flying IO requests (i.e. submitted, but not yet
completed). This is changing in much higher frequency that can be ever reported by
the kernel, but may be useful for bottleneck analysis, and when the system is stuck
(e.g. defective RAID).

device-completion-stamp Tell the realtime timestamp of the last completed IO request. Use-
ful for detection of a hanging system (e.g. defective disks, etc).

device-completion-age Similar to before, but report the relative age (compared to the current
time) in seconds.

Misc Informational Status

get-primary Return the name of the current designated primary node as locally known.

actual-primary (deprecated) try to determine the name of the node which appears to be the
actual primary. This only a guess, because it is not generally unique in split brain
situations! Don’t use this macro. Instead, use is-primary on those nodes you are
interested in. The explanations from section 1.3 also apply to get-primary versus
actual-primary analogously.

is-alive Boolean value indicating whether all other nodes participating in mydata are reach-
able / healthy.

global-sync-limit-value (global) Report the maximum parallelism degree of sync, as con-
figurable via set-global-sync-limit.

uuid (global) Report the unique identifier created by create-cluster or by create-uuid.
Hint: this is immutable, and it is firmly bound to the /mars/ filesystem. It can only
be destroyed by deleting the whole filesystem (see section 4.2).

tree (global) Indicate symlink tree version (see mars-for-kernel-developers.pdf).

Experts Only The following is for hackers who know what they are doing. The following is
not officially supported.

wait-{is,todo}-{attach,sync,fetch,replay,primary,secondary}-{on,off} This may
be used to program some useful waiting conditions in advanced macro scripts. It
works via busy wait, and does not support disjoint waiting conditions. Use at
your own risk! Hint: for disjoint and/or more complex waiting conditions, and/or
for programming your own finite state transition machines etc, please prefer the
non-blocking {is,todo}-* and sisters, and program any busy wait yourself (or try
to avoid busy-wait at all).

6.3. Creating your own Macros
In order to create your own macros, you could start writing them from scratch with your favorite
ASCII text editor. However, it is much easier to take an existing macro and to customize it to
your needs. In addition, you can learn something about macro programming by looking at the
existing macro code.
Go to a new empty directory and say

• marsadm dump-macros

in order to get the most interesting complex macros, or say

95

6. Advanced users: automation and the macro processor

• marsadm dump-all-macros

in order to additionally get some primitive macros which could be customized if needed. This
will write lots of files *.tpl into your current working directory.
Any modfied or new macro file should be placed either into the current working directory

./ , or into $HOME/.marsadm/ , or into /etc/marsadm/ . They will be searched in this order,
and the first match will win. When no macro file is found, the built-in version will be used if
it exists. This way, you may override builtin macros.
Example: if you have a file ./mymacro.tpl you just need to say marsadm view-mymacro

mydata in order to invoke it in the resource context mydata.

6.3.1. General Macro Syntax
Macros are simple ASCII text, enriched with calls to other macros.
ASCII text outside of comments are copied to the output verbatim. Comments are skipped.

Comments may have one of the following well-known forms:

• # skipped text until / including next newline character

• // skipped text until / including next newline character

• /* skipped text including any newline characters */

• denoted as Perl regex: \\\n\s* (single backslash directly followed by a newline character,
and eating up any whitespace characters at the beginning of the next line) Hint: this may
be fruitfully used to structure macros in a more readable form / indentation.

Special characters are always initiated by a backslash. The following pre-defined special char-
acter sequences are recognized:

• \n newline

• \r return (useful for DOS compatibility)

• \t tab

• \f formfeed

• \b backspace

• \a alarm (bell)

• \e escape (e.g. for generating ANSI escape sequences)

• \ followed by anything else: assure that the next character is taken verbatim. Although
possible, please don’t use this for escaping letters, because further escape sequences might
be pre-defined in future. Best practice is to use this only for escaping the backslash itself,
or for escaping the percent sign when you don’t want to call a macro (protect against
evaluation), or to escape a brace directly after a macro call (verbatim brace not to be
interpreted as a macro parameter).

• All other characters stand for their own. If you like, you should be able to produce XML,
HTML, JSON and other ASCII-based output formats this way.

Macro calls have the following syntax:

• %macroname {arg1 }{arg2 }{argn }

• Of course, arguments may be empty, denoted as {}

• It is possible to supply more arguments than required. These are simply ignored.

• There must be always at least 1 argument, even for parameterless macros. In such
a case, it is good style to leave it empty (even if it is actually ignored). Just write
%parameterlessmacro{} in such a case.

96

6.3. Creating your own Macros

• %{varname } syntax: As a special case, the macro name may be empty, but then
the first argument must denote a previously defined variable (such as assigned via
%let{varname}{myvalue}, or a pre-defined standard variable like %{res} for the cur-
rent resource name, see later paragraph 6.3.3).

• Of course, parameter calls may be (almost) arbitrarily nested.

• Of course, the correctness of nesting of braces must be generally obeyed, as usual in any
other macro processor language. General rule: for each opening brace, there must be
exactly one closing brace somewhere afterwards.

These rules are hopefully simple and intuitive. There are currently no exceptions. In particular,
there is no special infix operator syntax for arithmetic expressions, and therefore no operator
precedence rules are necessary. You have to write nested arithmetic expressions always in the
above prefix syntax, like %*{7}{%+{2}{3}} (similar to non-inverse polish notation).

When deeply nesting macros and their braces, you may easily find yourself in a feeling like
in the good old days of Lisp. Use the above backslash-newline syntax to indent your macros
in a readable and structured way. Fortunately, modern text editors like (x)emacs or vim have
modes for dealing with the correctness of nested braces.

6.3.2. Calling Builtin / Primitive Macros

Primitive macros can be called in two alternate forms:

• %primitive-macroname {something }

• %macroname {something }

When using the %primitive-*{} form, you explicitly disallow interception of the call by a
*.tpl file. Otherwise, you may override the standard definition even of primitive macros by
your own template files.

Notice that %call{} conventions are used in such a case. The parameters are passed via
%{0} . . .%{n} variables (see description below).

Standard MARS State Inspection Macros These are already described in section 6.2.1. When
calling one of them, the call will simply expand to the corresponding value.
Example: %get-primary{} will expand to the hostname of the current designated primary

node.

Further MARS State Inspection Macros

Variable Access Macros

• %let{varname }{expression } Evaluates both varname and the expression . The
expression is then assigned to varname.

• %let{varname }{expression } Evaluates both varname and the expression . The
expression is then appended to varname (concatenation).

• %{varname } Evaluates varname , and outputs the value of the corresponding variable.
When the variable does not exist, the empty string is returned.

• %{++}{varname } or %{varname }{++} Has the obvious well-known side effect e.g. from
C or Java. You may also use -- instead of ++. This is handy for programming loops (see
below).

• %dump-vars{} Writes all currently defined variables (from the currently active scope) to
stderr. This is handy for debugging.

97

6. Advanced users: automation and the macro processor

CSV Array Macros

• %{varname }{delimiter }{index } Evaluates all arguments. The contents of varname
is interpreted as a comma-separated list, delimited by delimiter . The index ’th list
element is returned.

• %set{varname }{delimiter }{index }{expression } Evaluates all arguments. The con-
tents of the old varname is interpreted as a comma-separated list, delimited by
delimiter . The index ’th list element is the assigned to, or substituted by, expression .

Arithmetic Expression Macros The following macros can also take more than two arguments,
carrying out the corresponding arithmetic operation in sequence (it depends on the operator
whether this accords to the associative law).

• %+{arg1 }{arg2 } Evaluates the arguments, interprets them as numbers, and adds them
together.

• %-{arg1 }{arg2 } Subtraction.

• %*{arg1 }{arg2 } Multiplication.

• %/{arg1 }{arg2 } Division.

• %%{arg1 }{arg2 } Modulus.

• %&{arg1 }{arg2 } Bitwise Binary And.

• %|{arg1 }{arg2 } Bitwise Binary Or.

• %^{arg1 }{arg2 } Bitwise Binary Exclusive Or.

• %<‌<{arg1 }{arg2 } Binary Shift Left.

• %>‌>{arg1 }{arg2 } Binary Shift Right.

• %min{arg1 }{arg2 } Compute the arithmetic minimum of the arguments.

• %max{arg1 }{arg2 } Compute the arithmetic maximum of the arguments.

Boolean Condition Macros

• %=={arg1 }{arg2 } Numeral Equality.

• %!={arg1 }{arg2 } Numeral Inequality.

• %<{arg1 }{arg2 } Numeral Less Then.

• %<={arg1 }{arg2 } Numeral Less or Equal.

• %>{arg1 }{arg2 } Numeral Greater Then.

• %>={arg1 }{arg2 } Numeral Greater or Equal.

• %eq{arg1 }{arg2 } String Equality.

• %ne{arg1 }{arg2 } String Inequality.

• %lt{arg1 }{arg2 } String Less Then.

• %le{arg1 }{arg2 } String Less or Equal.

• %gt{arg1 }{arg2 } String Greater Then.

• %ge{arg1 }{arg2 } String Greater or Equal.

• %=~{string }{regex }{opts } or %match{string }{regex }{opts } Checks whether
string matches the Perl regular expression regex . Modifiers can be given via opts .

98

6.3. Creating your own Macros

Shortcut Evaluation Operators The following operators evaluate their arguments only when
needed (like in C).

• %&&{arg1 }{arg2 } Logical And.

• %and{arg1 }{arg2 } Alias for %&&{}.

• %||{arg1 }{arg2 } Logical Or.

• %or{arg1 }{arg2 } Alias for %||{}.

Unary Operators

• %!{arg } Logical Not.

• %not{arg } Alias for %!{}.

• %~{arg } Bitwise Ńegation.

String Functions

• %length{string } Return the number of ASCII characters present in string .

• %toupper{string } Return all ASCII characters converted to uppercase.

• %tolower{string } Return all ASCII characters converted to lowercase.

• %append{varname }{string } Equivalent to %let{varname }{%{varname }string }.

• %subst{string }{regex }{subst }{opts } Perl regex substitution.

• %sprintf{fmt }{arg1 }{arg2 }{argn } Perl sprintf() operator. Details see Perl man-
ual.

• %human-number{unit }{delim }{unit-sep }{number 1}{number 2}. . . Convert a number
or a list of numbers into human-readable B, KiB, MiB, GiB, TiB, as given by unit . When
unit is empty, a reasonable unit will be guessed automatically from the maximum of all
given numbers. A single result string is produced, where multiple numbers are separated
by delim when necessary. When delim is empty, the slash symbol / is used by default
(the most obvious use case is result strings like “17/32 KiB”). The final unit text is
separated from the previous number(s) by unit-sep . When unit-sep is empty, a single
blank is used by default.

• %human-seconds{number } Convert the given number of seconds into hh:mm:ss format.

Complex Helper Macros

• %progress{20} Return a string containing a progress bar showing the values from
%summary-vector{}. The default width is 20 characters plus two braces.

• %progress{20}{minvalue }{midvalue }{maxvalue } Instead of taking the values from
%summary-vector{}, use the supplied values. minvalue and midvalue indicate two dif-
ferent intermediate points, while maxvalue will determine the 100% point.

Control Flow Macros

• %if{expression }{then-part } or %if{expression }{then-part }{else-part } Like in
any other macro or programming language, this evaluates the expression once, not
copying its outcome to the output. If the result is non-empty and is not a string denoting
the number 0, the then-part is evaluated and copied to the output. Otherwise, the
else-part is evaluated and copied, provided that one exists.

