
MARS Manual

Multiversion Asynchronous Replicated Storage

01101011101001

Thomas Schöbel-Theuer (tst@1und1.de)

Version 0.12 (incomplete)

Copyright (C) 2013 Thomas Schöbel-Theuer / 1&1 Internet AG
(see http://www.1und1.de shortly called 1&1 in the following).
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

http://www.1und1.de

Abstract

MARS Light is a block-level storage replication system for long distances / flaky networks under
GPL. It runs as a Linux kernel module. The sysadmin interface is similar to DRBD1, but its
internal engine is completely different from DRBD: it works with transaction logging, similar
to some database systems.
Therefore, MARS Light can provide stronger consistency guarantees. Even in case of

network bottlenecks / problems / failures, the secondaries may become outdated (reflect an
elder state), but never become inconsistent. In contrast to DRBD, MARS Light preserves the
order of write operations even when the network is flaky (Anytime Consistency).
The current version of MARS Light works asynchronously. Therefore, application perfor-

mance is completely decoupled from any network problems. Future versions are planned to also
support synchronous or near-synchronous modes.

01101011101001

1Registered trademarks are the property of their respective owner.

Contents

1. Use Cases for MARS vs DRBD 6
1.1. Network Bottlenecks . 6

1.1.1. Behaviour of DRBD . 6
1.1.2. Behaviour of MARS . 8

1.2. Long Distances / High Latencies . 11
1.3. Higher Consistency Guarantees vs Actuality . 11

2. Quick Start Guide 13
2.1. Preparation: What you Need . 13
2.2. Setup Primary and Secondary Cluster Nodes . 14

2.2.1. Kernel and MARS Module . 14
2.2.2. Setup your Cluster Nodes . 14

2.3. Creating and Maintaining Resources . 15
2.4. Keeping Resources Operational . 16

2.4.1. Logfile Rotation / Deletion . 16
2.4.2. Switch Primary / Secondary Roles . 16

2.4.2.1. Intended Switching . 16
2.4.2.2. Emergency Switching . 17

2.4.3. Split Brain Resolution . 18
2.4.3.1. Final Destruction of a Damaged Node 18
2.4.3.2. Split Brain Resolution after a Temporary Failure 19
2.4.3.3. Cleanup in case of Complicated Cascading Failures 20

3. Basic Working Principle 23
3.1. The Transaction Logger . 23
3.2. The Lamport Clock . 25
3.3. The Symlink Tree . 26
3.4. Defending Overflow of /mars/ . 28

3.4.1. Countermeasures . 28
3.4.1.1. Dimensioning of /mars/ . 28
3.4.1.2. Monitoring . 28
3.4.1.3. Throttling . 29

3.4.2. Emergency Mode . 31

4. The Sysadmin Interface marsadm 32
4.1. Cluster Operations . 33
4.2. Resource Operations . 33

4.2.1. Resource Creation / Deletion / Modification 33
4.2.2. Operation of the Resource . 35
4.2.3. Logfile Operations . 38
4.2.4. Consistency Operations . 38

4.3. Further Operations . 38
4.3.1. Inspection Commands . 38
4.3.2. Waiting . 39
4.3.3. Low-Level Helpers . 39
4.3.4. Senseless Commands (from DRBD) . 39
4.3.5. Forbidden Commands (from DRBD) . 40
4.3.6. Deprecated Operations . 40

4

Contents

5. MARS for Developers 41
5.1. General Architecture . 41

5.1.1. MARS Light Architecture . 41
5.1.2. MARS Full Architecture (planned) . 41

5.2. Documentation of the Symlink Trees . 42
5.2.1. Documentation of the MARS Light Symlink Tree 42

5.3. MARS Worker Bricks . 42
5.4. MARS Strategy Bricks . 42
5.5. The MARS Brick Infrastructure Layer . 42
5.6. The Generic Brick Infrastructure Layer . 42
5.7. The Generic Object and Aspect Infrastructure 42

A. GNU Free Documentation License 43

5

1. Use Cases for MARS vs DRBD

DRBD has a long history of successfully providing HA features to many users of Linux. With
the advent of MARS, many people are wondering what the difference is. They ask for recom-
mendations. In which use cases should DRBD be recommended, and in which other cases is
MARS the better choice?
There exist some cases where DRBD is better than MARS. 1&1 has a long history of expe-

riences with DRBD where it works very fine, in particular coupling Linux devices rack-to-rack
via crossover cables. DRBD is just constructed for that use case (RAID-1 over network).
On the other hand, there exist other cases where DRBD did not work as expected, leading

to incidents and other operational problems. We analyzed them for those use cases, and found
that they could only be resolved by fundamental changes in the overall architecture of DRBD.
Therefore, we started the development of MARS.
MARS and DRBD simply have different application areas.
In the following, we will discuss the pros and cons of each system in particular situations and

contexts, and we shed some light at their conceptual and operational differences.

1.1. Network Bottlenecks

1.1.1. Behaviour of DRBD

In order to describe the most important problem we found when DRBD was used to couple
whole datacenters (each encompassing thousands of servers) over metro distances, we strip down
that complicated real-life scenario to a simplified laboratory scenario in order to demonstrate
the effect with minimal means. The following picture illustrates an effect which is not only
observable in practice, but is also reproducible by the MARS test suite1:

mirror inconsistency ... time

network throughput

decreasing throughput limit

DRBD throughput

additional throughput

needed for re−sync, not possible

(p
ot

en
tia

l)
in

ci
de

nt
 −

>

au
to

m
at

ic
 r

e−
co

n
n
ec

t

au
to

m
at

ic
 d

is
co

n
n
ec

t

wanted application throughput, not possible

The simplified scenario is the following:

1. DRBD is loaded with a low to medium, but constant rate of write operations for the sake
of simplicity of the scenario.

2. The network has some throughput bottleneck, depicted as a red line. For the sake of
simplicity, we just linearly decrease it over time, starting from full throughput, down to
zero. The decrease is very slowly over time (some minutes, or even hours).

1The effect has been demonstrated with DRBD version 8.3.13. By construction, is is independent from any of
the DRBD series 8.3.x, 8.4.x, or 9.0.x.

6

1.1. Network Bottlenecks

What will happen in this scenario?
As long as the actual DRBD write throughput is lower than the network bandwidth (left

part of the horizontal blue line), DRBD works as expected.
Once the maximum network throughput (red line) starts to fall short of the required applica-

tion throughput (first blue dotted line), we get into trouble. By its very nature, DRBD works
synchronously. Therefore, it must transfer all your application writes through the bottleneck,
but now it is impossible2 due to the bottleneck. As a consequence, the application running on
top of DRBD will see increasingly higher IO latencies and/or stalls / hangs. We found practical
cases (at least with former versions of DRBD) where IO latencies exceeded practical monitoring
limits such as 5 s by far, up to the range of minutes. As an experienced sysadmin, you know
what happens next: your application will run into an incident, and your customers will be
dissatisfied.
In order to deal with such situations, DRBD has lots of tuning parameters. In particular,

the timeout parameter and/or the ping-timeout parameter will determine when DRBD will
give up in such a situation and simply drop the network connection as an emergency measure.
Dropping the network connection is roughly equivalent to an automatic disconnect, followed by
an automatic re-connect attempt after connect-int seconds. During the dropped connection,
the incident will appear as being resolved, but at some hidden cost3.
What happens next in our scenario? During the disconnect, DRBD will record all positions

of writes in its bitmap and/or in its activity log. As soon as the automatic re-connect succeeds
after connect-int seconds, DRBD has to do a partial re-sync of those blocks which were
marked dirty in the meantime. This leads to an additional bandwidth demand4 as indicated
by the upper dotted blue box.
Of course, there is absolutely no chance to get the increased amount of data through our

bottleneck, since not even the ordinary application load (lower dotted lines) could be transferred.
Therefore, you run at a very high risk that the re-sync cannot finish before the next timeout

/ ping-timeout cycle will drop the network connection again.
What will be the final result when that risk becomes true? Simply, your secondary site will

be in state inconsistent. This means, you have lost your redundancy. In our scenario, there
is no chance at all to become consistent again, because the network bottleneck declines more
and more, slowly. It is simply hopeless, by construction.
In case you lose your primary site now, you are lost at all.
Some people may argue that the probability for a similar scenario were low. We don’t agree

on such an argumentation. Not only because it really happens in pratice, and it may even last
some days until problems are fixed. In case of rolling disasters, the network is very likely to
become flaky and/or overloaded shortly before the final damage. Even in other cases, you can
easily end up with inconsistent secondaries. It occurs not only in the lab, but also in practice
if you operate some hundreds or even thousands of DRBD instances.
The point is that you can produce an ill behaviour systematically just by overloading the

network a bit for some sufficient duration.
2This is independent from the DRBD protocols A through C, because it just depends on an information-
theoretic argument independently from any protocol. We have a fundamental conflict between network
capabilities and application demands here, which cannot be circumvented due to the synchronous nature
of DRBD.

3By appropriately tuning various DRBD parameters, such as timeout and/or ping-timeout, you can keep
the impact of the incident below some viable limit. However, the automatic disconnect will then happen
earlier and more often in practice. Flaky or overloaded networks may easily lead to an enormous number of
automatic disconnects.

4DRBD parameters sync-rate resp resync-rate may be used to tune the height of the additional demand.
In addition, the newer parameters c-plan-ahead, c-fill-target, c-delay-target, c-min-rate, c-max-rate
and friends may be used to dynamically adapt to some situations where the application throughput could fit
through the bottleneck. These newer parameters were developed in a cooperation between 1&1 and Linbit,
the maker of DRBD.

Please note that lowering / dynamically adapting the resync rates may help in lowering the probability of
occurrences of the above problems in practical scenarios where the bottleneck would recover to viable limits
after some time. However, lowering the rates will also increase the duration of re-sync operations accordingly.
The total amount of re-sync data simply does not decrease when lowering resync-rate; it even tends to
increase over time when new requests arrive. Therefore, the expectancy value of problems caused by strong
network bottlenecks (i.e. when not even the ordinary application rate is fitting through) is not improved by
lowering or adapting resync-rate, but rather the expectancy value mostly depends on the relation between
the amount of holdback data versus the amount of application write data, both measured for the duration
of some given strong bottleneck.

7

1. Use Cases for MARS vs DRBD

When coupling whole datacenters via some thousands of DRBD connections, any (short)
network loss will almost certainly increase the re-sync network load each time the outage appears
to be over. As a consequence, overload may be provoked by the re-sync repair attempts. This
may easily lead to self-amplifying throughput storms in some resonance frequency (similar
to self-destruction of a bridge when an army is marching over it in lockstep).
The only way for reliable prevention of loss of secondaries is to start any re-connect only in

such situations where you can predict in advance that the re-sync is guaranteed to finish before
any network bottleneck / loss will cause an automatic disconnect again. We don’t know of any
method which can reliably predict the future behaviour of a complex network.

Conclusion: in the presence of network bottlenecks, you run a considerable risk that
your DRBD mirrors get destroyed just in that moment when you desperately need them.

Notice that crossover cables usually never show a behaviour like depicted by the red
line. Crossover cables are passive components which normally5 either work, or not. The binary
connect / disconnect behaviour of DRBD has no problems to cope with that.

or Linbit recommends a workaround for the inconsistencies during re-sync:
LVM snapshots. We tried it, but found a performance penalty which made it prohibitive for
our concrete application. A problem seems to be the cost of destroying snapshots. LVM uses
by default a BOW strategy (Backup On Write, which is the counterpart of COW = Copy On
Write). BOW increases IO latencies during ordinary operation. Retaining snapshots is cheap,
but reverting them may be very costly, depending on workload. We didn’t fully investigate
that effect, and our experience is a few years old. You might come to a different conclusion
for a different workload, for newer versions of system software, or for a different strategy if you
carefully investigate the field.

DRBD problems usually arise only when the network throughput shows some “awkward”
analog behaviour, such as overload, or as occasionally produced by various switches / routers
/ transmitters, or other potential sources of packet loss.

1.1.2. Behaviour of MARS
The behaviour of MARS in the above scenario:

time

network throughput

decreasing throughput limit

application throughput, recorded in transaction log
replication network throughput

MARS

When the network is restrained, an asynchronous system like MARS will continue to serve the
user IO requests (dotted green line) without any impact / incident while the actual network
5Exceptions might be mechanical jiggling of plugs, or electro-magnetical interferences. We never noticed any
of them.

8

1.1. Network Bottlenecks

throughput (solid green line) follows the red line. In the meantime, all changes to the block
device are recorded at the transaction logfiles.

Here is one point in favour of DRBD: MARS stores its transaction logs on the filesystem
/mars/. When the network bottleneck is lasting very long (some days or even some weeks),
the filesystem will eventually run out of space some day. Section 3.4 discusses countermeasures
against that in detail. In contrast to MARS, DRBD allocates its bitmap statically at resource
creation time. It uses up less space, and you don’t have to monitor it for (potential) over-
flows. The space for transaction logs is the price you have to pay if you want or need anytime
consistency, or asynchronous replication in general.
In order to really grasp the heart of the difference between synchronous and asynchronous

replication, we look at the following modified scenario:

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

time

network throughput

flaky throughput limit

MARS application throughput

corresponding DRBD inconsistency

MARS network throughput

This time, the network throughput (red line) is varying6 in some unpredictable way. As before,
the application throughput served by MARS is assumed to be constant (dotted green line, often
superseded by the solid green line). The actual replication network throughput is depicted by
the solid green line.
As you can see, a network dropdown undershooting the application demand has no impact

on the application throughput, but only on the replication network throughput. Whenever the
network throughput is held back due to the flaky network, it simply catches up as soon as
possible by overshooting the application throughput. The amount of lag-behind is visualized
as shaded area: downward shading (below the application throughput) means an increase of
the lag-behind, while the upwards shaded areas (beyond the application throughput) indicate
a decrease of the lag-behind (catch-up). Once the lag-behind has been fully caught up, the
network throughput suddenly jumps back to the application throughput (here visible in two
cases).