• %unless{expression }{then-part } or %unless{expression }{then-part }{else-part }
Like %if{}, but the expression is logically negated. Essentially, this is a shorthand for
%if{%not{expression}}{...} or similar.

99

6. Advanced users: automation and the macro processor

• %elsif{expr1 }{then1 }{expr2 }{then2 }. . . or %elsif{expr1 }{then1 }{expr2 }{then2 }. . .{odd-else-part }
This is for simplification of boring if-else-if chains. The classical if-syntax (as shown
above) has the drawback that inner if-parts need to be nested into outer else-parts,
so rather deep nestings may occur when you are programming longer chains. This is
an alternate syntax for avoidance of deep nesting. When giving an odd number of
arguments, the last argument is taken as final else-part.

• %elsunless. . . Like %elsif, but all conditions are negated.

• %while{expression }{body } Evaluates the expression in a while loop, like in any other
macro or programming language. The body is evaluated exactly as many times as the
expression holds. Notice that endless loops can be only avoided by a calling a non-pure
macro inspecting external state information, or by creating (and checking) another side
effect somewhere, like assigning to a variable somewhere.

• %until{expression }{body } Like %while{expression }{body }, but negate the ex-
pression.

• %for{exp r1}{exp r2}{exp r3}{body } As you will expect from the corresponding C, Perl,
Java, or (add your favorite language) construct. Only the syntactic sugar is a little bit
different.

• %foreach{varname }{CSV-delimited-string }{delimiter }{body } As you can expect
from similar foreach constructs in other languages like Perl. Currently, the macro pro-
cessor has no arrays, but can use comma-separated strings as a substitute.

• %eval{count }{body } Evaluates the body exactly as many times as indicated by the
numeric argument count . This may be used to re-evaluate the output of other macros
once again.

• %protect{body } Equivalent to %eval{0}{body }, which means that the body is not eval-
uated at all, but copied to the output verbatim15.

• %eval-down{body } Evaluates the body in a loop until the result does not change any
more16.

• %tmp{body } Evaluates the body once in a temporary scope which is thrown away after-
wards.

• %call{macroname }{arg1 }{arg2 }{argn } Like in many other macro languages, this eval-
uates the named macro in the a new scope. This means that any side effects produced
by the called macro, such as variable assignments, will be reverted after the call, and
therefore not influence the old scope. However notice that the arguments arg1 to argn
are evaluated in the old scope before the call actually happens (possibly producing side
effects if they contain some), and their result is respectively assigned to %{1} until %{n }
in the new scope, analogously to the Shell or to Perl. In addition, the new %{0} gets the
macroname . Notice that the argument evaluation happens non-lazily in the old scope and
therefore differs from other macro processors like TEX.

• %include{macroname }{arg1 }{arg2 }{argn } Like %call{}, but evaluates the named
macro in the current scope (similar to the source command of the bourne shell). This
means that any side effects produced by the called macro, such as variable assignments,
will not be reverted after the call. Even the %{0} until %{n } variables will continue to
exist (and may lead to confusion if you aren’t aware of that).

• %callstack{} Useful for debugging: show the current chain of macro invocations.

15TEX or LATEX fans usually know what this is good for ;)
16Mathematicians knowing Banach’s fixedpoint theorem will know what this is good for ;)

100

6.3. Creating your own Macros

Time Handling Macros

• %time{} Return the current Lamport timestamp (see
mars-for-kernel-developers.pdf), in units of seconds since the Unix epoch.

• %real-time{} Return the current system clock timestamp, in units of seconds since the
Unix epoch.

• %sleep{seconds } Pause the given number of seconds.

• %timeout{seconds } Like %sleep{seconds }, but abort the marsadm command after the
total waiting time has exceeded the timeout given by the --timeout= parameter.

Misc Macros

• %warn{text } Show a WARNING:

• %die{text } Abort execution with an error message.

Experts Only - Risky The following macros are unstable and may change at any time without
notice.

• %get-msg{name } Low-level access to system messages. You should not use this, since this
is not extensible (you must know the name in advance).

• %readlink{path } Low-level access to symlinks. Don’t misuse this for circumvention of
the abstraction macros from the symlink tree!

• %setlink{value }{path } Low-level creation of symlinks. Don’t misuse this for circum-
vention of the abstraction macros for the symlink tree!

• %fetch-info{} etc. Low-level access to internal symlink formats. Don’t use this in
scripts! Only for curious humans.

• %is-almost-consistent{} Whatever you guess what this could mean, don’t use it, at
least never in place of %is-consistent{} - it is risky to base decisions on this. Mostly
for historical reasons.

• %does{name } Equivalent to %is-name {} (just more handy for computing the macro
name). Use with care!

6.3.3. Predefined Variables

• %{cmd} The command argument of the invoked marsadm command.

• %{res} The resource name given to the marsadm command as a command line parameter
(or, possibly expanded from all).

• %{resdir} The corresponding resource directory. The current version of MARS uses
/mars/resource-%{res}/, but this may change in future. Normally, you should not
need this, since anything should be already abstracted for you. In case you really need
low-level access to something, please prefer this variable over %{mars}/resource-%{res}
because it is a bit more abstracted.

• %{mars} Currently the fixed string /mars. This may change in future, probably with the
advent of MARS Full.

• %{host} The hostname of the local node.

• %{ip} The IP address of the local node.

• %{timeout} The value given by the --timeout= option, or the corresponding default
value.

101

6. Advanced users: automation and the macro processor

• %{threshold} The value given by the --threshold= option, or the corresponding default
value.

• %{window} The value given by the --window= option, or the corresponding default value
(60s).

• %{force} The number of times the --force option has been given.

• %{dry-run} The number of times the --dry-run option has been given.

• %{verbose} The number of times the --verbose option has been given.

• %{callstack} Same as the %callstack{} macro. The latter gives you an opportunity
for overriding, while the former is firmly built in.

6.4. Scripting Advice
Both the asynchronous communication model of MARS including the Lamport clock, and
the state model (cf section 1.3) is something you definitely should have in mind when you
want to do some scripting. Here is some advice:

• Don’t access anything on /mars/ directly, except for debugging purposes. Use marsadm.

• Avoid running scripts in parallel, other than for inspection / monitoring purposes. When
you give two marsadm commands in parallel (whether on the same host, or on different
hosts belonging to the same cluster), it is possible to produce a mess. marsadm has no
internal locking. There is no cluster-wide locking at all, because if would cause trouble
during long-distance network outages. Unfortunately, some systems like Pacemaker are
violating this in many cases (depending on their configuration). Best is if you have a
dedicated / more or less centralized control machine which controls masses of your
georedundant working servers. This reduces the risk of running interfering actions in
parallel. Of course, you need backup machines for your control machines, and in different
locations. Not obeying this advice can easily lead to problems such as complex races
which are very difficult to solve in long-distance distributed systems, even in general (not
limited to MARS).

• marsadm wait-cluster is your friend. Whenever your (near-)central script has to switch
between different hosts A and B (of the same cluster), use it in the following way:
ssh A “marsadm action1”; ssh B “marsadm wait-cluster; marsadm action2”

Don’t ignore this advice! Interference is almost sure! As a rule of thumb, precede
almost any action command with some appropriate waiting command!

• Further friends are any marsadm wait-* commands, such as wait-umount.

• In some places, busy-wait loops might be needed, e.g. for waiting until a specific resource is
UpToDate or matches some other condition. Examples of waiting conditions can be found
under github.com/schoebel/test-suite in subdirectory mars/modules/, specifically
02_predicates.sh or similar.

• In case of network problems, some command may hang (forever), if you don’t set the
--timeout= option. Don’t forget the check the return state of any failed / timeouted
commands, and to take appropriate measures!

• Test your scripts in failure scenarios!

102

A. FAQ

Following answers are from Thomas Schöbel-Theuer, the inventor of the MARS components
and the responsible maintainer of the out-of-tree OpenSource project under GPL.

Q: Why are the units of marsdm view-rest-space or marsdm view-total-space in
GiB?

A: This is for your protection. Contemporary servers have RAM up to TiB, not only
GiB. In worst case, e.g. certain types of userspace bugs / attacks / intrusions, large
parts of this RAM can be filled via the page cache of the kernel by (masses of)
wild-running user processes like hell, e.g. GiB/ms. Exceptional RAM usage / rates
can trigger the OOM killer, which in turn may randomly kill almost anything,
including daemons1.

Q: Why isn’t marsadm a daemon, but follows the process paradigm from UNIX?

A: Same story: reasonable protection against whoever kills processes for whatever rea-
sons. Daemons can loose their runtime state, and this may happen even in
critical sections. Thus your (distributed) system(s) may get (widely) stuck.
More explanations are in section Why systemd? on page 77. This can become evil
when it happens just during an operational incident, requiring a (mass) failover, and
just when you desperately want to rely on MARS (see also the CAP theorem). In
contrast, marsadm (as a component) is stateless2 between invocations. Thus your
system(s) can recover more easily.

Q: Can I create a fork of MARS?

A: Yes, given that you conform to the license. Please read the GPL, and follow it.
This is not only about kernel code. marsadm will remain under GPL. I have created it
under European personal rights, and even during my precious spare time. Personally,
I will not publish anything which is not under an OSI and/or OIN-compliant license.
In addition, it is wise to obey the customs of the OpenSource community. I
firmly recommend to take the time to read Homesteading the Noosphere (a
ground-breaking essay from Eric Raymond, see original web document at http:
//catb.org/~esr/writings/homesteading/homesteading/), and to think about
its consequences. Just stating the obvious, do not break important basics from there.
Finally, keep in mind that it is mandatory to follow the written and unwritten rules
from the Linux kernel community.

Q: Will MARS become part of the official Linux kernel as published at www.kernel.org?

A: Hopefully. The decision is up to Linus Torvalds and the kernel community. If possible,
I will try to do my best, in order to get it there3. After acceptance, I am willing
to support it further as a member of the community, up to my death, under my
personal constraints after my retirement. I am also planning to continuously support
the community, and to consent to passing over the baton to somebody from the Linux

1Exceptional fill rates are dangerous by itself. Neither the kernel nor MARS can reliably prevent such “use
cases”. We altogether can only try to deal with it and to protect us as best as possible under certain
conditions. Detailed high-frequency monitoring would be difficult in practice. Via units of GiB, I try to hint
you on this large problem field.

2marsadm does not functionally depend on network traffic, at least for non-network operations. The kernel(!)
and its GPLed code will automatically cleanup most remains upon process kill. Repeatability: afterwards,
the next marsadm invocation should not depend on former (OOM-like) problems.

3Hopefully, the out-of-tree kernel part of MARS will no longer be needed by anyone in the long term. Any
(professional) support for the MARS kernel module, and also for marsadm, should hopefully migrate to the
official Linux kernel and/or to the OpenSource community of all interested Linux distros, in a reasonable
timeframe.

103

http://catb.org/~esr/writings/homesteading/homesteading/
http://catb.org/~esr/writings/homesteading/homesteading/
www.kernel.org

A. FAQ

kernel community. My current problem is lack of time. I estimate that I will need
more than 70% of my precious working hours for getting it into the kernel. Please
help me. Please talk directly with me about perspectives.

Q: What is the business value of any OpenSource for my company?

A: Short story for managers / controllers / consultants: talk with experts from the
Linux Foundation.
Some recommended details top-down via checklist:

1. Consider http://catb.org/~esr/writings/homesteading/homesteading/ a
successful management strategy for creation of globally shared commons value4.

2. Understand the fundamental differences between commons cultures and com-
pany cultures, and their relationships to management cultures.

3. Map typical usage patterns of OpenSource down to your company, like follows.
Cross-compare your savings (if you would need to develop and to maintain
the software fully yourself, and/or to buy and integrate and operate compa-
rable products on non-OpenSource markets), and compute the corresponding
earnings5 via best-practice management methods.

4. Finally, take the future of business value alternatives, spread over the actual
lifetime, into account.

5. Ultimately, take the long-term ecosystem effects of all your downloaded
and/or contributed OpenSource into account, without overlooking so-called hid-
den champions.

Obviously, delegate OpenSource (strategy) only to persons who have proven6 that
they actually master the OpenSource playgrounds according to its intrinsic rules. Do
not put the fox in charge of the henhouse7.

This FAQ will be continued / updated only when necessary, and according to my time con-
straints.

4Recommendation: do not follow a common misbelief that something would not deliver any value because it
is for free. Also, do not mix up English meanings of “free”. When unsure, please consult the well-known
publications from Richard Stallman, who explained the fundamentals.

5Optionally, further effects like scaling effects may be also relevant.
6Recommendations: do not forget to take the actual OpenSource affinity of people into account, in which
culture they have grown up. Just believing some personal claims is not enough. Check for any people
who grew up during their youth in a non-affine culture, and do not trust a counter-culture where fighting
against OpenSource is or was a fashion. Beware of (hidden) clash of cultures. Check for contradictions.
Guard your company against hidden agendas and against fakes. Valuable OpenSource is not created by
management affinity, but only by certain hand-selected individuals. Carefully select the right individual(s)
for your company. Do not forget to ask for personal references, best on actual individual creations, and
check them.

7Similar saying: do not trust the cat to keep the cream.

104

http://catb.org/~esr/writings/homesteading/homesteading/

B. Technical Data MARS

Do not use MARS inside of VMs. Only use at bare metal!
MARS has some built-in limitations which should be overcome1 by future MARS versions.

Please don’t exceed the following limits:

• maximum 10 nodes per cluster

• maximum 30 resources per cluster

• maximum 100 logfiles per resource

1Some internal algorithms are quadratic. The reason is that MARS evolved from a lab prototype which wasn’t
originally intended for enterprise grade usage, but should have been succeeded by the fully instance-oriented
MARS Full much earlier.

105

C. HISTORIC Guide for Midnight
Problem Solving

Here is a generic guide (not to be treated as instructions) for the generic marsadm and
commandline level. Do not forget the terms and conditions from the GPL.

This is not an operational documentation. There are too many other application-
dependent components in a real production system. Any other levels / layers (e.g. different
types of cluster managers, PaceMaker, control scripts / rc scripts / upstart or systemd scripts,
etc) need to be described elsewhere. Midnight problem solving means to engage sysadmins
familiar with (1) all of these components, and (2) with any potential interferences between
them.

Aristoteles taught us that a system is more than the sum of its components. You need your
own maintained handout for problem solving at full-system level.

C.1. Inspecting the State of MARS
For manual inspection, please prefer the new marsadm view all over the old marsadm
view-1and1 all. It shows more appropriate / detailed information.

watch marsadm view a l l

Checking the low-level network connections at runtime:

watch " ne t s t a t −−tcp | grep 777"

Meaning of the port numbers (current default as configured into the kernel module, may change
in future):

• 7776 = prosumer device traffic (realtime requirements, only at new MARS versions)

• 7777 = metadata / symlink propagation (low traffic)

• 7778 = transfer of transaction logfiles (load dependent)

• 7779 = transfer of fast-fullsync traffic (only when fast-fullsync is running)

7777 must be always active on a healthy cluster. All others will appear only on demand, when
resources are configured accordingly and/or when some data is transferred.

Hint: when one of the columns Send-Q or Recv-Q are constantly at high values, you might
have a network bottleneck.

When unsure or desperate: check that at least the server-part sockets 7777 to 7779 are
always present after modprobe mars and in state LISTEN, e.g. via

ne t s t a t −lp −−tcp | grep 777

Hint: I have seen strange incidents where somebody else had occupied some of these server
sockets via some bugs in some userspace scripts. There might be other network-level problems,
e.g. network hardware has firmware bugs, or when network devices are misconfigured, or when
some strange firewalling rules are kicking in, etc. Or even trivial problems, like electrical
problems, faulty cables or contacts, bad temperatures, humidity, etc.

106

C.2. Replication is unexpectedly Stuck

C.2. Replication is unexpectedly Stuck
Indications for a stuck:

• marsadm view all displays some human-readable warnings containing the keywords age
or hint and some hours:minutes:seconds numbers.

• Other warnings containing the keyword error and some errno code / text (see man errno
but notice that the Linux kernel uses negative numbers in place of positives). You need
to read and understand the meaning of these errno numbers in the context of you Linux
version and mars.ko.

• One of the flags shown by marsadm view all or marsadm view-flags all contain a
symbol "-" (dash). This means that some switch is currently switched off (deliberately).
Please check whether there is a valid reason why somebody else switched it off. If the
switch-off is just by accident, use the following command to fix the stuck:

marsadm up a l l

(or replace all by a particular resource name if you want to start only a specific one).
Note: up is equivalent to the sequence attach; resume-fetch; resume-replay;
resume-sync. Instead of switching each individual knob, use up as a shortcut for switch-
ing on anything which is currently off.

• netstat --tcp | grep 777 does not show anything. Please check the following:

– Is the kernel module loaded? Check lsmod | grep mars. When necessary, run
modprobe mars.

– Is the network interface down? Check ifconfig, and/or ethtool and friends, and
fix it when necessary. Use journalctl -k to detect any potential kernel messages,
such as network driver problems.

– Is a ping <partner-host> possible? If not, fix the network / routing / firewall /
etc. When fixed, the MARS connections should automatically appear after about 1
minute.

– When ping is possible, but a MARS connection to port 7777 does not appear after a
few minutes, try to connect to remote port 7777 by hand via telnet. But don’t type
anything, just abort the connection immediately when it works! Typing anything
will almost certainly throw a harsh error message at the other server, which could
unnecessarily alert other people.

• Check whether marsadm view all shows some progress bars somewhere. Example:

i s t o r e −te s t−bap1:~# marsadm view a l l
−−−−−−−−− re sou r c e lv−0
lv−0 OutDated [F] PausedReplay dCAS−R Secondary i s t o r e −te s t−bs1

r ep l ay ing : [>] 1.21% (12/1020)MiB
l og s : [2 . . 3]

> f e t ch : 1008.198 MiB ra t e : 0 B/ sec
remaining : −−:−−:−− hrs

> rep lay : 0 B ra t e : 0 B/ sec remaining : 00 : 00 : 00 hrs

At least one of the rate: values should be greater than 0. When none of the rate: values
indicate any progress for a longer time, try marsadm up all again. If it doesn’t help, check
and repair the network. If even this does not help, check the hardware for any IO hangups,
or kernel hangups via journalctl and sisters. Check the RAID controllers. Often (but
not certainly), a stuck kernel can be recognized when many processes are permanently
in state "D", for a long time: ps ax | grep " D" | grep -v grep or similar. Please
check whether there is just an overload, or really a true kernel problem. Discrimination
is not easy, and requires experience (as with any other system; not limited to MARS).
A truly stuck kernel can only be resurrected by rebooting. The same holds for many
hardware problems.

107

C. HISTORIC Guide for Midnight Problem Solving

• Check whether marsadm view all reports any lines like WARNING: SPLIT BRAIN at ”
detected. In such a case, check that there is really a split brain, before obeying the
instructions in section C.4. Notice that network outages or missing marsadm cron may
continue to report an old split brain which has gone in the meantime.

• Check whether /mars/ is too full. For a rough impression, df /mars/ may be used. For
getting authoritative values as internally used by the MARS emergency-mode computa-
tions, use marsadm view-rest-space (the unit is GiB). In practice, the differences are
only marginal, at least on bigger /mars/ partitions. When there is only few rest space
(or none at all), please obey the instructions in section C.3.

• Check journalctl -k specifically for any kernel-level problems.

C.3. Standard Resolution of Emergency Mode and Split
Brain

Emergency mode occurs when /mars/ runs out of space, such that no new logfile data can be
written anymore.
In emergency mode, the primary will write any write requests directly to the underlying disk,

as if MARS were not present at all. Thus, your application will continue to run. Only the
replication as such is stopped.
Notice: emergency mode means that your secondary nodes are usually in a consistent, but

outdated state (exception: when a sync was running in parallel to the emergency mode, then
the sync will be automatically started over again). You can check consistency via marsadm
view-flags all. Only when a local disk shows a lower-case letter "d" instead of an uppercase
"D", it is known to be inconsistent (e.g. during a sync). When there is a dash instead, it
usually means that the disk is detached or misconfigured or the kernel module is not started.
Please fix these problems first before believing that your local disk is unusable. Even if it is
really inconsistent (which is very unlikely, typically occurring only as a consequence of hardware
failures, or of the above-mentioned exception), you have a big chance to recover most of the
data via fsck and friends.
A currently existing emergency mode can be detected by

primary:~# marsadm view−i s−emergency a l l
secondary :~# marsadm view−i s−emergency a l l

Notice: this delivers the current state, telling nothing about the past.
Emergency mode may also show something like WARNING: SPLIT BRAIN at ” detected be-

cause both problems may sometimes appear in combination. Anyway, the standard resolution
process is equal.
Preconditions:

• The networkmust be working. Check that the following gives an entry for each secondary:

primary:~# ne t s t a t −−tcp | grep 7777

When necessary, fix the network first (see instructions above).

• The hardware must be healthy, and any RAID subsystems should not be in any degraded
state

It is your operational decision whether to prefer relatively fast RAID rebuild after
handover of any primary to some secondary and/or pausing some secondary-side IO for
some time, or whether you drastically increase the TTR = Time To Repair by loading
your RAID unnecessarily.

MARS is constructed for working “almost as best as possible” even on slow IO systems
and over slow networks, but do not expect miracles. The laws of physics are stronger than
any human expectations!

108

C.4. Alternative Resolution of Split Brain / Emergency Mode / Defective Hardware

Emergency mode should now be resolved, e.g. by checking marsadm view all, and/or via
commands like

primary:~# marsadm view−i s−emergency a l l
primary:~# du −s /mars/ resource −∗ | s o r t −n

Remember the affected resource names and their logfile storage size. Do not invalidate
on any non-SPLIT_BRAIN or non-Emergency resources. Do not invalidate at the target where
you might need to failover somewhen in the next time! It is your responsible operational
decision which resource on which secondary host you want to repair via invalidate at a certain
point in time!

Be aware of the officially documented fact that marsadm invalidate (similarly to
drbdadm invalidate) will make your secondary replica Inconsistent until the following fast-
fullsync has successfully finished!