Note that the existence of lag-behind areas is roughly corresponding to DRBD disconnect
states, and in turn to DRBD inconsistent states of the secondary as long as the lag-behind has
not been fully cought up. The very rough7 duration of the corresponding DRBD inconsistency
phase is visualized as magenta line at the time scale.

6In real life, many long-distance lines or even some heavily used metro lines usually show fluctuations of
their network bandwidth by an order of magnitude, or even higher. We have measured them. The overall
behaviour can be characterized as “chaotic”.

7Of course, this visualization is not exact. On one hand, the DRBD inconsistency phase may start later as
depicted here, because it only starts after the first automatic disconnect, upon the first automatic re-connect.
In addition, the amount of resync data may be smaller than the amount of corresponding MARS transaction
logfile data, because the DRBD bitmap will coalesce multiple writes to the same block into one single transfer.
On the other hand, DRBD will transfer no data at all during its disconnected state, while MARS continues
its best. This leads to a prolongation of the DRBD inconsistent phase. Depending on properties of the
workload and of the network, the real duration of the inconsistency phase may be both shorter or longer.

9

1. Use Cases for MARS vs DRBD

MARS utilizes the existing network bandwidth as best as possible in order to pipe
through as much data as possible, provided that there exists some data requiring expedition.
Conceptually, there exists no better way due to information theoretic limits (besides data
compression).

In case of lag-behind, the version of the data replicated to the secondary site corresponds
to some time in the past. Since the data is always transferred in the same order as originally
submitted at the primary site, the secondary never gets inconsistent. Your mirror always
remains usable. Your only potential problem could be the outdated state, corresponding to
some state in the past. However, the “as-best-as-possible” approach to the network transfer
ensures that your version is always as up-to-date as possible even under ill-behaving network
bottlenecks. There is simply no better way to do it. In presence of network bottlenecks,
there exists no better method than prescribed by the information theoretic limit (red line,
neglecting data compression).

MARS’ property of never sacrificing local data consistency (at the possible cost of
actuality) is called Anytime Consistency.

Conclusion: you can even use traffic shaping on MARS’ TCP connections in order
to globally balance your network throughput (of course at the cost of actuality, but without
sacrificing local data consistency). If you would try to do the same with DRBD, you could
easily provoke a disaster. MARS simply tolerates any network problems, provided that there is
enough disk space for transaction logfiles. Even in case of completely filling up your disk with
transaction logfiles after some days or weeks, you will not lose local consistency anywhere (see
section 3.4).
Finally, here is yet another scenario where MARS can cope with the situation:

time

network throughput

MARS

replication network throughput

constant throughput limit

application throughput, showing heavy peaks

This time, the network throughput limit (solid red line) is assumed to be constant. However,
the application workload (dotted green line) shows some heavy peaks. We know from our 1&1
datacenters that such an application behaviour is very common.
When the peaks are exceeding the network capabilities for some time, the replication network

throughput (solid green line) will be limited for a short time, stay a little bit longer at the limit,
and finally drop down again to the normal workload. In other words, you get a flexible buffering
behaviour, coping with the peaks.
Similar scenarios (where both the application workload has peaks and the network is flaky

to some degree) are rather common. If you would use DRBD there, you were likely to run

10

1.2. Long Distances / High Latencies

into regular application performance problems and/or frequent automatic disconnect cycles,
depending on the height and on the duration of the peaks, and on network resources.

1.2. Long Distances / High Latencies

In general and in some theories, latencies are conceptually independent from throughput, at
least to some degree. There exist all 4 possible combinations:

1. There exist lines with high latencies but also high throughput. Examples are raw fibre
cables at the ground of the Atlantic.

2. High latencies on low-throughput lines is very easy to achieve. If you never saw it, you
never ran interactive vi over ssh in parallel to downloads on your old-fashioned modem
line.

3. Low latencies need not be incompatible with high throughput. See Myrinet, InfiniBand
or high-speed point-to-point interconnects, such as modern memory busses.

4. Low latency combined with low throughput is also possible: in an ATM system (or another
pre-reservation system for bandwidth), just increase the multiplex factor on low-capacity
but short lines, which is only possible at the cost of assigned bandwidth.

In the internet practice, however, it is very likely that high latencies will also lead to worse
throughput, because of the congestion control algorithms running all over the world.
We have experimented with extremely large TCP send/receive buffers plus various window

sizes and congestion control algorithms over long-distance lines between the USA and Europe.
Yes, it is possible to improve the behaviour to some degree. But magic does not happen.
Natural laws will always hold. You simply cannot travel faster than the speed of light.
Our experience leads to the following rule of thumb, not formally proven by anything, but

just observed in practice:

In general, synchronous data replication (not limited to applications of DRBD)
works reliably only over distances < 50 km.

There may be some exceptions, at least when dealing with low-end workstation loads. But
when you are responsible for a whole datacenter and/or some centralized storage units, don’t
waste your time by trying (almost) impossible things. We recommend to use MARS in such
use cases.

1.3. Higher Consistency Guarantees vs Actuality

We already saw in section 1.1 that certain types of network bottlenecks can easily (and re-
producibly) destroy the consistency of your DRBD secondary, while MARS will preserve local
consistency at the cost of actuality (anytime consistency).
Some people, often located at database operations, are obtrusively arguing that actuality is

such a high good that it must not be sacrificed under any circumstances.
Anyone arguing this way has at least the following choices (list may be incomplete):

1. None of the above use cases for MARS apply. For instance, short distance replication
over crossover cables is sufficient (which occurs very often), or the network is reliable
enough such that bottlenecks can never occur (e.g. because the total load is extremely
low, or conversely the network is extremely overengineered / expensive), or the occurrence
of bottlenecks can provably be taken into account. In such cases, DRBD is clearly the
better solution than MARS, because it provides better actuality than the current version
of MARS, and it uses up less disk resources.

2. In the presence of network bottlenecks, people didn’t notice and/or didn’t understand
and/or did under-estimate the risk of accidental invalidation of their DRBD secondaries.
They should carefully check that risk. They should convince themselves that the risk is

11

1. Use Cases for MARS vs DRBD

really bearable. Once they are hit by a systematic chain of events which reproducibly
provoke the bad effect, it is too late8.

3. In the presence of network bottlenecks, people found a solution such that DRBD does not
automatically re-connect after the connection has been dropped due to network problems
(c.f. ko-count parameter). So the risk of inconsistency appears to have vanished. In
some cases, people did not notice that the risk has not completely9 vanished, and/or they
did not notice that now the actuality produced by DRBD is even drastically worse than
that of MARS (in the same situation). It is true that DRBD provides better actuality in
connected state, but for a full picture the actuality in disconnected state should not be
neglected10. So they didn’t notice that their argumentation on the importance of actuality
may be fundamentally wrong. A possible way to overcome that may be re-reading section
1.1.2 and comparing its outcome with the corresponding outcome of DRBD in the same
situation.

4. People are stuck in contradictive requirements because the current version of MARS Light
does not yet support synchronous or pseudo-synchronous operation modes. This should
be resolved some day.

A common misunderstanding is about the actuality guarantees provided by filesystems.
The buffer cache / page cache uses by default a writeback strategy for performance reasons.
Even modern journalling filesystems will (by default) provide only consistency guarantees, but
no strong actuality guarantee. In case of power loss, some transactions may be even rolled back
in order to restore consistency. According to POSIX11 and other standards, the only reliable
way to achieve actuality is usage of system calls like sync(), fsync(), fdatasync(), flags like
O_DIRECT, or similar. For performance reasons, the vast majority of applications don’t use them
at all, or use them only sparingly!

It makes no sense to require strong actuality guarantees from any block layer replication
(whether DRBD or future versions of MARS) while higher layers such as filesystems or even
applications are already sacrificing them!

In summary, the anytime consistency provided by MARS is an argument you should
consider, even if you need an extra hard disk for transaction logfiles.

8Some people seem to need a bad experience before they get the difference between risk caused by reproducible
effects and inverted luck.

9Hint: what’s the conceptual difference beween an automatic and a manual re-connect? Yes, you can try to
lower the risk in some cases by transferring risks to human analysis and human decisions, but did you take
into account the possibility of human errors?

10Hint: a potential hurdle may be the fact that the current format of /proc/drbd does neither display the
timestamp of the first relevant network drop nor the total amount of lag-behind user data (which is not the
same as the number of dirty bits in the bitmap), while marsadm view can display it. So it is difficult to judge
the risks. Possibly a chance is inspection of DRBD messages in the syslog, but quantification could remain
hard.

11The above argumentation also applies to Windows filesystems in analogous way.

12

2. Quick Start Guide

This chapter is for impatient but experienced sysadmins who already know DRBD. For more
complete information, refer to chapter The Sysadmin Interface marsadm.

2.1. Preparation: What you Need
Typically, you will use MARS Light at servers in a datacenter for replication of big masses of
data.
Typically, you will use MARS Light for replication between multiple datacenters, when the

distances are greater than ≈ 50 km. Many other solutions, even from commercial storage
vendors, will not work reliably over large distances when your network is not extremely reliable,
or when you try to push huge masses of data from high-performance applications through
a network bottleneck. If you ever encountered suchalike problems (or try to avoid them in
advance), MARS is for you.
You can use MARS Light both at dedicated storage servers (e.g. for serving Windows clients),

or at standalone Linux servers where CPU and storage are not separated.
In order to protect your data from low-level disk failures, you should use a hardware RAID

controller with BBU. Software RAID is explicitly not recommended, because it generally pro-
vides worse performance due to the lack of a hardware BBU (for some benchmark comparisons
with/out BBU, see https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.
pdf).
Typically, you will need more than one RAID set1 for big masses of data. Therefore, use of

LVM is also recommended2 for your data.
MARS’ tolerance of networking problems comes with some cost. You will need some extra

space for the transaction logfiles of MARS, residing at the /mars/ filesystem.
The exact space requirements for /mars/ depend on the average write rate of your application,

not on the size of your data. We found that only few applications are writing more than 1 TB
per day. Most are writing even less than 100 GB per day. Usually, you want to dimension
/mars/ such that you can survive a network loss lasting 3 days / about one weekend. This
can be achieved with current technology rather easily: as a simple rule of thumb, just use one
dedicated disk having a capacity of 4 TB or more. Typically, that will provide you with
plenty of headroom even for bigger networking incidents.
Dedicated disks for /mars/ have another advantage: their mechanical head movement is

completely independent from your data head movements. For best performance, attach that
dedicated disk to your hardware RAID controller with BBU, building a separate RAID set
(even if it consists only of a single disk – notice that the hardware BBU is the crucial point).
If you are concerned about reliability, use two disks switched together as a relatively small

RAID-1 set. For extremely high performance demands, you may consider (and check) RAID-10.
Since the transaction logfiles are highly sequential in their access pattern, a cheap but high-

capacity SATA disk (or nearline-SAS disk) is usually sufficient. At the time of this writing,
standard SATA SSDs have shown to be not (yet) preferable. Although they offer high random
IOPS rate, their sequential throughput is worse, and their long-term stability is questioned by
many people at the time of this writing. However, as technology evolves and becomes more
mature, this could change in future.
Use ext4 for /mars/. Avoid ext3, and don’t use xfs3 at all.

1For low-cost storage, RAID-5 is no longer regarded safe for today’s typical storage sizes, because the error rate
is regarded too high. Therefore, use RAID-6. If you need more than 15 disks in total, create multiple RAID
sets (each having at most 15 disks, better about 12 disks) and stripe them via LVM (or via your hardware
RAID controller if it supports RAID-60).

2You may also combine MARS with commercial storage boxes connected via Fibrechannel or iSCSI, but we
have not yet operational experiences at 1&1 with such setups.

3It seems that the late internal resource allocation strategy of xfs (or another currently unknown reason) could
be the reason for some resource deadlocks which appear only with xfs and only under extremely high IO

13

https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf
https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf

2. Quick Start Guide

2.2. Setup Primary and Secondary Cluster Nodes

If you already use DRBD, you may migrate to MARS (or even back from MARS to DRBD) if
you use external4 DRBD metadata (which is not touched by MARS).

2.2.1. Kernel and MARS Module

At the time of this writing, a small pre-patch for the Linux kernel is needed. It it trivial
and consists mostly of EXPORT_SYMBOL() statements. The pre-patch must be applied to the
kernel source tree before building your (custom) kernel. Hopefully, the patch will be integrated
upstream some day.
The MARS kernel module can be built in two different ways:

1. inplace in the kernel source tree: cd block/ && git clone git://github.com/schoebel/mars

2. as a separate kernel module, only for experienced5 sysadmins: see file Makefile.dist
(tested with Debian; may need some extra work with other distros).

Further / more accurate / latest instructions can be found in README and in INSTALL. You must
not only install the kernel and the mars.ko kernel module to all of your cluster nodes, but also
the marsadm userspace tool.

2.2.2. Setup your Cluster Nodes

For your cluster, you need at least two nodes. In the following, they will be called A and B. In
the beginning, A will have the primary role, while B will be your initial secondary. The roles
may change later.

1. You must be root.

2. On each of A and B, create the /mars/ mountpoint.

3. On each node, create an ext4 filesystem on your separate disk / RAID set (see description
in section Preparation: What you Need).

4. On each node, mount that filesystem to /mars/. It is advisable to add an entry to
/etc/fstab.

5. On node A, say marsadm create-cluster.
This must be done exactly once, on exactly one node of your cluster. Never do this twice
or on different nodes, because that would create two different clusters which would have
nothing to do with each other. The marsadm tool protects you against accidentally joining
/ merging two different clusters. If you accidentally created two different clusters, just
umount that /mars/ partition and start over with step 3 at that node.

6. On node B, you must have a working ssh connection to node A. Test it by saying ssh A
w on node B. It should work without entering a password (otherwise, use ssh-agent to
achieve that). In addition, rsync must be installed.

7. On node B, say marsadm join-cluster A

8. Only after6 that, do modprobe mars on each node.

load in combination with high memory pressure.
4Internal DRBD metadata should also work as long as the filesystem inside your block device / disk already
exists and is not re-created. The latter would destroy the DRBD metadata, but even that will not hurt you
really: you can always switch back to DRBD using external metadata, as long as you have some small spare
space somewhere.

5You should be familiar with the problems arising from orthogonal combination of different kernel versions
with different MARS module versions and with different marsadm userspace tool versions at the package
management level. Hint: modinfo is your friend.

6In fact, you may already modprobe mars at node A after the marsadm create-cluster. Just don’t do any
of the *-cluster operations when the kernel module is loaded. All other operations should have no such
restriction.

14

2.3. Creating and Maintaining Resources

2.3. Creating and Maintaining Resources
In the following example session, a block device /dev/lv-x/mydata (shortly called disk) must
already exist on both nodes A and B, respectively, having the same7 size. For the sake of
simplicity, the disk (underlying block device) as well as its later logical resource name as well as
its later virtual device name will all be named uniformly by the same suffix mydata. In general,
you might name each of them differently, but that is not recommended since it may easily lead
to confusion in larger installations.
You may have already some data inside your disk /dev/lv-x/mydata at the initially primary

side A. Before using it for MARS, it must be unused for any other purpose (such as being
mounted, or used by DRBD, etc). MARS will require exclusive access to it.

1. On node A, say marsadm create-resource mydata /dev/lv-x/mydata.
As a result, a directory /mars/resource-mydata/ will be created on node A, containing
some symlinks. Node A will automatically start in the primary role for this resource.
Therefore, a new pseudo-device /dev/mars/mydata will also appear after a few seconds.
Note that the initial contents of /dev/mars/mydata will be exactly the same as in your
pre-existing disk /dev/lv-x/mydata.
If you like, you may already use /dev/mars/mydata for mounting your already pre-existing
data, or for creating a fresh filesystem, or for exporting via iSCSI, and so on. You may
even do so before any other cluster node has joined the resource (so-called “standalone
mode”). But you can also do so later after setup of (one ore many) secondaries.

2. Wait a few seconds until the directory /mars/resource-mydata/ and its symlink contents
also appears on cluster node B.

3. On node B, say marsadm join-resource mydata /dev/lv-x/mydata.
As a result, the initial full-sync from node A to node B should start automatically.

Of course, your old contents of your disk /dev/lv-x/mydata at side B (and only
there!) is overwritten by the version from side A. Since you are an experienced sysadmin,
you knew that, and it was just the effect you deliberately wanted to achieve. If you didn’t
check that your old contents didn’t contain any valuable data (or if you accidentally
provided a wrong disk device argument), it is too late now. The marsadm command
checks that the disk device argument is really a block device, and that exclusive access
to it is possible (as well as some further safety checks, e.g. matching sizes). However,
MARS cannot know the purpose of your generic block device. MARS (as well as DRBD)
is completely ignorant of the contents of a generic block device; it does not interpret it
in any way. Therefore, you may use MARS (as well as DRBD) for mirroring Windows
filesystems, or raw devices from databases, or whatever.

Hint: by default, MARS uses the so-called “fast fullsync” algorithm. It works
similar to rsync, first reading the data on both sides and computing an md5 checksum for
each block. Heavy-weight data is only transferred over the long-distance network upon
checksum mismatch. This is extremely fast if your data is already (almost) identical
on both sides. Conversely, if you know in advance that your initial data is completely
different on both sides, you may choose to switch off the fast fullsync algorithm via echo 0
> /proc/sys/mars/do_fast_fullsync in order to save the additional IO overhead and
network latencies introduced by the separate checksum comparison steps.

4. Optionally: if you create a new filesystem on /dev/mars/mydata after(!) having created
the MARS resource, you may skip the fast fullsync phase at all, because the old content
of /dev/mars/mydata is just garbage not used by the freshly created filesystem. Just say
marsadm fake-sync mydata in order to abort the sync operation.

Never do a fake-sync unless you are absolutely sure that you really don’t need
7Actually, the disk at the initially secondary side may be larger than that at the initially primary side. This
will waste space and is therefore not recommended.

15

2. Quick Start Guide

the data! Otherwise, you are almost guaranteed to have produced harmful inconsistencies.
If you accidentally issued fake-sync, you may startover the full sync at your secondary
side at any time by saying marsadm invalidate mydata (analogously to the correspond-
ing DRBD command).

2.4. Keeping Resources Operational

2.4.1. Logfile Rotation / Deletion

As explained in section The Transaction Logger, all changes to your resource data are recorded
in transaction logfiles residing on the /mars/ filesystem. These files are always growing over
time. In order to avoid filesystem overflow, the following must be done in regular time intervals:

1. marsadm log-rotate all
This starts appending to a new logfile on all of your resources. The logfiles are automati-
cally numbered by an increasing 9-digit logfile number. This will suffice for many centuries
even if you would logrotate once a minute. Practical frequencies for logfile rotation are
more like once an hour8, or once a day (depending on your load).

2. marsadm log-delete-all all
This determines all logfiles from all resources which are no longer needed (i.e. which
are fully applied, on all relevant secondaries). All superfluous logfiles are then deleted,
including all copies on all secondaries.

The current version of MARS deletes either all replicas of a logfile everywhere,
or none of the replicas. This is a simple rule, but has the drawback that one node may
hinder other nodes from freeing space in /mars/. In particular, the command marsadm
pause-replay $res (as well as marsadm disconnect $res) will freeze the space recla-
mation in the whole cluster when the pause is lasting very long.

Best practice is to do both log-rotate and log-delete-all in a cron job. In
addition, you should establish some regular monitoring of the free space present in the
/mars/ filesystem.

More detailed information about about avoidance of /mars/ overflow is in section 3.4.

2.4.2. Switch Primary / Secondary Roles

In contrast to DRBD, MARS Light distinguishes between intended and emergency switch-
ing. This distinction is necessary due to subtle differences in the communication architecture
(asynchronous communication vs synchronous communication, see sections 3.2 and 3.3).

2.4.2.1. Intended Switching

Switching the roles is very similar to DRBD: just issue the command

• marsadm primary mydata

on your formerly secondary node. Precondition is that you are in connected state, and that
the old primary does not use its /dev/mars/mydata device any longer. If the preconditions are
violated, marsadm primary refuses to run.
The preconditions try to protect you from doing silly things, such as accidentally provoking a

split brain error state. We try to avoid split brain as best as we can. Therefore, we distinguish
between intended and emergeny switching. Intended switching will try to avoid split brain as
best as it can.
8Under extremely high load conditions, you might want to log-rotate serveral times an hour, in order to keep the
size of each logfile under some practical limit. At 1&1 datacenters, we have not yet encountered conditions
where that was really necessary.

16

2.4. Keeping Resources Operational

Don’t rely on split brain avoidance, in particular when scripting any higher-level appli-
cations such as cluster managers. marsadm does its best, but at least in case of (unnoticed)
network outages / partitions (or even very slow / overloaded networks), an attempt to become
up-to-date is likely to fail. If you want to ensure that no split brain can result from intended
primary switching, please give the primary command only after your secondary is known to be
up-to-date.
Notice that the usage check for /dev/mars/mydata is based on the open count transferred

from another cluster node. Since MARS is operating asynchronously (in contrast to DRBD),
it may take some time until our node knows that the device is no longer used at another node.
This can lead to a race condition if you automate an intended takeover with a script like ssh A
“umount /dev/mars/mydata”; ssh B “marsadm primary mydata” because your second ssh
command may be faster than the internal MARS symlink tree propagation (cf section 3.3). In
order to prevent such races, you should use the command

• marsadm wait-umount mydata

on node B before trying to become primary. The script should look like ssh A “umount
/dev/mars/mydata”; ssh B “marsadm wait-umount mydata && marsadm primary mydata”.

2.4.2.2. Emergency Switching

In case the connection to the old primary is lost for whatever reason, we just don’t know
anything about its current state (which may deviate from its last known state). The following
variant will skip many checks and tell your node to become primary forcefully:

• marsadm disconnect mydata

• marsadm primary mydata --force

• marsadm connect mydata

The disconnect is a precondition analogously to DRBD. It tries to prevent you from accidental
creation of a split brain error state.

Split brain is always an erroneous state which should be never entered deliberately!
Once you have entered it accidentally, you must resolve it ASAP (see section 2.4.3), otherwise
you cannot operate your resource any longer.
While marsadm primary without --force tries to prevent split brain as best as it can (even in

disconnected mode, which is a major difference to DRBD’s behaviour), any use of the --force
option will almost certainly provoke a split brain if the old primary continues to operate on its
local /dev/mars/mydata device. Therefore, you are strongly advised to do this only after

1. marsadm primary without --force has failed for no good reason9, and

2. You are sure you really want to switch, even when that eventually leads to a split brain.
You also declare that you are also willing to do manual split-brain resolution as described
in section 2.4.3.

Notice: in case of connection loss (e.g. networking problems / network partitions) you
might not be able to reliably detect whether a split brain will actually result, or not.
In contrast to DRBD, split brain situations are handled differently by MARS Light. When

two primaries are accidentally active at the same time, each of them writes into different logfiles
/mars/resource-mydata/log-000000001-A and /mars/resource-mydata/log-000000001-B
where the origin host is always recorded in the filename. Therefore, both nodes can theoretically
run in primary mode independently from each other, at least for some time. They might even
log-rotate independently from each other. However, the replication will certainly get stuck,
and your /mars/ filesystem will eventually run out of space. Any other secondary node will

9Most reasons will be displayed by marsadm when it is rejecting to execute the switchover.

17

2. Quick Start Guide

certainly get into serious problems: it simply does not not know which split-brain version it
should follow. Therefore, you will certainly loose your redundancy.

When one of your multiple split brain nodes has left its actual primary role, e.g. via
marsadm secondary and umounting its /dev/mars/mydata device while the network is up
(again), we cannot guarantee that it is always possible to re-enter primary mode again, even
when primary --force is given. First cleanup the split brain via leave-resource and friends,
or use the method described in section 2.4.3.3. Remember that split brain is an erroneous
state. Therefore it is generally no good idea to (re-)enter it deliberately!
Split brain situations are detected passively by secondaries. Whenever a secondary detects

that somewhere a split brain has happend, it just refuses to fetch and to apply any logfiles
behind the split point. This means that its local disk state will remain consistent, but outdated
which respect to any of the split brain versions.

2.4.3. Split Brain Resolution
Split brain can naturally occur during a long-lasting network outage (aka network partition)
when you (forcefully) switch primaries inbetween, or due to final loss of your old primary node
(fatal node crash) when not all logfile data had been transferred immediately before the final
crash.

Remember that split brain is always an erroneous state which must be resolved as
soon as possible!

2.4.3.1. Final Destruction of a Damaged Node

When a node has eventually died, do the following steps ASAP:

1. Physically remove the dead node from your network. Unplug all network cables! Fail-
ing to do so might provoke a disaster in case it somehow resurrects in an uncontrolled
manner, such as a partly-damaged /mars/ filesystem, or whatever. Don’t risk any such
unpredictable behaviour!

2. Manually check which of the surviving versions will be the “right” one. Any error is up
to you: resurrecting an unnecessarily old / outdated version and/or destroying the newest
/ best version is your fault, not the fault of MARS.

3. If you did not already switch your primary to the final destination determined in the
previous step, do it now (see description in section 2.4.2.2).

4. On the surviving new designated primary, give the following commands:

a) marsadm --host=your-damaged-host disconnect mydata

b) marsadm --host=your-damaged-host leave-resource mydata

5. In case any of the previous commands should fail (which is rather likely), repeat it with an
additional --force option. Don’t use --force in the first place, alway try first without
it!

6. Repeat the same with all resources which were formerly present at your-damaged-host.

7. Finally, say marsadm --host=your-damaged-host leave-cluster (optionally augmented
with --force).

Now your surviving nodes should believe that the old node your-damaged-host does no longer
exist, and that it does no longer participate in any resource.
In case leave-resource --host= does not work, you can try the following alternative:

4. On the surviving new designated primary, give the following commands

a) marsadm disconnect-all mydata

b) marsadm down mydata

18

2.4. Keeping Resources Operational

c) Check by hand whether your local disk is consistent, e.g. by test-mounting is, fsck,
etc.

d) marsadm delete-resource mydata

e) Check whether the other cluster nodes are dead. If not, STONITH them by hand.

f) marsadm create-resource newmydata ... and further steps to setup your re-
source from scratch.