Depending on operational strategies for certain use cases and/or hardware defects and/or
load situations etc, it might be better to wait some (relatively short) time to start marsadm
invalidate later.
Once you have decided to use invalidate on certain resources, best practice is to start with

the biggest resource as shown by du -s /mars/resource-* | sort -n in reverse order:

secondary1 :~# marsadm inv a l i d a t e <res1>
secondary1 :~# marsadm view <res1>
primary:~# marsadm cron

Typical non-overloaded servers allow you to invalidate about 3 to 5 (or sometimes(!) even
tens of) resources in parallel, but highly overloaded machines may require marsadm pause-sync
$some_resource for load reduction. When more resources are affected by SPLIT BRAIN,
regularly check whether df /mars/ shows enough space to wait some time until you need to
invalidate more resources according to du -s /mars/resource-* | sort -n .
Hint: during the resolution process, some other resources might have gone into emergency

mode concurrently. In addition, it is possible that some secondaries are stuck at particular
resources while the corresponding primary has not yet entered emergency mode. Please repeat
the steps in such a case, and look for any emergency modes at secondaries additionally. When
necessary, extend your list of affected resources and/or secondary hosts.
Hint: be patient. Deleting large bulks of logfile data may take a long time, at least on highly

loaded systems. You should give the cleanup processes at least 5 minutes before concluding that
marsadm invalidate followed by primary-side marsadm cron had no effect! When unsure, use
marsadm cron at all cluster nodes, even when seemingly unaffected.

Notice: neither a secondary-side marsadm invalidate can be noticed by the current
primary side, nor marsadm cron can work fully when the metadata update over port 7777 is
extremely slow, or when it does not work for whatever reason. Check your replication speed!
In very complex scenarios, when the primary roles of different resources are spread over diffent

hosts (aka mixed operation), you may need to repeat the whole cycle iteratively for a few cycles
until the complex jam is fully resolved in the full Distributed System.
If it does not disappear fully, you have another chance by the following split-brain and

emergency-mode resolution process:

C.4. Alternative Resolution of Split Brain / Emergency
Mode / Defective Hardware

Hint: in most cases, the resolution of emergency mode and/or split brain via marsadm
invalidate (plus some additional marsadm cron) should resolve practically almost everything,

109

C. HISTORIC Guide for Midnight Problem Solving

at least when done in the right order and on the right hosts / their resources. However, it cannot
always work miracles on certain types of defective hardware.
Here is a more capable but more complex alternative, typically useful in complex failure

scenarios, e.g. after cascading disasters & co and after the hardware + software + network
had been repaired successfully.

The following can only work when the original content of /mars/ has survived your
incident. Otherwise, you may need a variant of this method as explained later, and probably
you should not do this at midnight. Read this completely and understand it, before starting
any action!

Never run MARS inside of VMs, see architecture-guide-geo-redundancy.pdf. If
you do so anyway, or if you place MARS on top of some LV snapshot(s) or similar, you are
running a high risk: any restore of an old snapshot affecting the content of /mars/ and/or of
some underlie resource disk / underlying LV and/or its content can provoke a disaster!

That said, the following method often works when the underlying resource data had been
somewhat damaged or even lost at some(!) of the replicas (due to the incident), but /mars/
has survived and the storage is operational again. For exampley, any defective RAID disks have
been already replaced and the underlying RAID is now rebuilt and no longer is in degraded
RAID mode – check your RAID first!
Precondition: the hardware + software + network must be working, and any RAID is no

longer degraded. Check that the following gives an entry for each secondary:

primary:~# ne t s t a t −−tcp | grep 7777

When necessary, fix the network first (see instructions above). Be sure the hardware and any
RAID is fully operational.
Inspect the split brain situation:

primary:~# marsadm view a l l
primary:~# du −s /mars/ resource −∗ | s o r t −n

Remember those resources where a message like WARNING: SPLIT BRAIN at ” detected ap-
pears. Do the following only for affected resources, starting with the biggest one (before pro-
ceeding to the next one).
Do the following with only one resource at a time (before proceeding to the next one), and

repeat the actions on that resource at every secondary (if there are multiple secondaries):

secondary1 :~# marsadm leave−re sou r c e $re s1

ONLY WHEN some secondaries are FINALLY LOST FOREVER and WILL NEVER
RE-APPEAR like a “zombie”, try the following instead:

a l t e r na t i v e −secondory−or−primary:~# marsadm leave−re sou r c e $re s1 \
−−f o r c e −−host=$de fect ive_secondary1

Check whether the split brain has vanished everywhere, and the replication is actually work-
ing on any non-stucked secondary. Startover with other resources at their secondaries when
necessary.
Finally, when no split brain is reported at any (former) secondary, do the following on the

primary:

primary:~# marsadm cron
primary:~# s l e ep 30
primary:~# marsadm view a l l

Now, any split brain and/or emergency mode should be gone even at the primary. If not, repeat
this step (and some of the previous ones).
In case even this should fail on some $res (which is very unlikely), read the PDF manual

before using marsadm log-purge-all $res.

110

C.5. Handover of Primary Role

ONLY WHEN some secondary had been FINALLY LOST FOREVER: before running
marsadm join-cluster on any new replacement hardware where /mars/ is initially empty,
you should first remove the old hardware from the cluster:

a l t e r na t i v e −secondary−or−primary:~# marsadm leave−c l u s t e r \
−−f o r c e −−host=$de fect ive_secondary1

ONLY WHEN a former primary had been LOST FOREVER: before you can forcibly
remove a defective primary as described above, you must first decide which surving secondary
will be the surviving new primary, and you need a successful failover as described in section
C.6 Failover = Emergency Switch of Primary Role.

Do not forget to ensure that suchalike zombies cannot “resurrect” by itself! Read
all relevant parts of this manual!
Finally, when the split brain + emergency mode is gone everywhere, rebuild the redundancy

at every (newly deployed fully, including marsadm join-cluster) secondary host via

secondary1 :~# marsadm jo in−re sou r c e $re s1 /dev/<lv−x>/$re s1

Here is the LAST RESORT if you are completely desperate, and if even the previous methods
did not help after multiple attempts, and when you are sure that a hardware / software /
kernel / etc upgrade / downgrade cannot help: setup the whole cluster afresh by rmmod mars
everywhere, and creating a fresh /mars/ filesystem everywhere, followed by the same procedure
as installing MARS for the first time (which is outside the scope of this guide).

C.5. Handover of Primary Role
When there exists a reliable method for primary handover in higher layers such as cluster
managers, please prefer that method (e.g. cm3 or other tools).
If suchalike doesn’t work, or if you need to handover some resource $res1 by hand, do the

following:

• Stop the any customer network traffic first. This is important for overload prevention,
and for security reasons, and for minimization of any potential split brain data in case of
any failures (see also the famous CAP theorem).

• Stop the load / application processes corresponding to $res1 on the old primary side.

• umount /dev/mars/$res1, or otherwise close any openers such as iSCSI.

Do not skip this step: otherwise a handover (not to be confused with failover) is
not possible.

When umount & co does not work for whatever reason: then it is your responsible
operational decision whether you want to (a) restart the full application stack again at
the old primary side (via whatever method, including reboot), or (b) accept a potential
split brain and its potential redundancy loss, and proceed with section C.6 Failover =
Emergency Switch of Primary Role.

Informed operational decisions can be supported by familiarity with the famous CAP
theorem.

• At the new primary: marsadm primary $res1

• Restart the application at the new site (in reverse order to above). In case you want to
switch all resources which are not yet at the new side, you cautiously may use marsadm
primary all.

111

C. HISTORIC Guide for Midnight Problem Solving

When overload of the new primary side is possible, e.g. when the kernel caches
are cold, it is your operational decision whether to (a) handover all resources in parallel
(which is a tested functionality of MARS), or (b) to avoid overload caused by applications,
initiate a sequential handover resource-by-resource, obeying that the new primary side
often needs to have warmed its kernel caches sufficiently in order to meet your SLAs.

Important: by definition, handover is not an emergency operation like failover is. It
is your operational decision how many resources you want to handover from any location
X to any other location Y in whatever parallelism degree. Do not blame MARS if doesn’t
run faster than a local reboot and its inevitable cache warming phases.

• Finally, check that the network is up again (e.g. BGP) and that everything is running
fine at the new location (from a customer’s perspective).

C.6. Failover = Emergency Switch of Primary Role
Failover = emergency switching is necessary when your primary is no longer reachable over the
network for a longer time, or when the hardware is defective.

Do not blame MARS for anything which is outside its scope residing at kernel level.
Whether and when a failover is needed for whatever reason, and in which parallelism degree,
is clearly outside the scope of a component like MARS is. The same would be true for DRBD
in place of MARS.

Failover = emergency switching will often lead to a split brain, see the famous CAP
theorem. It may require manual actions to resolve (see above), depending on your type of
automation and its automation degree, and depending on themanagement-level risks caused
by improper automation and/or bugs / misinformation / influences from the famous CAP
theorem in whatever higher-level component.

Therefore, try to avoid failover = emergency switching when possible!
Hint: MARS can automatically recover after a primary crash / reboot, as well as after secondary
crashes, just by executing modprobe mars after /mars/ had been mounted. Please consider to
wait until your system comes up again, instead of risking a split brain.
The decision between failover = emergency switching and continuing operation at the same

primary side is an operational one. MARS can support your decision by the following informa-
tion at the potentially new primary side (which was in secondary mode before):

i s t o r e −te s t−bap1:~# marsadm view a l l
−−−−−−−−− re sou r c e lv−0
lv−0 InCons i s t ent Syncing dcAsFr Secondary i s t o r e −te s t−bs1
sync ing : [==== >] 27.84% (567/2048)MiB ra t e : 72583.00 KiB/ sec remaining : 00 : 00 : 20 hrs
> sync : 567.293/2048 MiB ra t e : 72583 KiB/ sec remaining : 00 : 00 : 20 hrs
r ep l ay ing : [> : : : : : : : : : : : : : : : : : : :] 0.00% (0/12902)KiB l o g s : [1 . . 1]
> f e t ch : 0 B ra t e : 38 KiB/ s remaining : 00 : 00 : 00
> rep lay : 12902.047 KiB ra t e : 0 B/ s remaining : −−:−−:−−

When your target is syncing (like in this example), you cannot switch to it (same as with
DRBD). When you had an emergency mode before, you should first resolve that (whenever
possible). When a split brain is reported, try to resolve it first (same as with DRBD). Only
in case you know that the primary is really damaged, or it is really impossible to the run the
application there for some reason, failover = emergency switching is desirable for typical use
cases like webhosting or cloud computing (see architecture-guide-geo-redundancy.pdf).
Hint: in case the secondary is inconsistent for some reason, e.g. because of an incremental

fast full-sync, you have a last chance to recover most data after forceful switching by using a
filesystem check or suchalike. This might be even faster than restoring data from the backup.
But use suchalike only if you are really desperate and have no other chance!

112

C.6. Failover = Emergency Switch of Primary Role

The amount of data which is known to be missing at your secondary is displayed by marsadm
view all after the > fetch: in human-readable form. However, in cases of networking prob-
lems this information may be outdated.

You always need to consider further facts which cannot be known by MARS.
When there exists a method for failover = emergency switching of the primary in higher

layers such as cluster managers, please prefer that method in front of the following one.
If suchalike doesn’t work, or when a handover attempt has failed several times, or if you

really need forceful switching of some resource $res1 by hand, you can do the following:

• When possible, stop the customer network traffic + application corresponding to $res1
on the old primary side.

• When possible, umount /dev/mars/$res1, or otherwise close any openers such as iSCSI.

• When possible (if you have some time), wait until as much data has been propagated to
the new primary as possible (watch the fetch: indicator).

• At the new primary: marsadm pause-fetch $res1; marsadm primary --force $res1

• Restart the application at the new site (in reverse order to above).

• Check that everything is up again (e.g. BGP and customer traffic etc) and that everything
is running fine at the new location (from a customer’s perspective).