In any case, manually check whether a split brain is reported for any resource on any of your
surviving cluster nodes. If you find one (and only then), please continue with the following
recipe as if you just had had a temporary failure of some of the surviving nodes:

2.4.3.2. Split Brain Resolution after a Temporary Failure

Please remember that split brain is always an erroneous state which must be resolved
as soon as possible!
Whenever split brain occurs for whatever reason, you have two choices for resolution: either

destroy one of your versions, or retain it under a different resource name.
In any of both cases, do the following steps ASAP:

1. Manually check which (surviving) version is the “right” one. Any error is up to you:
destroying the wrong version is your fault, not the fault of MARS.

2. If you did not already switch your primary to the final destination determined in the
previous step, do it now (see description in section 2.4.2.2).

3. On each non-right version (which you don’t want to retain) which had been primary
before, umount your /dev/mars/mydata or otherwise stop using it (e.g. stop iSCSI or
other users of the device). Wait until each of them has actually left primary state and
until their local logfile(s) have been fully written back to the underlying disk.

4. Wait until the network works again. All your (surviving) cluster nodes must10 be able
to communicate with each other. If that is not possible, or if it takes too long, use the
method described in section 2.4.3.1.

5. If any of your (surviving) cluster nodes has already the “right” version and was not in a
primary role when the split brain happened, you don’t need to do the following steps for
it, of course. The following applies only to those nodes which deviate from the correct
version:

6. It may happen that the “right” version you want to retain is not the version which is
currently designated as primary for the whole cluster. Only in such a case, switch the
primary role as described in sections 2.4.2.1 or 2.4.2.2. Here is a repetition of the necessary
steps:

a) First try marsadm primary mydata on the new designated primary host. Don’t mix
up your shell windows!

b) Only if that refuses working for no good reason, do the following steps:

i. marsadm disconnect mydata.

ii. marsadm primary mydata --force.

iii. marsadm connect mydata.

The next steps are different for different use cases:

10If you are a MARS expert and you really know what you are doing (in particular, you can anticipate the effects
of the Lamport clock and of the symlink update protocol including the “eventually consistent” behaviour
including the not-yet-consistent intermediate states, see sections 3.2 and 3.3), you may deviate from this
requirement.

19

2. Quick Start Guide

Keeping a Split Brain Version Continue with the following steps, each on those cluster node(s)
you don’t want to retain:

7. marsadm leave-resource mydata

8. After having done this on all non-right cluster nodes, check that the split brain is gone
(e.g. by saying marsadm status). In very rare11 cases, it might happen that he preceding
leave-resource operations were not able to clean up all logfiles produced in parallel
by the split brain situation. Only in such rare cases, read the documentation about
log-purge-all (see page 37) and try it.

9. Check that each underlying local disk /dev/lv-x/mydata is really usable afterwards, e.g.
by test-mounting it (or fsck if you can afford it). If all is OK, don’t forget to umount it
before proceeding with the next step.

10. Create a completely new MARS resource out of the underlying disk /dev/lv-x/mydata
having a different name, such as mynewdata (see description in section Creating and
Maintaining Resources).

Destroying a Wrong Split Brain Version As before, do the leave-resource step on each
node and check that the split brain has gone, but omit the re-creation. You may just follow-up
a join-resource to the old resource name instead, in order to restore your redundancy by
overwriting your bad split brain version with the correct one.
Alternatively, you may try the following short procedure instead, which is however not guar-

anteed to resolve all (desperate) split-brain situations (see documentation of log-purge-all
on page 37):

7. On each node with a non-”right” version, say marsadm invalidate mydata.

Keeping a Good Version When you had a secondary which did not participate in the split
brain, but just got confused and therefore stopped applying logfiles immediately after the
split-brain point, it may very well happen12 that you don’t need to do any action for it.
When all wrong versions have disappeared from the cluster (either by invalidate or by
leave-resource), the confusion should be over, and the secondary should automatically resume
tracking of the new unique version.
Please check that all of your secondaries are no longer stuck. You need to execute split brain

resolution only for stuck nodes.

2.4.3.3. Cleanup in case of Complicated Cascading Failures

MARS Light does its best to recover even from multiple failures (e.g. rolling disasters).
Chances are high that the previous instructions will work even in case of multiple failures, such
as a network failure plus local node failure at only 1 node (even if that node is the former
primary node).
However, in general (e.g. when more than 1 node is damaged) there is no general guarantee

that recovery will always succeed under any (weird) circumstances. That said, your chances
for recovery are very high when some disk remains usable at least at one of your surviving
secondaries.

It should be very hard to finally trash a secondary, because the transaction logfiles
are containing md5 checksums for all data records. Any attempt to apply currupted logfiles
is refused by MARS. In addition, the sequence numbers of log-rotated logfiles are checked for
11When your network had partitioned in a very awkward way for a long time, and when your partitioned

primaries did several log-rotate operations indendently from each other, there is a small chance that
leave-resource does not clean up all remains of such an awkward situation. Only in such a case, try
log-purge-all.

12In general, such a “good” behaviour cannot be guaranteed for all secondaries. Race conditions in complex
networks may asynchronously transfer “wrong” logfile data to a secondary much earlier than conflicting
“good” logfile data which will be marked “good” only in the future. It is impossible to predict this in advance.

20

2.4. Keeping Resources Operational

contiguity. Finally, the sequence path of logfile applications (consisting of logfile names plus their
respective length) is additionally secured by a git-like incremental checksum over the whole
path (so-called “version links”). This should detect split brains even if logfiles are appended /
modified after a (forceful) switchover has already taken place.

That said, your “chances” for final loss of data are very high if you remove the BBU of your
hardware RAID system before all hot data has been flushed to the physical disks. Therefore,
never try to “repair” a seemingly dead node before your replication is up again somewhere else!
Only unplug the network cables when advised, but never try to repair the hardware instantly!
In case of desperate situations where none of the previous instructions have succeeded, your

last chance is rebuilding your resource from an intact disk as follows:

1. Do rmmod mars on all your cluster nodes and/or reboot them. Note: if you are less
desperate, chances are high that the following will also work when the kernel module
remains active and everywhere a marsadm down is given instead, but for an ultimate
instruction you should eliminate potential kernel problems by rmmod / reboot, at least if
you can afford the downtime on concurrently operating resources.

2. For safety, physically remove the storage network cables on all your cluster nodes. Note:
the same disclaimer holds. MARS really does its best, even when delete-resource is
given while the network is fully active and multiple split-brain primaries are actively using
their local device in parallel (approved by some testcases from the automatic test suite,
but note that it is impossible to catch all possible failure scenarios). Don’t challenge your
fate if you are desperate! Don’t rely on this! Nothing is absolutely fail-safe!

3. Manually check which surviving disk is usable, and which is the “best” one for your
purpose.

4. Do modprobe mars only on that node. If that fails, rmmod and/or reboot again, and
start over with a completely fresh /mars/ partition (mkfs.ext4 /mars/ or similar), and
continue with step 7.

5. If your old /mars/ works, and you did not already (forcefully) switch your designated
primary to the final destination, do it now (see description in section 2.4.2.2).

6. Say marsadm delete-resource mydata --force.

7. Locally build up the new resource as usual.

8. Check whether the new resource works in standalone mode.

9. When necessary, repeat these steps with other resources.

10. Finally, do all the join-resources on the respective cluster nodes, according to your new
redundancy scenario after the failures (e.g. after activating spare nodes, etc).

Now you can choose how the rebuild your cluster. If you rebuilt /mars/ anywhere, you should
do the same on all other (surviving) cluster nodes and start over with a fresh join-cluster
on them.

Never use delete-resource twice on the same resource name, at least after you have
already a working standalone primary13. You might accidentally destroy your again-working
copy!
Before re-connecting any network cable on any non-primary (new secondaries), ensure that all

/dev/mars/mydata devices are no longer in use (e.g. from an old primary role before the incident
happened), and that each local disk is detached. Only after that, you should be able to safely
re-connect the network. The delete-resource given at the new primary should propagate now
to each of your secondaries, and your local disk should be usable for a re-join-resource.

13Of course, when you don’t have created the same resource anew, you may repeat delete-resource on other
cluster nodes in order to get rid of local files / symlinks which had not been propagated to other nodes
before.

21

2. Quick Start Guide

When you did not rebuild your cluster from scratch with fresh /mars/ filesystems, and
one of the old cluster nodes is supposed to be removed permanently, use leave-resource
(optionally with --host= and/or --force) and finally leave-cluster.

22

3. Basic Working Principle

Even if you are impatient, please read this chapter. At the surface, MARS appears to be very
similar to DRBD. It looks like almost being a drop-in replacement for DRBD.
When taking this naïvely, you could easily step into some trivial pitfalls, because the internal

working principle of MARS is totally different from DRBD. Please forget (almost) anything you
already know about the internal working principles of DRBD, and look at the very different
working principles of MARS.

3.1. The Transaction Logger

MARS Data Flow Principle

MARS LCA2014 Presentation by Thomas Schöbel-Theuer

Temporary
Memory
Buffer

Host A
(primary)

/dev/mars/mydata

/dev/lv-x/mydata /mars/resource-
mydata/log-00001-

hostA

Logfile
Replicator

/mars/resource-
mydata/log-00001-

hostA
/dev/lv-
x/mydata

Logfile
Applicator

Host A
(primary)

Host B
(secondary)

w
ri

te
ba

ck
 in

ba
ck

gr
ou

nd

long-distance

tra
nsfer

append

Transaction Logger

The basic idea of MARS is to record all changes made to your block device in a so-called
transaction logfile. Any write reqeuest is treated like a transaction which changes the contents
of your block device.
This is similar in concept to some database systems, but there exists no separate “commit”

operation: any write request is acting like a commit.
The picture shows the flow of write requests. Let’s start with the primary node.
Upon submission of a write request on /dev/mars/mydata, it is first buffered in a temporary

memory buffer.
The temporary memory buffer serves multiple purposes:

• It keeps track of the order of write operations.

• Additionally, it keeps track of the positions in the underlying disk /dev/lv-x/mydata. In
particular, it detects when the same block is overwritten multiple times.

• During pending write operation, any concurrent reads are served from the memory buffer.

23

3. Basic Working Principle

After the write has been buffered in the temporary memory buffer, the main logger thread of
the transaction logger creates a so-called log entry and starts an “append” operation on the
transaction logfile. The log entry contains vital information such as the logical block number in
the underlying disk, the length of the data, a timestamp, some header magic in order to detect
corruption, the log entry sequence number, of course the data itself, and optional information
like a checksum or compression information.
Once the log entry has been written through to the /mars/ filesystem via fsync(), the ap-

plication waiting for the write operation at /dev/mars/mydata is signalled that the write was
successful.
This may happen even before the writeback to the underlying disk /dev/lv-x/mydata has

started. Even when you power off the system right now, the information is not lost: it is present
in the logfile, and can be reconstructed from there.
Notice that the order of log records present in the transaction log defines a total order

among the write requests which is compatible to the partial order of write requests issued on
/dev/mars/mydata.
Also notice that despite its sequential nature, the transaction logfile is typically not the

performance bottleneck of the system: since appending to a logfile is almost purely sequential
IO, it runs much faster than random IO on typical datacenter workloads.
In order to reclaim the temporary memory buffer, its content must be written back to the

underlying disk /dev/lv-x/mydata somewhen. After writeback, the temporary space is freed.
The writeback can do the following optimizations:

1. writeback may be in any order; in particular, it may be sorted according to ascending
sector ´numbers. This will reduce the average seek distances of magnetic disks in general.

2. when the same sector is overwritten multiple times, only the “last” version need to be
written back, skipping some intermediate versions.

In case the primary node crashes during writeback, it suffices to replay the log entries from some
point in the past until the end of the transaction logfile. It does no harm if you accidentally
replay some log entries twice or even more often: since the replay is in the original total order,
any temporary inconsistency is healed by the logfile application.

In mathematics, the property that you can apply your logfile twice to your data (or even
as often as you want), is called idempotence. This is a very desirable property: it ensures that
nothing goes wrong when applying “too much” / starting your replay “too early”. Idempotence
is even more beneficial: in case anything should go wrong with your data on your disk (e.g.
IO errors), applying your logfile once more often may1 even heal some defects. Good news for
desperate sysadmins forced to work with flaky hardware!
The basic idea of the asynchronous replication of MARS is rather simple: just transfer the

logfiles to your secondary nodes, and apply them to their copy of the disk data (also called
mirror) in the same order as the total order defined by the primary.
Therefore, a mirror of your data on any secondary may be outdated, but it always corresponds

to some version which was valid in the past. This property is called anytime consistency2.

As you can see in the picture, the process of transfering the logfiles is independent
from the process which applies the logfiles to the data at some secondary site. Both processes
can be switched on / off separately (see commands marsadm {dis,}connect and marsadm
{pause,resume}-replay in section 4.2.2). This may be exploited : for example, you may repli-
cate your logfiles as soon as possible (to protect against catastrophic failures), but deliberately
1Miracles cannot be guaranteed, but higher chances and improvements can be expected (e.g. better chances
for fsck).

2Your secondary nodes are always consistent in themselves. Notice that this kind of consistency is a local
consistency model. There exists no global consistency in MARS. Global consistency would be practically
impossible in long-distance replication where Einstein’s law of the speed of light is limiting global consistency.
The front-cover pictures showing the planets Earth and Mars tries to lead your imagination away from global
consistency models as used in “DRBD Think(tm)”, and try to prepare you mentally for local consistency as
in “MARS Think(tm)”.