• After the application is known to run reliably, check for split brains at MARS level and
cleanup them when necessary.

113

D. HISTORICAL Methods for Split
Brain Resolution

HISTORICAL / DO NOT USE ANYMORE: Instead of marsadm invalidate, the following
steps may be used. In preference, start with the old “wrong” primaries first:

1. marsadm leave-resource mydata

2. After having done this on one cluster node, check whether the split brain is already
gone (e.g. by saying marsadm view mydata). There are chances that you don’t need
this on all of your nodes. Only in very rare1 cases, it might happen that the preceding
leave-resource operations were not able to clean up all logfiles produced in parallel by
the split brain situation.

3. Read the documentation about log-purge-all (see page 59) and use it.

4. If you want to restore redundancy, you can follow-up a join-resource phase to the old
resource name (using the correct device name, double-check it!) This will restore your
redundancy by overwriting your bad split brain version with the correct one.

It is important to resolve the split brain before you can start the join-resource recon-
struction phase! In order to keep as many “good” versions as possible (e.g. for emergency cases),
don’t re-join them all in parallel, but rather start with the oldest / most outdated / worst /
inconsistent version first. It is recommended to start the next one only when the previous one
has successfully finished.

1When your network had partitioned in a very awkward way for a long time, and when your partitioned pri-
maries did several cron operations indendently from each other, there is a small chance that leave-resource
does not clean up all remains of such an awkward situation. Only in such a case, try log-purge-all.

114

E. Alternative De- and Reconstruction
of a Damaged Resource

In case leave-resource --host= does not work, you may use the following fallback. On the
surviving new designated primary, give the following commands:

1. marsadm disconnect-all mydata

2. marsadm down mydata

3. Check by hand whether your local disk is consistent, e.g. by test-mounting it readonly,
fsck, etc.

4. marsadm delete-resource mydata

5. Check whether the other vital cluster nodes don’t report the dead resource any more, e.g.
marsadm view all at each of them. In case the resource has not disappeared anywhere
(which may happen during network problems), do the down ; delete-resource steps
also there (optionally again with --force).

6. Be sure that the resource has disappeared everywhere. When necessary, repeat the
delete-resource with --force.

7. marsadm create-resource newmydata ... at the correct node using the correct disk de-
vice containing the correct version, and further steps to setup your resource from scratch,
preferably under a different name to minimize any risk.

In any case, manually check whether a split brain is reported for any resource on any of your
surviving cluster nodes. If you find one there (and only then), please (re-)execute the split
brain resolution steps on the affected node(s).

115

F. Cleanup in case of Complicated
Cascading Failures

MARS does its best to recover even from multiple failures (e.g. rolling disasters). Chances
are high that the instructions from sections 3.3 3.4 or appendix D E will work even in case of
multiple failures, such as a network failure plus local node failure at only 1 node (even if that
node is the former primary node).
However, in general (e.g. when more than 1 node is damaged and/or when the filesystem

/mars/ is badly damaged) there is no general guarantee that recovery will always succeed under
any (weird) circumstances. That said, your chances for recovery are very high when some disk
remains usable at least at one of your surviving secondaries.

It should be very hard to finally trash a secondary, because the transaction logfiles are
containing md5 checksums for all data records. Any attempt to replay corrupted logfiles is
refused by MARS. In addition, the sequence numbers of rotated logfiles (e.g. via cron) are
checked for contiguity. Finally, the sequence path of logfile applications (consisting of logfile
names plus their respective length) is additionally secured by a git-like incremental checksum
over the whole path history (so-called “version links”). This should detect split brains even if
logfiles are appended / modified after a (forceful) switchover has already taken place.

That said, your risk of final data loss is very high if you remove the BBU from your
hardware RAID controller before all hot data has been flushed to the physical disks. Therefore,
never try to “repair” a seemingly dead node before your replication is up again somewhere else!
Only unplug the network cables when advised, but never try to repair the hardware instantly!
In case of desperate situations where none of the previous instructions have succeeded, your

last chance is rebuilding all your resources from intact disks as follows:

1. Do rmmod mars on all your cluster nodes and/or reboot them. Note: if you are less
desperate, chances are high that the following will also work when the kernel module
remains active and everywhere a marsadm down is given instead, but for an ultimate
instruction you should eliminate potential kernel problems by rmmod / reboot, at least if
you can afford the downtime on concurrently operating resources.

2. For safety, physically remove the storage network cables on all your cluster nodes. Note:
the same disclaimer holds. MARS really does its best, even when delete-resource is
given while the network is fully active and multiple split-brain primaries are actively using
their local device in parallel (approved by some testcases from the automatic test suite,
but note that it is impossible to catch all possible failure scenarios). Don’t challenge your
fate if you are desperate! Don’t rely on this! Nothing is absolutely fail-safe!

3. Manually check which surviving disk is usable, and which is the “best” one for your
purpose.

4. Do modprobe mars only on that node. If that fails, rmmod and/or reboot again, and start
over with a completely fresh /mars/ partition (mkfs.ext4 /mars/ or similar) everywhere
on all cluster nodes, and continue with step 7.

5. If your old /mars/ works, and you did not already (forcefully) switch your designated
primary to the final destination, do it now (see description in section 3.2.2). Wait until
any old logfile data has been replayed.

6. Say marsadm delete-resource mydata --force. This will cleanup all internal symlink
tree information for the resource, but will leave your disk data intact.

116

7. Locally build up the new resource(s) as usual, out of the underlying disks.

8. Check whether the new resource(s) work in standalone mode.

9. When necessary, repeat these steps with other resources.

Now you can choose how the rebuild your cluster. If you rebuilt /mars/ anywhere, you must
rebuild it on all new cluster nodes and start over with a fresh join-cluster on each of them,
from scratch. It is not possible to mix the old cluster with the new one.

10. Finally, do all the necessary join-resources on the respective cluster nodes, according to
your new redundancy scenario after the failures (e.g. after activating spare nodes, etc). If
you have k > 2 replicas, start join-resource on the worst / most damaged version first,
and start the next preferably only after the previous sync has completed successfully. This
way, you will be permanently retaining some (old and outdated, but hopefully potentially
usable) replicas while a sync is running. Don’t start too many syncs in parallel.

Never use delete-resource twice on the same resource name, after you have already a
working standalone primary1. You might accidentally destroy your again-working copy! You
can issue delete-resource multiple times on different nodes, e.g. when the network has
problems, but doing so after re-establishment of the initial primary bears some risk. Therefore,
the safest way is first deleting the resources everywhere, and then starting over afresh.
Before re-connecting any network cable on any non-primary (new secondaries), ensure that all

/dev/mars/mydata devices are no longer in use (e.g. from an old primary role before the incident
happened), and that each local disk is detached. Only after that, you should be able to safely
re-connect the network. The delete-resource given at the new primary should propagate now
to each of your secondaries, and your local disk should be usable for a re-join-resource.

When you did not rebuild your cluster from scratch with fresh /mars/ filesystems, and
one of the old cluster nodes is supposed to be removed permanently, use leave-resource
(optionally with --host= and/or --force) and finally leave-cluster. After leave-cluster,
you must re-create the /mars filesystem.

1Of course, when you don’t have created the same resource anew, you may repeat delete-resource on other
cluster nodes in order to get rid of local files / symlinks which had not been propagated to other nodes
before.

117

G. Experts only: Special Trick
Switching and Rebuild

The following is a further alternative for experts who really know what they are doing. The
method is very simple and therefore well-suited for dealing with mass failures, e.g. power
blackout of whole datacenters.
In case a primary datacenter fails as a whole for whatever reason and you have a backup

datacenter, do the following steps in the backup datacenter:

1. Fencing step: by means of firewalling, ensure that the (virtually) damaged datacenter
nodes cannot be reached over the network. For example, you may place REJECT rules
into all of your local iptables firewalls at the backup datacenter. Alternatively / addition-
ally, you may block the routes at the appropriate central router(s) in your network.

2. Run the sequence marsadm disconnect all; marsadm primary --force all on all
nodes in the backup datacenter.

3. Restart your services in the backup datacenter (as far as necessary). Depending on your
network setup, further steps like switching BGP routes etc may be necessary.

4. Check that all your services are really up and running, before you try to repair anything!
Failing to do so may result in data loss when you execute the following restore method
for experts.

Now your backup datacenter should continue servicing your clients. The final reconstruction of
the originally primary datacenter works as follows:

1. At the damaged primary datacenter, ensure that nowhere the MARS kernel module is
running. In case of a power blackout, you shouldn’t have executed an automatic modprobe
mars anywhere during reboot, so you should be already done when all your nodes are up
again. In case some nodes had no reboot, execute rmmod mars everywhere. If rmmod
refuses to run, you may need to umount the /dev/mars/mydata device first. When
nothing else helps, you may just mass reboot your hanging nodes.

2. At the failed side, do rm -rf /mars/resource-$mydata/ for all those resources which
had been primary before the blackout. Do this only for those cases, otherwise you will
need unnecessary leave-resources or invalidates later (e.g. when half of your nodes
were already running at the surving side). In order to avoid unnecessary traffic, please
do this only as far as really necessary. Don’t remove any other directories. In particular,
/mars/ips/ must remain intact. In case you accidentally deleted them, or you had to
re-create /mars/ from scratch, try rsync with the correct options.

Caution! before doing this, check that the corresponding directory exists at the
backup datacenter, and that it is really healthy!

3. Un-Fencing: restore your network firewall / routes and check that they work (ping etc).

4. Do modprobe mars everywhere. All missing directories and their missing symlinks should
be automatically fetched from the backup datacenter.

5. Run marsadm join-resource $res, but only at those places where the directory was
removed previously, while using the same disk devices as before. This will minimize
actual traffic thanks to the fast full sync algorithm.

118

It is crucial that the fencing step must be executed before any primary --force! This
way, no split brain will be visible at the backup datacenter side, because there is simply no
chance for transferring different versions over the network. It is also crucial to remove any (po-
tentially diverging) resource directories before the modprobe! This way, the backup datacenter
never runs into split brain. This saves you a lot of detail work for split brain resolution when
you have to restore bulks of nodes in a short time.

In case the repair of a full datacenter should take so extremely long that some /mars/
partitions are about to run out of space at the surviving side, you may use the leave-resource
--host=failed-node trick described earlier, followed by cron. Best if you have prepared a fully
automatic script long before the incident, which executes suchalike only as far as necessary in
each individual case.

Even better: train such scenarios in advance, and prepare scripts for mass automation.
Look into section 6.4.

119

H. Creating Backups via Pseudo
Snapshots

When all your secondaries are all homogeneously located in a standby datacenter, they will be
almost idle all the time. This is a waste of computing resources.
Since MARS is no substitute for a full-fledged backup system, and since backups may put

high system load onto your active side, you may want to utilize your passive hardware resources
in a better way.
MARS supports this thanks to its ability to switch the pause-replay independently from

pause-fetch.
The basic idea is simple: just use pause-replay at your secondary site, but leave the repli-

cation of transaction logfiles intact by deliberately not saying pause-fetch. This way, your
secondary replica (block device) will stay frozen for a limited time, without loosing your re-
dundancy: since the transaction logs will continue to replicate in the meantime, you can start
resume-replay at any time, in particular when a primary-side incident should happen unex-
pectedly. The former secondary will just catch up by replaying the outstanding parts of the
transaction logs in order to become recent.
However, some details have to be obeyed. In particular, the current version of MARS needs

an additional detach operation, in order to release exclusive access to the underlying disk
/dev/lv/$res. Future versions of MARS are planned to support this more directly, without
need for an intermediate detach operation.