24

3.2. The Lamport Clock

wait one hour until it is applied (under regular circumstances). If your data inside your filesys-
tem /mydata/ at the primary site is accidentally destroyed by rm -rf /mydata/, you have an
old copy at the secondary site. This way, you can substitute some parts3 of conventional backup
functionality by MARS. In case you need the actual version, just replay in “fast-forward” mode
(similar to old-fashioned video tapes).

Future versions of MARS Full are planned to also allow “fast-backward” rewinding, of
course at some cost.

3.2. The Lamport Clock
MARS is always asynchonously communicating in the distributed system on any topics, even
strategic decisions.
If there were a strict global consistency model, which is roughly equivalent to a standalone

model, we would need locking in order to serialize conflicting requests. It is known for many
decades that distributed locks do not only suffer from performance problems, but they are also
cumbersome to get them working reliably in scenarios where nodes or network links may fail at
any time.
Therefore, MARS uses a very different consistency model: Eventually Consistent.

The asynchronous communication protocol of MARS leads to a different behaviour
from DRBD in case of network partitions (temporary interruption of communication between
some cluster nodes), because MARS remembers the old state of remote nodes over long periods
of time, while DRBD knows absolutely nothing about its peers in disconnected state. Sysadmins
familiar with DRBD might find the following behaviour unusual:

Event DRBD Behaviour MARS Behaviour

1. the network partitions automatic disconnect nothing happens, but replication lags behind

2. on A: umount $device works works

3. on A: {drbd,mars}adm secondary works works

4. on B: {drbd,mars}adm primary works, split brain happens refused because B believes that A is primary

5. the network resumes automatic connect attempt fails communication automatically resumes

If you intentionally want to switch over (and to produce a split brain as a side effect), the
following variant must be used with MARS:

Event DRBD Behaviour MARS Behaviour

1. the network partitions automatic disconnect nothing happens, but replication lags behind

2. on A: umount $device works works

3. on A: {drbd,mars}adm secondary works works

4. on B: {drbd,mars}adm primary split brain, but nobody knows refused because B believes that A is primary

5. on B: marsadm disconnect - works, nothing happens

6. on B: marsadm primary --force - works, split brain happens on B, but A doesn’t know

7. on B: marsadm connect - works, nothing happens

8. the network resumes automatic connect attempt fails communication resumes, A now detects the split brain

In order to implement the consistency model “eventually consistent”, MARS uses a so-called
Lamport4 clock. MARS uses a special variant called “physical Lamport clock”.
The physical Lamport clock is another almost-realtime clock which can run independently

from the Linux kernel system clock. However, the Lamport clock tries to remain as near as
possible to the system clock.
Both clocks can be queried at any time via cat /proc/sys/mars/lamport_clock. The result

will show both clocks in parallel, in units of seconds since the Unix epoch, with nanosecond
resolution.
3Please note that MARS cannot fully substitute a backup system, because it can keep only physical copies,
and does not create logical copies.

4Published in the late 1970s by Leslie Lamport, also known as inventor of LATEX.

25

3. Basic Working Principle

When there are no network messages at all, both the system clock and the Lamport clock
will show almost the same time (except some minor differences of a few nanoseconds resulting
from the finite processor clock speed).
The physical Lamport clock works rather simple: any message on the network is augmented

with a Lamport time stamp telling when the message was sent according to the local Lamport
clock of the sender. Whenever that message is received by some receiver, it checks whether
the time ordering relation would be violated: whenever the Lamport timestamp in the message
would claim that the sender had sent it after it arrived at the receiver (according to drifts in
their respective local clocks), something must be wrong. In this case, the local Lamport clock
of the receiver is advanced shortly after the sender Lamport timestamp, such that the time
ordering relation is no longer violated.
As a consequence, any local Lamport clock may precede the corresponding local system

clock. In order to avoid accumulation of deltas between the Lamport and the system clock, the
Lamport clock will run slower after that, possibly until it reaches the system clock again (if no
other message arrives which sets it forward again). After having reached the system clock, the
Lamport clock will continue with “normal” speed.
MARS uses the local Lamport clock for anything where other systems would use the local

system clock: for example, timestamp generation in the /mars/ filesystem. Even symlinks
created there are timestamped according to the Lamport clock. Both the kernel module and
the userspace tool marsadm are always operating in the timescale of the Lamport clock. Most
importantly, all timestamp comparisons are always carried out with respect to Lamport time.

Bigger differences between the Lamport and the system clock can be annoying from a
human point of view: when typing ls -l /mars/resource-mydata/ many timestamps may
appear as if they were created in the “future”, because the ls command compares the output
formatting against the system clock (it does not even know of the existence of the MARS
Lamport clock).

Always use ntp (or another clock synchronization service) in order to pre-synchronize
your system clocks as close as possible. Bigger differences are not only annoying, but may lead
some people to wrong conclusions and therefore even lead to bad human decisions!
In a professional datacenter, you should use ntp anyway, and you should monitor its effec-

tiveness anyway.

Hint: many internal logfiles produced by the MARS kernel module contain Lamport
timestamps written as numerical values. In order to convert them into human-readable form,
use the command marsadm cat /mars/5.total.status or similar.

3.3. The Symlink Tree

The /mars/ filesystem contains not only transaction logfiles, but also acts as a generic storage for
(persistent) state information. Both configuration information and runtime state information
are stored in symlinks. Symlinks are “misused5” in order to represent some key -> value pairs.

Therefrom results a fundamentally different behaviour than DRBD. When your DRBD
primary crashed before and now comes up again, you have to setup DRBD again by a sequence
of commands like modprobe drbd; drbdadm up all; drbdadm primary all or similar. In
contrast, MARS needs only modprobe mars (after /mars/ has been mounted by /etc/fstab).
The persistence of the symlinks residing in /mars/ will automatically remember your previous
state, even if some your resources were primary while others were secondary (mixed operations).
You don’t need to do any actions in order to “restore” a previous state, no matter how “complex”
it was.
5This means, the symlink targets need not be other files or directories, but just any values like integers or
strings.

26

3.3. The Symlink Tree

(Almost) all symlinks appearing in the /mars/ directory tree are automatically replicated
thoughout the whole cluster. Thus the /mars/ directory forms some kind of global namespace.
Since the symlink replication works generically, you may use the /mars/userspace/ directory

in order to place your own symlink there (for whatever purpose, which need not have to do
with MARS).
In order to avoid name clashes, each symlink created at node A should have the name A in its

path name. Typically, internal MARS names follow the scheme /mars/something /myname-A,
and you should follow the best practice of systematically using /mars/userspace/myname-A
or similar. As a result, each node will automatically get informed about the state at any
other node, like B when the corresponding information is recorded on node B under the name
/mars/userspace/myname-B (context-dependent names).

Important: the convention of placing the creator host name inside your symlink
names should be used wherever possible. The name part is a kind of “ownership indicator”. It
is crucial that no other host writes any symlink not “belonging” to him. Other hosts may read
foreign symlinks as often as they want, but never modify them. This way, your cluster nodes
are able to communicate with each other via symlink updates.
Although you may create (and change) your symlinks with userspace tools like ln -s, you

should use the following marsadm commands instead:

• marsadm set-link myvalue /mars/userspace/mykey-A

• marsadm delete-file /mars/userspace/mykey-A

There are two reasons for this: first, the marsadm set-link command will automatically use
the Lamport clock for symlink creation, and therefore will avoid any errors resulting from a
“wrong” system clock (as in ln -s). Second, the marsadm delete-file (which also deletes
symlinks) works on the whole cluster.
What’s the difference? If you try to remove your symlink locally by hand via rm -f, you

will be surprised: since the symlink has been replicated to other cluster nodes, it will be
re-transferred from there and will be resurrected locally after some short time. This way, you
cannot delete any object reliably, because your whole cluster (which may consist of many nodes)
remembers all your state information and will resurrect it whenever “necessary”.
In order to solve the deletion problem, MARS Light uses some internal deletion protocol

using auxiliary symlinks residing in /mars/todo-global/. The deletion protocol ensures that
all replicas get deleted in the whole cluster, and only after that the auxiliary symlinks in
/mars/todo-global/ are also deleted eventually.
You may change your already existing symlink via marsadm set-link some-other-value

/mars/userspace/mykey-A . The new value will be propagated in the cluster according to a
timestamp comparison protocol: whenever node B notices that A has a newer version of
some symlink (according to the Lamport timestamp), it will replace its elder version by the
newer one. The opposite does not work: if B notices that A has an elder version, just nothing
happens. This way, the timestamps of symlinks can only progress in forward direction, but
never backwards in time.
As a consequence, symlink updates made “by hand” via ln -s may get lost when the local

system clock is much more earlier than the Lamport clock.
When your cluster is fully connected by the network, the last timestamp will finally win ev-

erywhere. Only in case of network outages leading to network partitions, some information may
be temporarily inconsistent, but only for the duration of the network outage. The timestamp
comparison protocol in combination with the Lamport clock and with the persistence of the
/mars/ filesystem will automatically heal any temporary inconsistencies as soon as possible,
even in case of temporary node shutdown.
The meaning of the internal MARS Light symlinks residing in /mars/ is documented in

section 5.2.

27

3. Basic Working Principle

3.4. Defending Overflow of /mars/

This section describes an important difference to DRBD. The metadata of DRBD is allocated
statically at creation time of the resource. In contrast, the MARS transaction logfiles are
allocated dynamically at runtime.
This leads to a potential risk from the perspective of a sysadmin: what happens if the /mars/

filesystem runs out of space?
No risk, no fun. If you want a system which survives long-lasting network outages while

keeping your replicas always consistent (anytime consistency), you need dynamic memory for
that. It is impossible to solve that problem using static memory6.
Therefore, DRBD and MARS have different application areas. If you just want a simple

system for mirroring your data over short distances like a crossover cable, DRBD will be a
suitable choice. However, if you need to replicate over longer distances, or if you need higher
levels of reliability even when multiple failures may accumulate (such as network loss during a
resync of DRBD), the transaction logs of MARS can solve that, but at some cost.

3.4.1. Countermeasures
3.4.1.1. Dimensioning of /mars/

The first (and most important) measure against overflow of /mars/ is simply to dimension it
large enough to survive longer-lasting problems, at least one weekend.
Recommended size is at least one dedicated disk, residing at a hardware RAID controller with

BBU (see section 2.1). During normal operation, that size is needed only for a small fraction,
typically a few percent or even less than one percent. However, it is your safety margin. Keep
it high enough!

3.4.1.2. Monitoring

The next (equally important) measure is monitoring in userspace.
Following is a list of countermeasures both in userspace and in kernelspace, in the order of

“defensive walling”:

1. Regular userspace monitoring must throw an INFO if a certain freespace limit l1 of /mars/
is undershot. Typical values for l1 are 30%. Typical actions are automated calls of
marsadm log-rotate all followed by marsadm log-delete-all all. You have to im-
plement that yourself in sysadmin space.

2. Regular userspace monitoring must throw a WARNING if a certain freespace limit l2 of
/mars/ is undershot. Typical values for l2 are 20%. Typical actions are (in addition to
log-rotate and log-delete-all) alarming human supervisors via SMS and/or further
stronger automated actions.

Frequently large space is occupied by files stemming from debugging output, or
from other programs or processes. A hot candidate is “forgotten” removal of debugging
output to /mars/. Sometimes, an rm -rf $(find /mars/ -name “*.log”) can work
miracles.

Another source of space hogging is a “forgotten” pause-sync or disconnect.
Therefore, a simple marsadm connect-global all followed by marsadm resume-replay-global
all may also work miracles (if you didn’t want to freeze some mirror deliberately).

If you just wanted to freeze a mirror at an outdated state for a very long time,
6The bitmaps used by DRBD don’t preserve the order of write operations. They cannot do that, because their
space is O(k) for some constant k. In contrast, MARS preserves the order. Preserving the order as such
(even when only facts about the order were recorded without recording the actual data contents) requires
O(n) space where n is infinitely growing over time.

28

3.4. Defending Overflow of /mars/

you simply cannot do that without causing infinite growth of space consumption in
/mars/. Therefore, a marsadm leave-resource $res at exactly that(!) secondary site
where the mirror is frozen, can also work miracles. If you want to automate this in un-
serspace, be careful. It is easy to get unintended effects when choosing the wrong site for
leave-resource.

Hint: you can / should start some of these measures even earlier at the INFO
level (see item 1), or even earlier.

3. Regular userspace monitoring must throw an ERROR if a certain freespace limit l3 of
/mars/ is undershot. Typical values for l3 are 10%. Typical actions are alarming the
CEO via SMS and/or even stronger automated actions. For example, you may choose
to automatically call marsadm leave-resource $res on some or all secondary nodes,
such that the primary will be left alone and now has a chance to really delete its logfiles
because no one else is any longer potentially needing it.

4. First-level kernelspace action, automatically executed when /proc/sys/mars/required_
free_space_4_gb + /proc/sys/mars/required_free_space_3_gb + /proc/sys/mars/
required_free_space_2_gb + /proc/sys/mars/required_free_space_1_gb is under-
shot:
all locally secondary resources will stop fetching transaction logfiles. As a side effect, other
nodes in the cluster may become unable to delete their logfiles also. This is a desperate
action of the kernel module.

5. Second-level kernelspace action, automatically executed when /proc/sys/mars/required_
free_space_3_gb + /proc/sys/mars/required_free_space_2_gb + /proc/sys/mars/
required_free_space_1_gb is undershot:
all locally secondary resources will start removing any logfiles which are no longer used
locally. This is a more desperate action of the kernel module.

6. Third-level kernelspace action, automatically executed when /proc/sys/mars/required_
free_space_2_gb + /proc/sys/mars/required_free_space_1_gb is undershot:
all locally primary resources are checked for logfiles which are no longer needed locally.
Locally unneeded files are deleted even when some secondary needs them. As a conse-
quence, some secondaries may get stuck (left in consistent, but outdated state). In order
to get them actual again, they will need a marsadm invalidate later. This is an even
more desperate action of the kernel module. You don’t want to get there (except for
testing).

7. Last desperate kernelspace action when all other has failed and /proc/sys/mars/required_
free_space_1_gb is undershot:
all locally primary resources will enter emergency mode (see description below in sec-
tion 3.4.2). This is the most desperate action of the kernel module. You don’t want to
get there (except for testing).

In addition, the kernel module obeys a general global limit /proc/sys/mars/required_total_
space_0_gb + the sum of all of the above limits. When the total size of /mars/ undershots
that sum, the kernel module refuses to start at all, because it assumes that it is senseless to try
to operate MARS on a system with such low memory resources.

The current level of emergency kernel actions may be viewed at any time via /proc/
sys/mars/mars_emergency_mode.

3.4.1.3. Throttling

The last measure for defense of overflow is throttling your performance pigs.
Motivation: in rare cases, some users with ssh access can do very silly things. For example,

some of them are creating their own backups via user-cron jobs, and they do it every 5 minutes.

29

/proc/sys/mars/required_free_space_4_gb
/proc/sys/mars/required_free_space_4_gb
/proc/sys/mars/required_free_space_3_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_3_gb
/proc/sys/mars/required_free_space_3_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_total_space_0_gb
/proc/sys/mars/required_total_space_0_gb
/proc/sys/mars/mars_emergency_mode
/proc/sys/mars/mars_emergency_mode

3. Basic Working Principle

Some example guy created a zip archive (almost 1GB) by regularly copying his old zip archive
into a new one, then appending deltas to the new one, and finally deleting the old archive.
Every 5 minutes. Yes, every 5 minutes, although almost never any new files were added to the
archive. Essentially, he copied over his archive, for nothing. This led to massive bulk write
requests, for ridiculous reasons.
In general, your hard disks (or even RAID systems) allow much higher write IO rates than

you can ever transport over a standard TCP network from your primary site to your secondary,
at least over longer distances (see use cases for MARS in chapter 1). Therefore, it is easy to
create a such a high write load that it will be impossible to replicate it over the network, by
construction.
Therefore, we need some mechanism for throttling bulk writers whenever the network is

weaker than your IO subsystem.

Notice that DRBD will always throttle your writes whenever the network forms a bot-
tleneck, due to its synchronous operation mode. In contrast, MARS allows for buffering of
performance peaks in the transaction logfiles. Only when your buffer in /mars/ runs short (cf
subsection 3.4.1.1), MARS will start to throttle your application writes.
There are a lot of screws named /proc/sys/mars/write_throttle_* with the following

meaning:

write_throttle_start_percent Whenever the used space in /mars/ is below this threshold,
no throttling will occur at all. Only when this threshold is exceeded, throttling will start
slowly. Typical values for this are 60%.

write_throttle_end_percent Maximum throttling will occur once this space threshold is
reached, i.e. the throttling is now at its maximum effect. Typical values for this are
90%. When the actual space in /mars/ lies between write_throttle_start_percent
and write_throttle_end_percent, the strength of throttling will be interpolated linearly
between the extremes. In practice, this should lead to an equilibrum between new input
flow into /mars/ and output flow over the network to secondaries.

write_throttle_size_threshold_kb (readonly) This parameter shows the internal strength
calculation of the throttling. Only write7 requests exceeding this size (in KB) are throttled
at all. Typically, this will hurt the bulk performance pigs first, while leaving ordinary users
(issuing small requests) unaffected.

write_throttle_ratelimit_kb Set the global IO rate in KB/s for those write requests which
are throttled. In case of strongest8 throttling, this parameters determines the input flow
into /mars/. The default value is 5.000 KB/s. Please adjust this value to your application
needs and to your environment.

write_throttle_rate_kb (readonly) Shows the current rate of exactly those requests which
are actually throttled (in contrast to all requests).

write_throttle_cumul_kb (logically readonly) Same as before, but the cumulative sum of all
throttled requests since startup / reset. This value can be reset from userspace in order
to prevent integer overflow.

write_throttle_count_ops (logically readonly) Shows the cumulative number of throttled
requests. This value can be reset from userspace in order to prevent integer overflow.

write_throttle_maxdelay_ms Each request is delayed at most for this timespan. Smaller
values will improve the responsiveness of your userspace application, but at the cost of
potentially retarding the requests not sufficiently.

write_throttle_minwindow_ms Set the minimum length of the measuring window. The mea-
suring window is the timespan for which the average (throughput) rate is computed (see
write_throttle_rate_kb). Lower values can increase the responsiveness of the controller
algorithm, but at the cost of accuracy.

7Read requests are never throttled at all.
8In case of lighter throttling, the input flow into /mars/ may be higher because small requests are not throttled.

30

3.4. Defending Overflow of /mars/

write_throttle_maxwindow_ms This parameter must be set sufficiently much greater than
write_throttle_minwindow_ms. In case the flow of throttled operations pauses for some
natural reason (e.g. switched off, low load, etc), this parameter determines when a com-
pletely new rate calculation should be started over9.

3.4.2. Emergency Mode
When /mars/ is almost full and there is really absolutely no chance of getting rid of any local
transaction logfile (or free some space in any other way), there is only one exit strategy: stop
creating new logfile data.
This means that the ability for replication gets lost.
When entering emergency mode, the kernel module will execute the following steps for all

resources where the affected host is acting as a primary:

1. Do a kind of “logrotate”, but create a hole in the sequence of transaction logfile numbers.
The “new” logfile is left empty, i.e. no data ist written to it (for now). The hole in
the numbering will prevent any secondaries from applying any logfiles behind the hole
(should they ever contain some data, e.g. because the emergency mode has been left
again). This works because the secondaries are regularly checking the logfile numbers for
contiguity, and they will refuse to apply anything which is not contiguous. As a result,
the secondaries will be left in a consistent, but outdated state.

2. The kernel module writes back all data present in the temporary memory buffer (see
figure in section 3.1). This may lead to a (short) delay of user write requests until
that has finished (typically fractions of a second or a few seconds). The reason is that
the temporary memory buffer must not be increased in parallel during this phase (race
conditions).

3. After the temporary memory buffer is empty, all local IO requests (whether reads or
writes) are directly going to the underlying disk. This has the same effect as if MARS
was not present anymore.

In order to leave emergency mode, the sysadmin should do the following steps:

1. Free enough space. For example, delete any foreign files on /mars/ which have nothing
to do with MARS, or resize the /mars/ filesystem, or whatever.

2. If /proc/sys/mars/mars_reset_emergency is not set, now it is time to set it. Normally,
it should be already set. In consequence, the primary sides should continue transaction
logging automatically.

3. On the secondaries, use marsadm invalidate $res in order to get your outdated mirrors
uptodate. This will lead to temporarily inconsistent mirrors, so don’t do this on all
secondaries in parallel, but sequentially step by step. This way, if you have more than 1
mirror, you will always retain at least one consistent, but outdated copy.

If you had only 1 mirror per resource before the overflow happened, you can now
create a new one via marsadm join-resource $res on a third node (provided that your
storage space permits that after the cleanup). After the initial full sync has finished
there, do an marsadm invalidate $res on the outdated mirror. This way, you will
always retain at least one consistent mirror somewhere. After all is up-to-date, you can
delete the superfluous mirror by marsadm leave-resource $res and reclaim the disk
space from its underlying disk.

9Motivation: if requests would pause for one hour, the measuring window could become also an hour. Of
course, that would lead to completely meaningless results. Two requests in one hour is “incorrect” from
a human point of view: we just have to ensure that averages are computed with respect to a reasonable
maximum time window in the magnitude of 10s.

31

/proc/sys/mars/mars_reset_emergency

4. The Sysadmin Interface marsadm

In general, the term “after a while” means that other cluster nodes will take notice of your
actions according to the “eventually consistent” propagation protocol described in sections 3.2
and 3.3. Please be aware that this “while” may last very long in case of network outages or bad
firewall rules.
In the following tables, column “Cmp” means compatibility with DRBD. Please note that

100% exact compatibility is not possible, because of the asynchronous communication paradigm.
The following table documents common options which work with (almost) any command:

Option Cmp Description

--dry-run no Run the command without actually creating symlinks or touching files
or executing rsync. This option should be used first at any dangerous
command, in order to check what would happen.

Don’t use in scripts! Only use by hand!
This option does not change the waiting logic. Many commands are
waiting until the desired effect has taken place. However, with --dry-run
the desired effect will never happen, so the command may wait forever
(or abort with a timeout).
In addition, this option can lead to additional aborts of the commands
due to unmet conditions, which cannot be met because the symlinks are
not actually created / altered.

Thus this option can give only a rough estimate of what would happen

later!
--force almost Some preconditions are skipped, i.e. the command will / should work

although some (more or less) vital preconditions are violated.
Instead of giving --force, you may alternatively prefix your command
with force-

THIS OPTION IS DANGEROUS!
Use it only when you are absolutely sure that you know what you are
doing!

Use it only as a last resort if the same command without --force has

failed for no good reason!
--timeout=$seconds no Some commands require response from either the local kernel module,

or from other cluster nodes. In order to prevent infinite waiting in case
of network outages or other problems, the command will fail after the
given timeout has been reached.
When $seconds is -1, the command will wait forever.
When $seconds is 0, the command will not wait in case any precondition
is not met, und abort without performing an action..

The default timeout is 5s.
--host=$host no The command acts as if the command were executed on another host

$host. This option should not be used regularly, because the local in-
formation in the symlink tree may be outdated or even wrong. Ad-
ditionally, some local information like remote sizes of physical devices
(e.g. remote disks) is not present in the symlink tree at all, or is wrong
(reflecting only the local state).

THIS OPTION IS DANGEROUS!
Use it only for final destruction of dead cluster nodes, see section 2.4.3.1.

--ip=$ip no By default, marsadm always uses the IP for $host as stored in the symlink
tree (directory /mars/ips/). When such an IP entry does not (yet) exist
(e.g. create-cluster or join-cluster), all local network interfaces are
automatically scanned for IPv4 adresses, and the first one is taken. This
may lead to wrong decisions if you have multiple network interfaces.
In order to override the automatic IP detection and.to explicitly tell the
IP address of your storage network, use this option.

Usually you will need this only at {create,join}-cluster.
--verbose no Some (few) commands will become more speaky.

Option Cmp Description

32

4.2. Resource Operations

4.1. Cluster Operations

Command / Params Cmp Description

create-cluster no Precondition: the /mars/ filesystem must be mounted and it must be
empty. The kernel module must not be loaded.
Postcondition: the initial symlink tree is created in /mars/. Addition-
ally, the /mars/uuid symlink is created for later distribution in the clus-
ter. It uniquely indentifies the cluster in the world.
This must be called exactly once at the initial primary.

Hint: use the --ip= option if you have multiple interfaces.
join-cluster

$host

no Precondition: the /mars/ filesystem must be mounted and it must be
empty. The kernel module must not be loaded. The cluster must have
been already created at another node $host. A working ssh connecttion
to $host must exit (without password). rsync must be installed at all
cluster nodes.
Postcondition: the initial symlink tree /mars/ is replicated from the
remote host $host, and the local host has been added as another cluster
member.
This must be called exactly once at every initial secondary.

Hint: use the --ip= option if you have multiple interfaces.
leave-cluster no Precondition: the /mars/ filesystem must be mounted and it must con-

tain a valid MARS symlink tree produced by the other marsadm com-
mands. The kernel module must be loaded. The local node must no
longe be member of any resource (see marsadm leave-resource).
Postcondition: the local node is removed from the replicated symlink
tree /mars/ such that other nodes will cease to communicate with it
after a while. The local /mars/ filesystem may be finally destroyed.

In case of an eventual node loss (e.g. fire, water, ...) this may be

used. on another node $helper in order to finally remove $damaged from

the cluster via the command marsadm leave-cluster --host=$damaged

--force.
wait-cluster no See section 4.3.2.

Command / Params Cmp Description

4.2. Resource Operations
Common precondition for all resource operations is that the /mars/ filesystem is mounted, that
it contains a valid MARS symlink tree produced by other marsadm commands, that your current
node is a member of the cluster, and that the kernel module is loaded. When communication
is impossible due to network outages or bad firewall rules, most commands will succeed, but
other cluster nodes may take a long time to notice your changes.

4.2.1. Resource Creation / Deletion / Modification

Command / Params Cmp Description

create-resource

$res

$disk_dev

[$mars_name]

[$size]

no Precondition: the resource argument $res must not denote an already
existing resource in the cluster. The argument $disk_dev must denote
a usable local block device, its size must be greater zero. When the op-
tional $mars_name is given, that name must not already exist on the local
node; when not given, $mars_name defaults to $res. When the optional
$size argument is given, it must be a number, optionally followed by
suffix k, m, g, or t (denoting size factors in powers of two). The given
size must not exceed the actual size of $disk_dev.
Postcondition: the resource $res is created, the inital role of the current
node is primary. The corresponding symlink tree information is asyn-
chonously distributed in the cluster (in the background). The device
/dev/mars/$mars_name should appear after a while.
Notice: when $size is strictly smaller than the size of $disk_dev, you
will unnecessarily waste some space..