Beware: mount -o ro /dev/vg/$res can lead to unnoticed write operations if you
are not careful! Some journalling filesystems like xfs or ext4 may replay their journals onto
the disk, leading to binary differences and thus destroying your consistency later when you
re-enable resume-replay!

Therefore, you may use small LVM snapshots (only in such cases). Typically, xfs journal
replay will require only a few megabytes. Therefore you typically don’t need much temporary
space for this. Here is a more detailed description of steps:

1. marsadm pause-replay $res

2. marsadm detach $res

3. lvcreate --size 100m --snapshot --name ro-$res /dev/vg/$res

4. mount -o ro /dev/vg/ro-$res /mnt/tmp

5. Now draw your backup from /mnt/tmp/

6. umount /mnt/tmp

7. lvremove -f /dev/vg/ro-$res

8. marsadm up $res

Hint: during the backup, the transaction logs will accumulate on /mars/. In order to avoid
overflow of /mars/ (c.f. section 3.6), don’t unnecessarily prolong the backup duration.

120

I. Command Documentation for
Userspace Tools

I.1. marsadm --help

Thorough documentation is in mars-user-manual.pdf. Please use the PDF manual
as authoritative reference! Here is only a short summary of the most
important sub-commands / options:

marsadm [<global_options>] <command> [<resource_names> | all | <args>]
marsadm [<global_options>] view[-<macroname>] [<resource_names> | all]

<global_option> =
--force
Skip safety checks.
Use this only when you really know what you are doing!
Warning! This is dangerous! First try --dry-run.
Not combinable with ’all’.

--ignore-sync
Allow primary handover even when some sync is running somewhere.
This is less rude than --force because it checks for all else
preconditions.

--ignore-deleted-peers=<number>
0 = off
1 = only ignore deleted peers at reports (default)
2 = Only for EXPERTS. This may be dangerous.
Ignorance about the existence of a peer may be very harmful
in a Distributed System.

--dry-run
Don’t modify the symlink tree, but tell what would be done.
Use this before starting potentially harmful actions such as
’delete-resource’.

--verbose
Increase speakyness of some commands.

--parallel
Only reasonable when combined with "all".
For each resource, fork() a sub-process running independently
from other resources. May seepd up handover a lot.
However, several cluster managers are known to have problems
with a high parallelism degree (up to deadlocks).
Only use this after thorough testing in combination with your
whole operation stack!
Turns off --singlestep.

--parallel=<number>
Like --parallel, but limit the parallelism degree to the given
number of parallel processes.
Turns off --singlestep.

--singlestep
Debugging aid for multi-phase commands.
Interactively step through the various phases of commands.
Turns off --parallel.

121

I. Command Documentation for Userspace Tools

--error-injection-phase=<number>
Only for testing. NEVER use in production.

--delete-method=<code>
EXPERIMENTAL! Only for testing! This option will disappear again!
<code> == 0: Use new deletion method
<code> == 1: Use old deletion method
default is 1 for compatibility.

--logger=/path/to/usr/bin/logger
Use an alternative syslog messenger.
When empty, disable syslogging.

--max-deletions=<number>
When your network or your firewall rules are defective over a
longer time, too many deletion links may accumulate at
/mars/todo-global/delete-* and sibling locations.
This limit is preventing overflow of the filesystem as well
as overloading the worker threads.

--thresh-logfiles=<number>
--thresh-logsize=<number>
Prevention of too many small logfiles when secondaries are not
catching up. When more than thresh-logfiles are already present,
the next one is only created when the last one has at least
size thresh-logsize (in units of GB).

--timeout=<seconds>
Current default: 600
Abort safety checks and waiting loops after timeout with an error.
When giving ’all’ as resource argument, this works for each
resource independently.
The special value -1 means "infinite".

--window=<seconds>
Current default: 60
Treat other cluster nodes as healthy when some communication has
occurred during the given time window.

--stuck-seconds=<seconds>
Current default: 3600
Some warnings, like stucking fetch or replay, will appear in
"marsadm view" after this silence period.

--keep-backup-hours=<hours>
--keep-backups=<hours>
link-purge-all and cron will delete old backup files and old
symlinks after this number of hours.
Current default: 168

--threshold=<bytes>
Some macros like ’fetch-threshold-reached’ use this for determining
their sloppyness.

--systemd-enable=<0|1>
Enable / disable any systemd actions.
On by default.

--host=<hostname>
Act as if the command was running on cluster node <hostname>.
Warning! This is dangerous! First try --dry-run

--backup-dir=</absolute_path>
Only for experts.
Used by several special commands like merge-cluster, split-cluster
etc for creating backups of important data.

--ip-<peer>=<ip>
Override the IP address of <peer> from the symlink tree, or as determined
from old IP backups, or as determined from the list of network interfaces.
Usually you will need this only at ’create-cluster’ or

122

I.1. marsadm --help

’join-cluster’ / ’merge-cluster’ / ’split-cluster’ for resolving
ambiguities, or for telling the IP address of yet unknown peers.
It is also useful at ’lowlevel-set-host-ip’ for updating an
already existing IP address.
Hint: this option may be given multiple times for different <peer>
parts.

--ip=<ip>
Equivalent to --peer-$host=<ip>
where $host is usually the same as $(hostname), but you may
use --host=<hostname> as an _earlier_ argument for overriding
the default <hostname>.

--ssh-port=<port_nr>
Override the default ssh port (22) for ssh and rsync.
Useful for running {join,merge}-cluster on non-standard ssh ports.

--no-ssh
Equivalent to --ssh-port=0
Disable ssh and rsync completely.
Dead peers / interrupted networks / firewalling may lead to (temporary)
hangs of ssh probes, which are used by default for backwards compatibility.
Hint: ssh_config options like ConnectTimeout may also help.
Use this to disable any probes, and no time loss.

--ssh-opts="<ssh_commandline_options>"
Override the default ssh commandline options. Also used for rsync.

--macro=<text>
Handy for testing short macro evaluations at the command line.

<hostname> =
[a-z][-a-z0-9]*
with the exception of reserved names: none|all|any|full|empty|undefined|remote|local|localhost

<command> =
activate-guest
usage: activate-guest <resource_name>
Conditional update-cluster, so that <resource_name> will be locally
known at the local machine, and mark the resource as a guest.
Useful inbetween create-resource and join-resource.
A guest will receive any symlink updates much more frequently.
Prefer this over update-cluster when interested in a resource.

attach
usage: attach <resource_name>
Attaches the local disk (backing block device) to the resource.
The disk must have been previously configured at
{create,join}-resource.
When designated as a primary, /dev/mars/$res will also appear.
This does not change the state of {fetch,replay}.
For a complete local startup of the resource, use ’marsadm up’.

cat
usage: cat <path>
Print internal debug output in human readable form.
Numerical timestamps and numerical error codes are replaced
by more readable means.
Example: marsadm cat /mars/5.total.status

connect
usage: connect <resource_name>
See resume-fetch-local.

123

I. Command Documentation for Userspace Tools

connect-global
usage: connect-global <resource_name>
Like resume-fetch-local, but affects all resource members
in the cluster (remotely).

connect-local
usage: connect-local <resource_name>
See resume-fetch-local.

create-cluster
usage: create-cluster (no parameters)
This must be called exactly once when creating a new cluster.
Don’t call this again! Use join-cluster on the secondary nodes.
Please read the PDF manual for details.

create-resource
usage: create-resource <resource_name> </dev/lv/mydata>
(further syntax variants are described in the PDF manual).
Create a new resource out of a pre-existing disk (backing
block device) /dev/lv/mydata (or similar).
The current node will start in primary role, thus
/dev/mars/<resource_name> will appear after a short time, initially
showing the same contents as the underlying disk /dev/lv/mydata.
It is good practice to name the resource <resource_name> and the
disk name identical.

cron
usage: cron (no parameters)
Do all necessary regular housekeeping tasks.
This must be regularly called by a cron job or similar, in order
to prevent overflow of the /mars/ directory.
For details and best practices, please refer to the PDF manual.

deactivate-guest
usage: deactivate-guest <resource_name>
Precondition: the resource must not have local storage assigned.
Useful for cleaning up a pure guest relastionship.

delete-resource
usage: delete-resource <resource_name>
CAUTION! This is dangerous when the network is somehow
interrupted, or when damaged nodes are later re-surrected
in any way.

Precondition: the resource must no longer have any members
(see leave-resource).
This is only needed when you _insist_ on re-using a damaged
resource for re-creating a new one with exactly the same
old <resource_name>.
HINT: best practice is to not use this, but just create a _new_
resource with a new <resource_name> out of your local disks.
Please read the PDF manual on potential consequences.

detach
usage: detach <resource_name>
Detaches the local disk (backing block device) from the
MARS resource.

124

I.1. marsadm --help

Caution! you may read data from the local disk afterwards,
but ensure that no data is written to it!
Otherwise, you are likely to produce harmful inconsistencies.
When running in primary role, /dev/mars/$res will also disappear.
This does not change the state of {fetch,replay}.
For a complete local shutdown of the resource, use ’marsadm down’.

disconnect
usage: disconnect <resource_name>
See pause-fetch-local.

disconnect-global
usage: disconnect-global <resource_name>
Like pause-fetch-local, but affects all resource members
in the cluster (remotely).

disconnect-local
usage: disconnect-local <resource_name>
See pause-fetch-local.

down
usage: down <resource_name>
Shortcut for detach + pause-sync + pause-fetch + pause-replay.

err-purge-all
usage: err-purge-all <resource_name>
Remove any err message from the given resources.

get-emergency-limit
usage: get-emergency-limit <resource_name>
Counterpart of set-emergency-limit (per-resource emergency limit)

get-global-sync-limit-value
usage: get-sync-limit-value (no parameters)
For retrieval of the value set by set-global-sync-limit-value.

get-systemd-unit
usage: get-systemd-unit <resource_name>
Show the system units (for start and stop), or empty when unset.

get-systemd-want
usage: get-systemd-want <resource_name>
Show the current hostname where the complete systemd unit stack
between start- and stop-unit should appear.
Reports empty when unset, or "(none)" when stopped.

invalidate
usage: invalidate <resource_name>
Only useful on a secondary node.
Forces MARS to consider the local replica disk as being
inconsistent, and therefore starting a fast full-sync from
the currently designated primary node (which must exist;
therefore avoid the ’secondary’ command).
This is usually needed for resolving emergency mode.
When having k=2 replicas, this can be also used for
quick-and-simple split-brain resolution.
In other cases, or when the split-brain is not resolved by
this command, please use the ’leave-resource’ / ’join-resource’

125

I. Command Documentation for Userspace Tools

method as described in the PDF manual (in the right order as
described there).

join-cluster
usage: join-cluster <hostname_of_primary>
Establishes a new cluster membership.
This must be called once on any new cluster member.
This is a prerequisite for join-resource.

join-resource
usage: join-resource <resource_name> </dev/lv/mydata>
(further syntax variants are described in the PDF manual).
The resource <resource_name> must have been already created on
another cluster node, and the network must be healthy.
The contents of the local replica disk /dev/lv/mydata will be
overwritten by the initial fast full sync from the currently
designated primary node.
After the initial full sync has finished, the current host will
act in secondary role.
For details on size constraints etc, refer to the PDF manual.

leave-cluster
usage: leave-cluster (no parameters)
This can be used for final deconstruction of a cluster member.
Prior to this, all resources must have been left
via leave-resource.
Notice: this will never destroy the cluster UID on the /mars/
filesystem.
Please read the PDF manual for details.

leave-resource
usage: leave-resource <resource_name>
Precondition: the local host must be in secondary role.
Stop being a member of the resource, and thus stop all
replication activities. The status of the underlying disk
will remain in its current state (whatever it is).

link-purge-all
usage: link-purge-all <resource_name>
Remove any .deleted links.

log-purge-all
usage: log-purge-all <resource_name>
This is potentially dangerous.
Use this only if you are really desperate in trying to resolve a
split brain. Use this only after reading the PDF manual!

lowlevel-delete-host
usage: lowlevel-delete-host <hostname>
Delete cluster member.

lowlevel-ls-host-ips
usage: lowlevel-ls-host-ips
List cluster member names and IP addresses.

lowlevel-set-host-ip
usage: lowlevel-set-host-ip <hostname> [<new_ip>]
Set IP address <new_ip> for host.

126

I.1. marsadm --help

When <new_ip> is not given, try to determine the old address
from the symlink tree, or from old backups.
Often, you want to set a new IP address in place of an old one.
Hint: you may also use the --ip-<hostname>=<new_ip> option.

merge-cluster
usage: merge-cluster <hostname_of_other_cluster> [<host_ip>]
Precondition: the resource names of both clusters must be disjoint.
Create the union of two clusters, consisting of the
union of all machines, and the union of all resources.
The members of each resource are _not_ changed by this.
This is useful for creating a big "virtual LVM cluster" where
resources can be almost arbitrarily migrated between machines via
later join-resource / leave-resource operations.

merge-cluster-check
usage: merge-cluster-check <hostname_of_other_cluster>
Check whether the resources of both clusters are disjoint.
Useful for checking in advance whether merge-cluster would be
possible.

merge-cluster-list
usage: merge-cluster-list
Determine the local list of resources.
Useful for checking or analysis of merge-cluster disjointness by hand.

pause-fetch
usage: pause-fetch <resource_name>
See pause-fetch-local.

pause-fetch-global
usage: pause-fetch-global <resource_name>
Like pause-fetch-local, but affects all resource members
in the cluster (remotely).

pause-fetch-local
usage: pause-fetch-local <resource_name>
Stop fetching transaction logfiles from the current
designated primary.
This is independent from any {pause,resume}-replay operations.
Only useful on a secondary node.

pause-replay
usage: pause-replay <resource_name>
See pause-replay-local.

pause-replay-global
usage: pause-replay-global <resource_name>
Like pause-replay-local, but affects all resource members
in the cluster (remotely).

pause-replay-local
usage: pause-replay-local <resource_name>
Stop replaying transaction logfiles for now.
This is independent from any {pause,resume}-fetch operations.
This may be used for freezing the state of your replica for some
time, if you have enough space on /mars/.
Only useful on a secondary node.

127

I. Command Documentation for Userspace Tools

pause-sync
usage: pause-sync <resource_name>
See pause-sync-local.

pause-sync-global
usage: pause-sync-global <resource_name>
Like pause-sync-local, but affects all resource members
in the cluster (remotely).

pause-sync-local
usage: pause-sync-local <resource_name>
Pause the initial data sync at current stage.
This has only an effect if a sync is actually running (i.e.
there is something to be actually synced).
Don’t pause too long, because the local replica will remain
inconsistent during the pause.
Use this only for limited reduction of system load.
Only useful on a secondary node.

primary
usage: primary <resource_name>
Promote the resource into primary role.
This is necessary for /dev/mars/$res to appear on the local host.
Notice: by concept there can be only _one_ designated primary
in a cluster at the same time.
The role change is automatically distributed to the other nodes
in the cluster, provided that the network is healthy.
The old primary node will _automatically_ go
into secondary role first. This is different from DRBD!
With MARS, you don’t need an intermediate ’secondary’ command
for switching roles.
It is usually better to _directly_ switch the primary roles
between both hosts.
When --force is not given, a planned handover is started:
the local host will only become actually primary _after_ the
old primary is gone, and all old transaction logs have been
fetched and replayed at the new designated priamry.
When --force is given, no handover is attempted. A a consequence,
a split brain situation is likely to emerge.
Thus, use --force only after an ordinary handover attempt has
failed, and when you don’t care about the split brain.
For more details, please refer to the PDF manual.

resize
usage: resize <resource_name>
Prerequisite: all underlying disks (usually /dev/vg/$res) must
have been already increased, e.g. at the LVM layer (cf. lvresize).
Causes MARS to re-examine all sizing constraints on all members of
the resource, and increase the global logical size of the resource
accordingly.
Shrinking is currently not yet implemented.
When successful, /dev/mars/$res at the primary will be increased
in size. In addition, all secondaries will start an incremental
fast full-sync to get the enlarged parts from the primary.

resume-fetch
usage: resume-fetch <resource_name>

128

I.1. marsadm --help

See resume-fetch-local.

resume-fetch-global
usage: resume-fetch-global <resource_name>
Like resume-fetch-local, but affects all resource members
in the cluster (remotely).

resume-fetch-local
usage: resume-fetch-local <resource_name>
Start fetching transaction logfiles from the current
designated primary node, if there is one.
This is independent from any {pause,resume}-replay operations.
Only useful on a secondary node.

resume-replay
usage: resume-replay <resource_name>
See resume-replay-local.

resume-replay-global
usage: resume-replay-global <resource_name>
Like resume-replay-local, but affects all resource members
in the cluster (remotely).

resume-replay-local
usage: resume-replay-local <resource_name>
Restart replaying transaction logfiles, when there is some
data left.
This is independent from any {pause,resume}-fetch operations.
This should be used for unfreezing the state of your local replica.
Only useful on a secondary node.

resume-sync
usage: resume-sync <resource_name>
See resume-sync-local.

resume-sync-global
usage: resume-sync-global <resource_name>
Like resume-sync-local, but affects all resource members
in the cluster (remotely).

resume-sync-local
usage: resume-sync-local <resource_name>
Resume any initial / incremental data sync at the stage where it
had been interrupted by pause-sync.
Only useful on a secondary node.

secondary
usage: secondary <resource_name>
Promote all cluster members into secondary role, globally.
In contrast to DRBD, this is not needed as an intermediate step
for planned handover between an old and a new primary node.
The only reasonable usage is before the last leave-resource of the
last cluster member, immediately before leave-cluster is executed
for final deconstruction of the cluster.
In all other cases, please prefer ’primary’ for direct handover
between cluster nodes.
Notice: ’secondary’ sets the global designated primary node
to ’(none)’ which in turn prevents the execution of ’invalidate’

129

I. Command Documentation for Userspace Tools

or ’join-resource’ or ’resize’ anywhere in the cluster.
Therefore, don’t unnecessarily give ’secondary’!

set-emergency-limit
usage: set-emergency-limit <resource_name> <value>
Set a per-resource emergency limit for disk space in /mars.
See PDF manual for details.

set-global-disabled-log-digests
usage: set-global-disabled-log-digests <features>
Tell the whole cluster which checksumming digests to disable globally
for the payload in transaction logfiles.
The effective value can be checked via "marsadm view-disabled-log-digests".
See "marsadm view-potential-features" and
"marsadm --help" for a list of digest feature names,
which must be separated by | symbols.

set-global-disabled-net-digests
usage: set-global-disabled-net-digests <features>
Tell the whole cluster which checksumming digests to disable globally
for cluster-wide data comparisons, like fast full-sync.
The effective value can be checked via "marsadm view-disabled-net-digests".
See "marsadm view-potential-features" and
"marsadm --help" for a list of digest feature names,
which must be separated by | symbols.

set-global-enabled-log-compressions
usage: set-global-enabled-log-compressions <features>
Tell the whole cluster which compression features to use globally
for logfile compression. The effective value can be checked via
"marsadm view-enabled-log-compressions".
See "marsadm view-potential-features" and
"marsadm --help" for a list of compression feature names,
which must be separated by | symbols.

set-global-enabled-net-compressions
usage: set-global-enabled-net-compressions <features>
Tell the whole cluster which compression features to use globally for
network transport compression. This is independent from log compression.
The effective value can be checked via
"marsadm view-enabled-log-compressions".
See "marsadm view-potential-features" and
"marsadm --help" for a list of compression feature names,
which must be separated by | symbols.

set-global-sync-limit-value
usage: set-sync-limit-value <new_value>
Set the maximum number of resources which should by syncing
concurrently.

set-systemd-unit
usage: set-systemd-unit <resource_name> <start_unit_name> [<stop_unit_name>]
This activates the systemd template engine of marsadm.
Please read mars-user-manual.pdf on this.
When <stop_unit_name> is omitted, it will be treated equal to
<start_unit_name>.
You may also use special keywords like DEFAULT, please read the manuals.

130

I.1. marsadm --help

set-systemd-want
usage: set-systemd-want <resource_name> <host_name>
Override the current location where the complete systemd unit stack
should be started.
Useful for a _temporary_ stop of the systemd unit stack by supplying
the special hostname "(none)".
For a _permanent_ stop, use "marsadm set-systemd-unit <resource>"
instead.

split-cluster
usage: split-cluster (no parameters)
NOT OFFICIALLY SUPPORTED - ONLY FOR EXPERTS.
RTFS = Read The Fucking Sourcecode.
Use this only if you know what you are doing.

systemd-trigger
usage: systemd-trigger [<resource>]

up
usage: up <resource_name>
Shortcut for attach + resume-sync + resume-fetch + resume-replay.

update-cluster
usage: update-cluster [<resource_name>]
Fetch all the links from all joined cluster hosts.
Use this between create-resource and join-resource.
NOTICE: this is extremely useful for avoiding races when scripting
in a cluster.

wait-cluster
usage: wait-resource [<resource_name>]
Waits until a ping-pong communication has succeeded in the
whole cluster (or only the members of <resource_name>).
NOTICE: this is extremely useful for avoiding races when scripting
in a cluster.

wait-connect
usage: wait-connect [<resource_name>]
See wait-cluster.

wait-resource
usage: wait-resource <resource_name>

[[attach|fetch|replay|sync][-on|-off]]
Wait until the given condition is met on the resource, locally.

wait-umount
usage: wait-umount <resource_name>
Wait until /dev/mars/<resource_name> has disappeared in the
cluster (even remotely).
Useful on both primary and secondary nodes.