This must be called exactly once for any new resource.
Command / Params Cmp Description

33

4. The Sysadmin Interface marsadm

Command / Params Cmp Description

join-resource

$res

$disk_dev

[$mars_name]

no Precondition: the resource argument $res must denote an already exist-
ing resource in the cluster (i.e. its symlink tree information must have
been received). The resource must have a designated primary. The
local node must not be already member of that resource. The argu-
ment $disk_dev must denote a usable local block device, its size must
be greater or equal to the logical size of the resource. When the optional
$mars_name is given, that name must not already exist on the local node;
when not given, $mars_name defaults to $res.
Postcondition: the current node becomes a member of resource $res,
the inital role is secondary. The initial full sync should start after a
while.

Notice: when the size if $disk_dev is strictly greater than the size of

the resource, you will unnecessarily waste some space..
leave-resource

$res

no Precondition: the local node must be a member of the resource $res;
its current role must be secondary. The disk must be detatched.
Postcondition: the local node is no longer a member of $res.
Notice: as a side effect for other nodes, their log-delete may now become
possible, since the current node does no longer count as a candidate for
logfile application.
Also notice that this command may lead to (but does not guarantee)
split-brain resolution.

The contents of the disk is not changed by this command. Before
issuing this command, check whether the disk is locally consistent! After
this command, any symlinks indicating the consistency state are gone,
and you will no longer be able to guess consistency properties.

When you are sure.that the disk was consistent before (or is
now by manually checking it), you may re-create a new resource out of
it via create-resource.

In case of an eventual node loss (e.g. fire, water, ...) this command

may be used on another node $helper in order to finally remove all

the resources $damaged from the cluster via the command marsadm

leave-resource $res --host=$damaged --force.
Command / Params Cmp Description

34

4.2. Resource Operations

Command / Params Cmp Description

delete-resource

$res

no Precondition: the resource must be empty (i.e. all members must have
left via leave-resource). This precondition is overridable by --force,
increasing the danger to maximum!
Postcondition: all cluster members will somewhen be forcefully removed
from $res. In case of network interruptions, the forced removal may take
place far in the future.

THIS COMMAND IS VERY DANGEROUS!
Use this only in desperate situations. You are forcefully using a sledge-
hammer, even without --force! The danger is that the true state of
other cluster nodes need not be known in case of network problems
.Even when it were known, it could be compromised by byzantine
failures.
It is strongly advised to try this command with --dry-run first.
When combined with --force, this command will definitely murder
other cluster nodes, possibly after a long while, and even when they
are operating in primary mode / having split brains / etc. However,
there is no guarantee that other cluster nodes will be really dead - it
is possible that they remain only half dead. For example, a half dead
node may continue to write data to /mars/ and thus lead to overflow
somewhen.

This command implies a forceful detach, possibly
destroying consistency. In particular, when a cluster node was op-
erating in primary mode (/dev/mars/mydata being continuously in use),
the forceful detach cannot be carried out until the device is completely
unused. In the meantime, the current transaction logfile will be ap-
pended to, but the file might be already unlinked (orphan file filling
up the disk). After the forceful detach, the underlying disk need not
be consistent (although we do our best). Since this command deletes
any symlinks which normally would indicate the consistency state, no
guarantees about consistency can be given after this in general! Always
check consistency by hand!
When possible / as soon as possible, check the local state on the other
nodes in order to really shutdown the resource everywhere (e.g. to
really unuse the /dev/mars/mydata device, etc).
After this command, you should rebuild the resource under a different
name, in order to avoid any clashes caused by unexpected resurrection
of “dead” or “half-dead” nodes (beware of shapshot / restores on virtual
machines!!). MARS Light does its best to avoid problems even in case
the new resource name should equal the old one, but there can be no
guarantee in all possible failure scenarios / usage scenarios.

When possible, prefer leave-resource over this!
wait-resource

$res

{is-,}{attach,

primary,

device}{-off,}

no See section 4.3.2.

Command / Params Cmp Description

4.2.2. Operation of the Resource
Common preconditions are the preconditions from section 4.2, plus the respective resource $res
must exist, and the local node must be a member of it. With the single exception of attach
itself, all other operations must be started in attached state.
When $res has the special reserved value all, the following operations will work on all

resources where the current node is a member (analogously to DRBD).

Command / Params Cmp Description

attach

$res

yes Precondition: the local disk belonging to $res is not in use by anyone
else.
Postcondition: MARS uses the local disk and is able work with it (e.g.
apply logfiles to it).

Note: the local disk is opened in exclusive read-write mode. This should

protect against most common misuse, such as opening the disk in par-

allel to MARS.
Command / Params Cmp Description

35

4. The Sysadmin Interface marsadm

Command / Params Cmp Description

detach

$res

yes Precondition: the local host is in secondary role, pause-sync and
pause-replay have been given..
Postcondition: the local disk belonging to $res is no longer in use.

WARNING! After this, you might use the underlying disk for
other purposes, such as test-mounting it in readonly mode.. Don’t
modifiy its contents in any way! Not even by an fsck! Otherwise, you
will have inconsistencies guaranteed. MARS has no way for knowing of
any modifications to your disk when not written via /dev/mars/*.

In case you accidentally modified the underlying disk at the

primary side, you may choose to resolve the inconsistencies by marsadm

invalide $res on each secondary.

pause-sync

$res

partly Equivalent to pause-sync-local.

pause-sync-local

$res

partly Precondition: none additionally.

Postcondition: any sync operation targeting the local disk (when not

yet completed) is paused after a while. When completed, this operation

will remember the switch state forever and become relevant if a sync is

needed again (e.g. invalidate or resize).
pause-sync-global

$res

partly Like *-local, but operates on all members of the resource.

resume-sync

$res

partly Equivalent to pause-sync-local.

resume-sync-local

$res

partly Precondition: none additionally.

Postcondition: any sync operation targeting the local disk (when not yet

completed) is resumed after a while. When completed, this operation

will remember the switch state forever and become relevant if a sync is

needed again (e.g. invalidate or resize).
resume-sync-global

$res

partly Like *-local, but operates on all members of the resource.

pause-replay

$res

partly Equivalent to pause-replay-local.

pause-replay-local

$res

partly Precondition: must be in secondary role.
Postcondition: any local apply operations of transaction logfiles to the
local disk are paused at their current stage.

This works independently from {dis,}connect.
pause-replay-global

$res

partly Like *-local, but operates on all members of the resource.

resume-replay

$res

partly Equivalent to pause-replay-local.

resume-replay-local

$res

partly Precondition: must be in secondary role.

Postcondition: any (parts of) locally existing transaction logfiles

(whether replicated from other hosts or produced locally) are started

for apply to the local disk, as far as they have not yet been applied.
resume-replay-global

$res

partly Like *-local, but operates on all members of the resource.

connect

$res

partly Equivalent to connect-local.

Command / Params Cmp Description

36

4.2. Resource Operations

Command / Params Cmp Description

connect-local

$res

partly Precondition: must be in secondary role.
Postcondition: any (parts of) transaction logfiles which are present at
another primary host will be transferred to the local /mars/ storage as
far as not yet present locally.

This works independently from {pause,resume}-replay.
connect-global

$res

partly Like *-local, but operates on all members of the resource.

disconnect

$res

partly Equivalent to disconnect-local.

disconnect-local

$res

partly Precondition: must be in secondary role.
Postcondition: any transfer of (parts of) transaction logfiles which are
present at another primary host to the local /mars/ storage are paused
at their current stage.

This works independently from {pause,resume}-replay.
disconnect-global

$res

partly Like *-local, but operates on all members of the resource.

up

$res

yes Equivalent to attach followed by connect followed by resume-replay fol-

lowed by resume-sync.

down

$res

yes Equivalent to pause-sync followed by disconnect followed by

pause-replay followed by detach.

primary

$res

almost Precondition: all relevant transaction logfiles must be either already
locally present, or be fetchable (see connect and resume-replay). When
another host is currently primary, it must match the preconditions of
marsadm secondary.
Postcondition: /dev/mars/$dev_name appears and is usable; the current
host is in primary role.
When another host is currently primary, it is first asked to become
secondary, and waited for to actually be secondary. After that, the local
host is asked to become primary. Before actually becoming primary,
all relevant logfiles are applied. Only after that, /dev/mars/$dev_name
will appear. When netwrk transfers of the symlink tree are very slow
(or currently impossible), this command may take a very long time.
Therefore --force will skip all checks depending on remote state.

In case a split brain is detected, the local host will refuse to become

primary without --force.
secondary

$res

almost Precondition: the local /dev/mars/$dev_name is no longer in use (e.g.
umounted).

Postcondition: /dev/mars/$dev_name has disappeared; the current host

is in secondary role.

wait-umount

$res

no See section 4.3.2.

log-purge-all

$res

no Precondition: none additionally.
Postcondition: all locally known logfiles and version links are removed,
whenever they are not / no longer reachable by any split brain version.

Rationale: remove hindering split-brain /
leave-resource leftovers.
Use this only when split brain does not go away by means of
leave-resource (which should never happen, but could happen in very
weird scenarios such as MARS running on virtual machines doing a re-
store of their snapshots, or otherwise unexpected resurrection of dead
or half-dead nodes).

THIS IS POTENTIALLY DANGEROUS!
This command might destroy some valuable logfiles / other information
in case the local information is outdated or otherwise incorrect. MARS
Light does its best for checking anything, but there is no guarantee.

Hint: use --dry-run beforehand for checking!
Command / Params Cmp Description

37

4. The Sysadmin Interface marsadm

Command / Params Cmp Description

resize

$res

[$size]

almost Precondition: all disks in the cluster participating in $res must be phys-
ically larger than the logical resource size (e.g. by use of lvm). When
the optional $size argument is present, it must be smaller than the
minimum of all physical sizes, but larger than the current logical size.

Postcondition: at the (future) primary (if any), the logical size of

/dev/mars/$dev_name will reflect the new size after a while.
Command / Params Cmp Description

4.2.3. Logfile Operations

Command / Params Cmp Description

log-rotate

$res

no Precondition: the local node $host must be primary at $res.

Postcondition: after a while, a new transaction logfile

/mars/resource-$res/log-$new_nr-$host will be used instead of

/mars/resource-$res/log-$old_nr-$host where $new_nr = $old_nr + 1.
log-delete

$res

no Precondition: the local node must be a member of $res.

Postcondition: when there exists an old transaction logfile

/mars/resource-$res/log-$old_nr-$some_host where $old_nr is the min-

imum existing number and that logfile is no longer referenced by any of

the symlinks /mars/resource-$res/replay-* , that logfile is marked for

deletion in the whole cluster. When no such logfile exists, nothing will

happen.
log-delete-all

$res

no Like log-delete, but mark all currently unreferenced logfiles for dele-

tion.

Command / Params Cmp Description

4.2.4. Consistency Operations

Command / Params Cmp Description

invalidate

$res

no Precondition: the local node must be in secondary role at $res.

Postcondition: the local disk is marked as inconsistent, and a fast full-

sync will start after a while. Notice that marsadm {pause,resume}-sync

will influence whether the sync really starts. When the fullsync has

finished successfully, the local node will be consistent again.
fake-sync

$res

no Precondition: the local node must be in secondary role at $res.
Postcondition: when a fullsync is running, it will stop after a while,
and the local node will be marked as consistent as if it were consistent
again.

ONLY USE THIS IF YOU REALLY KNOW WHAT YOU ARE

DOING!

See the WARNING in section 2.3

Use this only after having created a fresh filesystem inside

/dev/mars/$res.

set-replay no ONLY FOR ADVANCED HACKERS WHO KNOW WHAT

THEY ARE DOING!

This command is deliberately not documented. You need the compe-

tence level RTFS (“read the fucking sources”).
Command / Params Cmp Description

4.3. Further Operations

4.3.1. Inspection Commands

38

4.3. Further Operations

Command / Params Cmp Description

role no

state no

cstate no NYI
dstate no NYI
status no NYI

show-state no

show-info no

dstate no

show no

show-errors no

cat no

Command / Params Cmp Description

4.3.2. Waiting

Command / Params Cmp Description

wait-cluster no Precondition: the /mars/ filesystem must be mounted and it must con-
tain a valid MARS symlink tree produced by the other marsadm com-
mands. The kernel module must be loaded.
Postcondition: none.

Wait until all nodes in the cluster have sent a message, or until timeout.

The default timeout is 30 s (exceptionally) and may be changed by

--timeout=$seconds
wait-resource

$res

{is-,}{attach,

primary,

device}{-off,}

no Precondition: the local node must be a member of the resource $res.
Postcondition: none.

Wait until the local node reaches a specified condition on $res, or

until timeout. The default timeout of 60 s may be changed by

--timeout=$seconds. The last argument denotes the condition. The

condition is inverted if suffixed by -off. When preceded by is- (which

is the most useful case), it is checked whether the condition is actually

reached. When the is- prefix is left off, the check is whether another

marsadm command has been already given which tries to achieves the

intended result (typicially, you may use this after the is- variant has

failed).
wait-connect

$res

almost This is an alias for wait-cluster waiting until only those nodes are

reachable which belong to $res (instead of waiting for the full cluster).

wait-umount

$res

no Precondition: none additionally.