<resource_names> = comma-separated list of resource names or "all" for all resources

<macroname> = <complex_macroname> | <primitive_macroname>

<complex_macroname> =
1and1

131

I. Command Documentation for Userspace Tools

comminfo
commstate
cstate
default
default-footer
default-global
default-header
default-resource
device-info
device-stats
diskstate
diskstate-1and1
dstate
fetch-line
fetch-line-1and1
flags
flags-1and1
outdated-flags
outdated-flags-1and1
primarynode
primarynode-1and1
replay-line
replay-line-1and1
replinfo
replinfo-1and1
replstate
replstate-1and1
resource-errors
resource-errors-1and1
role
role-1and1
state
status
sync-line
sync-line-1and1
syncinfo
syncinfo-1and1
todo-role

<primitive_macroname> =
configured-peers
count-configured-peers
count-{cluster,resource,guest}-members
deprecated

count-{cluster,resource,guest}-peers
count-{my,all}-{resources,members,guests}
deletable-size
device-{opened,nrflying,error,completion-{stamp,age}}
device-{ops-rate,amount-rate,rate}
disabled-{log|net}-digests
disk-error
enabled-{log|net}-compressions
errno-text
Convert errno numbers (positive or negative) into human readable text.

get-log-status
get-resource-{fat,err,wrn}{,-count}
get-{disk,device}

132

I.1. marsadm --help

global-sync-limit-value
is-{alive}
is-{member,guest}
is-{split-brain,consistent,emergency,orphan}
known-device-{mounted,mountpoint,fstype,mountflags}
occupied-size
present-{disk,device}
(deprecated, use *-present instead)

replay-basenr
replay-code
When negative, this indicates that a replay/recovery error has occurred.

resource-possible-size
summary-vector
systemd-unit
tree
used-{log,net}-{digest,compression}
uuid
wait-{is,todo}-{attach,sync,fetch,replay,primary,secondary}-{on,off}
writeback-rest
{alive,fetch,replay,work}-{timestamp,age,lag}
{all,the}-{pretty-,}{global-,}{{err,wrn,inf}-,}msg
{cluster,resource,guest}-peers
{cluster,resource}-members
deprecated

{disk,device}-present
{disk,resource,device}-size
{fetch,replay,work}-{lognr,logcount}
{get,actual}-primary
{implemented,usable}-{digests,compressions}
{is,todo,nr}-{attach,sync,fetch,replay,primary,secondary}
{my,all}-{resources,members,guests}
{potential,implemented,usable}-features
{rest,total}-space
{sync,fetch,replay,work,syncpos}-{size,pos}
{sync,fetch,replay,work}-{rest,{almost-,threshold-,}reached,percent,permille,vector}
{sync,fetch,replay}-{ops-rate,amount-rate,rate,remain}
{time,real-time}
{tree,features}-version

<features> =
CHKSUM_CRC32 |
CHKSUM_CRC32C |
CHKSUM_MD5 |
CHKSUM_MD5_OLD |
CHKSUM_SHA1 |
COMPRESS_LZ4 |
COMPRESS_LZO |
COMPRESS_ZLIB

133

J. GNU Free Documentation License

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation , Inc.
<http ://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document , but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual , textbook , or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it , either commercially or noncommercially.
Secondarily , this License preserves for the author and publisher a way
to get credit for their work , while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License , which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software , because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work , regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work , in any medium , that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world -wide , royalty -free license , unlimited in duration , to use that
work under the conditions stated herein. The "Document", below ,
refers to any such manual or work. Any member of the public is a
licensee , and is addressed as "you". You accept the license if you
copy , modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim , or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front -matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document ’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus , if the Document is in
part a textbook of mathematics , a Secondary Section may not explain
any mathematics .) The relationship could be a matter of historical
connection with the subject or with related matters , or of legal ,
commercial , philosophical , ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated , as being those of Invariant Sections , in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not

134

allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed ,
as Front -Cover Texts or Back -Cover Texts , in the notice that says that
the Document is released under this License. A Front -Cover Text may
be at most 5 words , and a Back -Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine -readable copy ,
represented in a format whose specification is available to the
general public , that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor , and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup , or absence of markup , has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque ".

Examples of suitable formats for Transparent copies include plain
ASCII without markup , Texinfo input format , LaTeX input format , SGML
or XML using a publicly available DTD , and standard -conforming simple
HTML , PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG , XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors , SGML or XML for which the DTD and/or
processing tools are not generally available , and the
machine -generated HTML , PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means , for a printed book , the title page itself ,
plus such following pages as are needed to hold , legibly , the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such , "Title Page" means
the text near the most prominent appearance of the work ’s title ,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below , such as "Acknowledgements",
"Dedications", "Endorsements", or "History ".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License , but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium , either
commercially or noncommercially , provided that this License , the
copyright notices , and the license notice saying this License applies
to the Document are reproduced in all copies , and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However , you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies , under the same conditions stated above , and
you may publicly display copies.

135

J. GNU Free Documentation License

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document , numbering more than 100, and the
Document ’s license notice requires Cover Texts , you must enclose the
copies in covers that carry , clearly and legibly , all these Cover
Texts: Front -Cover Texts on the front cover , and Back -Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers , as long as they preserve
the title of the Document and satisfy these conditions , can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly , you should put the first ones listed (as many as fit
reasonably) on the actual cover , and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine -readable Transparent
copy along with each Opaque copy , or state in or with each Opaque copy
a computer -network location from which the general network -using
public has access to download using public -standard network protocols
a complete Transparent copy of the Document , free of added material.
If you use the latter option , you must take reasonably prudent steps ,
when you begin distribution of Opaque copies in quantity , to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested , but not required , that you contact the authors of the
Document well before redistributing any large number of copies , to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above , provided that you release
the Modified Version under precisely this License , with the Modified
Version filling the role of the Document , thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition , you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers , if any) a title distinct
from that of the Document , and from those of previous versions
(which should , if there were any , be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page , as authors , one or more persons or entities
responsible for authorship of the modifications in the Modified
Version , together with at least five of the principal authors of the
Document (all of its principal authors , if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version , as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include , immediately after the copyright notices , a license notice

giving the public permission to use the Modified Version under the
terms of this License , in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document ’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title , and add

to it an item stating at least the title , year , new authors , and
publisher of the Modified Version as given on the Title Page. If

136

there is no section Entitled "History" in the Document , create one
stating the title , year , authors , and publisher of the Document as
given on its Title Page , then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location , if any , given in the Document for
public access to a Transparent copy of the Document , and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself , or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section , and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document ,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements ". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front -matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document , you may at your option designate some or all
of these sections as invariant. To do this , add their titles to the
list of Invariant Sections in the Modified Version ’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties --for example , statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front -Cover Text , and a
passage of up to 25 words as a Back -Cover Text , to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front -Cover Text and one of Back -Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover , previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one , on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License , under the terms defined in section 4 above for modified
versions , provided that you include in the combination all of the
Invariant Sections of all of the original documents , unmodified , and
list them all as Invariant Sections of your combined work in its
license notice , and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License , and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents , make the title of each such section unique by
adding at the end of it, in parentheses , the name of the original
author or publisher of that section if known , or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination , you must combine any sections Entitled "History"
in the various original documents , forming one section Entitled
"History "; likewise combine any sections Entitled "Acknowledgements",

137

J. GNU Free Documentation License

and any sections Entitled "Dedications ". You must delete all sections
Entitled "Endorsements ".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License , and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection , provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection , and
distribute it individually under this License , provided you insert a
copy of this License into the extracted document , and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works , in or on a volume of a storage or
distribution medium , is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation ’s users beyond what the individual works permit.
When the Document is included in an aggregate , this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document , then if the Document is less than one half of
the entire aggregate , the Document ’s Cover Texts may be placed on
covers that bracket the Document within the aggregate , or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification , so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders , but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License , and all the license notices in the
Document , and any Warranty Disclaimers , provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer , the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy , modify , sublicense , or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy , modify , sublicense , or distribute it is void , and
will automatically terminate your rights under this License.

However , if you cease all violation of this License , then your license
from a particular copyright holder is reinstated (a) provisionally ,
unless and until the copyright holder explicitly and finally
terminates your license , and (b) permanently , if the copyright holder
fails to notify you of the violation by some reasonable means prior to

138

60 days after the cessation.

Moreover , your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means , this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder , and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new , revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version , but may differ in
detail to address new problems or concerns. See
http ://www.gnu.org/copyleft /.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it , you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License , you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used , that proxy ’s public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC -BY-SA" means the Creative Commons Attribution -Share Alike 3.0
license published by Creative Commons Corporation , a not -for -profit
corporation with a principal place of business in San Francisco ,
California , as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document , in whole or in
part , as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License , and if all works that were first published under this License
somewhere other than this MMC , and subsequently incorporated in whole or
in part into the MMC , (1) had no cover texts or invariant sections , and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC -BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written , include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

139

J. GNU Free Documentation License

Permission is granted to copy , distribute and/or modify this document
under the terms of the GNU Free Documentation License , Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections , no Front -Cover Texts , and no Back -Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License ".

If you have Invariant Sections , Front -Cover Texts and Back -Cover Texts ,
replace the "with ... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES , with the
Front -Cover Texts being LIST , and with the Back -Cover Texts being LIST.

If you have Invariant Sections without Cover Texts , or some other
combination of the three , merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code , we
recommend releasing these examples in parallel under your choice of
free software license , such as the GNU General Public License ,
to permit their use in free software.

140

	Briefing: how MARS works
	Typical MARS replication setup
	The Transaction Logger
	The State of MARS

	HOWTO setup MARS
	Description: what you Need
	MARS Kernel Module
	Setup Primary and Secondary Cluster Nodes
	Setup Hardware
	Setup the Network

	Setup / Install OS
	Setup LVM
	Setup Cluster Nodes

	Setup Housekeeping Cron Job
	Creating and Maintaining Resources

	HOWTO operation of MARS resources
	Inspecting the State of MARS
	Standard marsadm view

	Switch Primary / Secondary Roles
	Intended Switching / Planned Handover
	Forced Switching

	Split Brain Resolution
	Final Destruction of a Damaged Node
	Online Resizing during Operation
	Defending Overflow of /mars/
	Countermeasures against overflow
	Dimensioning of /mars/
	Monitoring
	Throttling

	Emergency Mode and its Resolution

	Working with marsadm commands
	Cluster Operations
	Resource Operations
	Resource Creation / Deletion / Modification
	Operation of the Resource
	Logfile Operations
	Consistency Operations

	Further marsadm Operations
	Inspection Commands
	Setting Parameters
	Per-Resource Parameters
	Global Parameters

	Waiting
	systemd Control Commands
	Low-Level Expert Commands
	Senseless Commands (from DRBD)
	Forbidden Commands (from DRBD)

	Tuning, tips and tricks
	IO Performance Tuning
	Data Compression and Checksumming (Digests)
	Network Transport Compression
	Logfile Payload Compression
	Logfile Payload Digests
	Network Payload Digests

	The /proc/sys/mars/ and other Expert Tweaks
	Tuning Network Performance
	Syslogging
	Logging to Files
	Logging to Syslog
	Tuning Verbosity of Logging

	Tuning the Sync
	Lowlevel TCP Tuning (Networking Experts Only)

	Advanced users: automation and the macro processor
	The systemd Template Generator
	Why systemd?
	Execution Model of systemd and marsadm
	Working Principle of the Template Generator for systemd
	Template Markers
	Special .script Pseudo Units
	Example systemd Templates
	Fully Automatic Handover using systemd

	The macro processor
	Predefined Primitive Macros
	Intended for Humans
	Intended for Scripting

	Creating your own Macros
	General Macro Syntax
	Calling Builtin / Primitive Macros
	Predefined Variables

	Scripting Advice

	FAQ
	Technical Data MARS
	HISTORIC Guide for Midnight Problem Solving
	Inspecting the State of MARS
	Replication is unexpectedly Stuck
	Standard Resolution of Emergency Mode and Split Brain
	Alternative Resolution of Split Brain / Emergency Mode / Defective Hardware
	Handover of Primary Role
	Failover = Emergency Switch of Primary Role

	HISTORICAL Methods for Split Brain Resolution
	Alternative De- and Reconstruction of a Damaged Resource
	Cleanup in case of Complicated Cascading Failures
	Experts only: Special Trick Switching and Rebuild
	Creating Backups via Pseudo Snapshots
	Command Documentation for Userspace Tools
	marsadm --help

	GNU Free Documentation License