Postcondition: the local /dev/mars/$dev_name is no longer in use (e.g.

umounted).
Command / Params Cmp Description

4.3.3. Low-Level Helpers
These commands are for advanced sysadmins only. The interface is not stable, i.e. the meaning
may change at any time.

Command / Params Cmp Description

set-link no

delete-file no

Command / Params Cmp Description

4.3.4. Senseless Commands (from DRBD)

Command / Params Cmp Description

Command / Params Cmp Description

39

4. The Sysadmin Interface marsadm

Command / Params Cmp Description

syncer no

new-current-uuid no

create-md no

dump-md no

dump no

get-gi no

show-gi no

outdate no

adjust yes Implemented as NOP (not necessary with MARS).

hidden-commands no

Command / Params Cmp Description

4.3.5. Forbidden Commands (from DRBD)
These commands are not implemented because they would be dangerous in MARS context:

Command / Params Cmp Description

invalidate-remote no This is too dangerous in case you have multiple secondaries. A similar

effect can be achieved with the --host= option.
verify no This would cause unintended side effects due to races between log-

file transfer / application and block-wise comparison of the underlying

disks. However, MARS invalide will do the same as DRBD verify fol-

lowed by DRBD resync, i.e. marsadm invalidate will automatically cor-

rect any found errors; note that the fast-fullsync algorithm of MARS

will minimize network traffic.
Command / Params Cmp Description

4.3.6. Deprecated Operations

40

5. MARS for Developers

This chapter is organized strictly top-down.
If you are a sysadmin and want to inform yourself about internals (useful for debugging), the

relevant information is at the beginning, and you don’t need to dive into all technical details at
the end (e.g., you may stop after reading the documentation on symlink trees or even use that
documentation like an encyclopedia).
If you are a kernel developer and want to contribute code to the MARS community, please

read it (almost) all. Due to the top-down organization, sometimes you will need to follow some
forward references in order to understand details. Therefore I recommend reading this chapter
twice in two different reading modes: in the first reading pass, you just get a raw network of
principles and structures in your brain (you don’t want to grasp details, therefore don’t strive
for a full understanding). In the second pass, you exploit your knowlegde from the first pass
for a deeper understanding of the details.
Alternatively, you may first read the first section about general architecture, and then start

a bottom-up scan by first reading the last section about generic objects and aspects, and
working in reverse section order (but read subsections in-order) until you finally reach the
kernel interfaces / symlink trees.

5.1. General Architecture

The following pictures show some “zones of responsibility”, not necessarily a strict hierarchy
(although Dijkstra’s famous layering rules from THE are tried to be respected as much as pos-
sible). The construction principles follow the concepts of Instance Oriented Programming
(IOP) described in http://athomux.net/papers/paper_inst2.pdf. Please note that MARS
Light is only instance-based1, while MARS Full is planned to be fully instance-oriented.

5.1.1. MARS Light Architecture

h
el

p
er

 l
ib

ra
ry

 f
u

n
ct

io
n

s

higher−level tools (cluster managers, HA managers, etc)

XIO personality

generic object infrastructure

XIO bricks: {a,b,s}io,if,trans_logger,...

interface: /mars/ symlink tree

userspace tool marsadm (perl)

interface: marsadm parameters, exit code, stdout (similar to drbdadm)

MARS Light ad−hoc strategy layer

generic aspect infrastructure

generic brick infrastructure

5.1.2. MARS Full Architecture (planned)

1Similar to OOP, where “object-based” means a weaker form of “object-oriented”, the term “instance-based”
means that the strategy brick layer need not be fully modularized according to the IOP principles, but the
worker brick layer already is.

41

http://athomux.net/papers/paper_inst2.pdf

5. MARS for Developers

h
el

p
er

 l
ib

ra
ry

 f
u

n
ct

io
n

s

XIO brick personality

MARS Full strategy bricks

StrategY brick personality

interface: /mars/full/ symlink tree

userspace tool marsadm (perl)

XIO worker bricks: {a,b,s}io,if,trans_logger,...

higher−level tools (cluster managers, HA managers, etc)

interface: marsadm parameters, exit code, stdout (similar to drbdadm)

generic brick infrastructure

generic aspect infrastructure

generic object infrastructure

5.2. Documentation of the Symlink Trees
The /mars/ symlink tree is serving the following purposes, all at the same time:

1. For communication between cluster nodes, see sections 3.2 and 3.3. This communica-
tion is even the only communication between cluster nodes (apart from the contents of
transaction logfiles and sync data).

2. Internal interface between the kernel module and the userspace tool marsadm.

3. Internal persistent repository which keeps state information between reboots (also
in case of node crashes). It is even the only place where state information is kept. There
is no other place like /etc/drbd.conf.

Because of its internal character, its representation and semantics may change at any
time without notice (e.g. via an internal upgrade procedure between major releases). It is not
an external interface to the outer world. Don’t build anything on it.
However, knowledge of the symlink tree is useful for advanced sysadmins, for human in-

spection and for debugging. And, of course, for developers.
As an “official” interface from outside, only the marsadm command should be used.

5.2.1. Documentation of the MARS Light Symlink Tree

5.3. MARS Worker Bricks

5.4. MARS Strategy Bricks

5.5. The MARS Brick Infrastructure Layer

5.6. The Generic Brick Infrastructure Layer

5.7. The Generic Object and Aspect Infrastructure

42

A. GNU Free Documentation License

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation , Inc.
<http :// fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document , but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual , textbook , or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it , either commercially or noncommercially.
Secondarily , this License preserves for the author and publisher a way
to get credit for their work , while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License , which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software , because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work , regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work , in any medium , that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world -wide , royalty -free license , unlimited in duration , to use that
work under the conditions stated herein. The "Document", below ,
refers to any such manual or work. Any member of the public is a
licensee , and is addressed as "you". You accept the license if you
copy , modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim , or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front -matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document ’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus , if the Document is in
part a textbook of mathematics , a Secondary Section may not explain
any mathematics .) The relationship could be a matter of historical
connection with the subject or with related matters , or of legal ,
commercial , philosophical , ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated , as being those of Invariant Sections , in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not

43

A. GNU Free Documentation License

allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed ,
as Front -Cover Texts or Back -Cover Texts , in the notice that says that
the Document is released under this License. A Front -Cover Text may
be at most 5 words , and a Back -Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine -readable copy ,
represented in a format whose specification is available to the
general public , that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor , and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup , or absence of markup , has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque ".

Examples of suitable formats for Transparent copies include plain
ASCII without markup , Texinfo input format , LaTeX input format , SGML
or XML using a publicly available DTD , and standard -conforming simple
HTML , PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG , XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors , SGML or XML for which the DTD and/or
processing tools are not generally available , and the
machine -generated HTML , PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means , for a printed book , the title page itself ,
plus such following pages as are needed to hold , legibly , the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such , "Title Page" means
the text near the most prominent appearance of the work ’s title ,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below , such as "Acknowledgements",
"Dedications", "Endorsements", or "History ".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License , but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium , either
commercially or noncommercially , provided that this License , the
copyright notices , and the license notice saying this License applies
to the Document are reproduced in all copies , and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However , you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies , under the same conditions stated above , and
you may publicly display copies.

44

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document , numbering more than 100, and the
Document ’s license notice requires Cover Texts , you must enclose the
copies in covers that carry , clearly and legibly , all these Cover
Texts: Front -Cover Texts on the front cover , and Back -Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers , as long as they preserve
the title of the Document and satisfy these conditions , can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly , you should put the first ones listed (as many as fit
reasonably) on the actual cover , and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine -readable Transparent
copy along with each Opaque copy , or state in or with each Opaque copy
a computer -network location from which the general network -using
public has access to download using public -standard network protocols
a complete Transparent copy of the Document , free of added material.
If you use the latter option , you must take reasonably prudent steps ,
when you begin distribution of Opaque copies in quantity , to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested , but not required , that you contact the authors of the
Document well before redistributing any large number of copies , to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above , provided that you release
the Modified Version under precisely this License , with the Modified
Version filling the role of the Document , thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition , you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers , if any) a title distinct
from that of the Document , and from those of previous versions
(which should , if there were any , be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page , as authors , one or more persons or entities
responsible for authorship of the modifications in the Modified
Version , together with at least five of the principal authors of the
Document (all of its principal authors , if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version , as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include , immediately after the copyright notices , a license notice

giving the public permission to use the Modified Version under the
terms of this License , in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document ’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title , and add

to it an item stating at least the title , year , new authors , and
publisher of the Modified Version as given on the Title Page. If

45

A. GNU Free Documentation License

there is no section Entitled "History" in the Document , create one
stating the title , year , authors , and publisher of the Document as
given on its Title Page , then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location , if any , given in the Document for
public access to a Transparent copy of the Document , and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself , or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section , and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document ,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements ". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front -matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document , you may at your option designate some or all
of these sections as invariant. To do this , add their titles to the
list of Invariant Sections in the Modified Version ’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties --for example , statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front -Cover Text , and a
passage of up to 25 words as a Back -Cover Text , to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front -Cover Text and one of Back -Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover , previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one , on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License , under the terms defined in section 4 above for modified
versions , provided that you include in the combination all of the
Invariant Sections of all of the original documents , unmodified , and
list them all as Invariant Sections of your combined work in its
license notice , and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License , and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents , make the title of each such section unique by
adding at the end of it, in parentheses , the name of the original
author or publisher of that section if known , or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination , you must combine any sections Entitled "History"
in the various original documents , forming one section Entitled
"History "; likewise combine any sections Entitled "Acknowledgements",

46

and any sections Entitled "Dedications ". You must delete all sections
Entitled "Endorsements ".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License , and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection , provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection , and
distribute it individually under this License , provided you insert a
copy of this License into the extracted document , and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works , in or on a volume of a storage or
distribution medium , is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation ’s users beyond what the individual works permit.
When the Document is included in an aggregate , this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document , then if the Document is less than one half of
the entire aggregate , the Document ’s Cover Texts may be placed on
covers that bracket the Document within the aggregate , or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification , so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders , but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License , and all the license notices in the
Document , and any Warranty Disclaimers , provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer , the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy , modify , sublicense , or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy , modify , sublicense , or distribute it is void , and
will automatically terminate your rights under this License.

However , if you cease all violation of this License , then your license
from a particular copyright holder is reinstated (a) provisionally ,
unless and until the copyright holder explicitly and finally
terminates your license , and (b) permanently , if the copyright holder
fails to notify you of the violation by some reasonable means prior to

47

A. GNU Free Documentation License

60 days after the cessation.

Moreover , your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means , this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder , and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new , revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version , but may differ in
detail to address new problems or concerns. See
http ://www.gnu.org/copyleft /.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it , you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License , you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used , that proxy ’s public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC -BY-SA" means the Creative Commons Attribution -Share Alike 3.0
license published by Creative Commons Corporation , a not -for -profit
corporation with a principal place of business in San Francisco ,
California , as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document , in whole or in
part , as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License , and if all works that were first published under this License
somewhere other than this MMC , and subsequently incorporated in whole or
in part into the MMC , (1) had no cover texts or invariant sections , and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC -BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written , include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

48

Permission is granted to copy , distribute and/or modify this document
under the terms of the GNU Free Documentation License , Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections , no Front -Cover Texts , and no Back -Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License ".

If you have Invariant Sections , Front -Cover Texts and Back -Cover Texts ,
replace the "with ... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES , with the
Front -Cover Texts being LIST , and with the Back -Cover Texts being LIST.

If you have Invariant Sections without Cover Texts , or some other
combination of the three , merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code , we
recommend releasing these examples in parallel under your choice of
free software license , such as the GNU General Public License ,
to permit their use in free software.

49

	Use Cases for MARS vs DRBD
	Network Bottlenecks
	Behaviour of DRBD
	Behaviour of MARS

	Long Distances / High Latencies
	Higher Consistency Guarantees vs Actuality

	Quick Start Guide
	Preparation: What you Need
	Setup Primary and Secondary Cluster Nodes
	Kernel and MARS Module
	Setup your Cluster Nodes

	Creating and Maintaining Resources
	Keeping Resources Operational
	Logfile Rotation / Deletion
	Switch Primary / Secondary Roles
	Intended Switching
	Emergency Switching

	Split Brain Resolution
	Final Destruction of a Damaged Node
	Split Brain Resolution after a Temporary Failure
	Cleanup in case of Complicated Cascading Failures

	Basic Working Principle
	The Transaction Logger
	The Lamport Clock
	The Symlink Tree
	Defending Overflow of /mars/
	Countermeasures
	Dimensioning of /mars/
	Monitoring
	Throttling

	Emergency Mode

	The Sysadmin Interface marsadm
	Cluster Operations
	Resource Operations
	Resource Creation / Deletion / Modification
	Operation of the Resource
	Logfile Operations
	Consistency Operations

	Further Operations
	Inspection Commands
	Waiting
	Low-Level Helpers
	Senseless Commands (from DRBD)
	Forbidden Commands (from DRBD)
	Deprecated Operations

	MARS for Developers
	General Architecture
	MARS Light Architecture
	MARS Full Architecture (planned)

	Documentation of the Symlink Trees
	Documentation of the MARS Light Symlink Tree

	MARS Worker Bricks
	MARS Strategy Bricks
	The MARS Brick Infrastructure Layer
	The Generic Brick Infrastructure Layer
	The Generic Object and Aspect Infrastructure

	GNU Free Documentation License

