
MARS Manual

Multiversion Asynchronous Replicated Storage

01101011101001

Thomas Schöbel-Theuer (tst@1und1.de)

Version 0.23

Copyright (C) 2013-14 Thomas Schöbel-Theuer
Copyright (C) 2013-14 1&1 Internet AG (see http://www.1und1.de shortly called 1&1 in the
following).
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

http://www.1und1.de

Abstract

MARS Light is a block-level storage replication system for long distances / flaky networks under
GPL. It runs as a Linux kernel module. The sysadmin interface is similar to DRBD1, but its
internal engine is completely different from DRBD: it works with transaction logging, similar
to some database systems.
Therefore, MARS Light can provide stronger consistency guarantees. Even in case of

network bottlenecks / problems / failures, the secondaries may become outdated (reflect an
elder state), but never become inconsistent. In contrast to DRBD, MARS Light preserves the
order of write operations even when the network is flaky (Anytime Consistency).
The current version of MARS Light supports k > 2 replicas and works asynchronously.

Therefore, application performance is completely decoupled from any network problems. Future
versions are planned to also support synchronous or near-synchronous modes.

01101011101001

1Registered trademarks are the property of their respective owner.

Contents

1. Why You should Replicate Big Data at Block Layer 6

2. Use Cases for MARS vs DRBD 8
2.1. Network Bottlenecks . 8

2.1.1. Behaviour of DRBD . 8
2.1.2. Behaviour of MARS . 10

2.2. Long Distances / High Latencies . 13
2.3. Higher Consistency Guarantees vs Actuality . 14

3. Quick Start Guide 16
3.1. Preparation: What you Need . 16
3.2. Setup Primary and Secondary Cluster Nodes . 17

3.2.1. Kernel and MARS Module . 17
3.2.2. Setup your Cluster Nodes . 17

3.3. Creating and Maintaining Resources . 18
3.4. Keeping Resources Operational . 19

3.4.1. Logfile Rotation / Deletion . 19
3.4.2. Switch Primary / Secondary Roles . 20

3.4.2.1. Intended Switching / Planned Handover 20
3.4.2.2. Forced Switching . 22

3.4.3. Split Brain Resolution . 24
3.4.4. Final Destruction of a Damaged Node . 26
3.4.5. Cleanup in case of Complicated Cascading Failures 27
3.4.6. Experts only: Special Trick Switching and Rebuild 29
3.4.7. Online Resizing during Operation . 30

3.5. The State of MARS . 30
3.6. Inspecting the State of MARS . 31

3.6.1. Predefined Macros . 32
3.6.1.1. Predefined Complex and High-Level Macros 32
3.6.1.2. Predefined Primitive Macros . 36

3.6.2. Creating your own Macros . 40
3.6.2.1. General Macro Syntax . 41
3.6.2.2. Builtin / Primitive Macros . 42

3.7. Scripting HOWTO . 47

4. Basic Working Principle 48
4.1. The Transaction Logger . 48
4.2. The Lamport Clock . 50
4.3. The Symlink Tree . 51
4.4. Defending Overflow of /mars/ . 53

4.4.1. Countermeasures . 53
4.4.1.1. Dimensioning of /mars/ . 53
4.4.1.2. Monitoring . 53
4.4.1.3. Throttling . 55

4.4.2. Emergency Mode . 56

5. The Sysadmin Interface (marsadm and /proc/sys/mars/) 58
5.1. Cluster Operations . 59
5.2. Resource Operations . 61

5.2.1. Resource Creation / Deletion / Modification 61
5.2.2. Operation of the Resource . 63

4

Contents

5.2.3. Logfile Operations . 68
5.2.4. Consistency Operations . 69

5.3. Further Operations . 69
5.3.1. Inspection Commands . 69
5.3.2. Setting Parameters . 70

5.3.2.1. Per-Resource Parameters . 70
5.3.2.2. Global Parameters . 70

5.3.3. Waiting . 70
5.3.4. Low-Level Helpers . 71
5.3.5. Senseless Commands (from DRBD) . 71
5.3.6. Forbidden Commands (from DRBD) . 71

5.4. The /proc/sys/mars/ and other Expert Tweaks 72
5.4.1. Syslogging . 72

5.4.1.1. Logging to Files . 72
5.4.1.2. Logging to Syslog . 72
5.4.1.3. Tuning Verbosity of Logging . 73

5.4.2. Tuning the Sync . 73

6. Tips and Tricks 74
6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance

Replication . 74
6.1.1. General Cluster Models . 74
6.1.2. Handover / Failover Reasons and Scenarios 75
6.1.3. Granularity and Layering Hierarchy for Long Distances 75
6.1.4. Methods and their Appropriateness . 76

6.1.4.1. Failover Methods . 76
6.1.4.2. Handover Methods . 82
6.1.4.3. Hybrid Methods . 82

6.1.5. Special Requirements for Long Distances 82
6.2. Creating Backups via Pseudo Snapshots . 83

7. MARS for Developers 84
7.1. Motivation / Politics . 84
7.2. Architecture Overview . 86
7.3. Some Architectural Details . 86

7.3.1. MARS Light Architecture . 86
7.3.2. MARS Full Architecture (planned) . 87

7.4. Documentation of the Symlink Trees . 87
7.4.1. Documentation of the MARS Light Symlink Tree 88

7.5. XIO Worker Bricks . 88
7.6. StrategY Worker Bricks . 88
7.7. The XIO Brick Personality . 88
7.8. The Generic Brick Infrastructure Layer . 88
7.9. The Generic Object and Aspect Infrastructure 88

A. Technical Data MARS Light 89

B. Handout for Midnight Problem Solving 90
B.1. Inspecting the State of MARS . 90
B.2. Replication is Stuck . 90
B.3. Resolution of Emergency Mode . 91
B.4. Resolution of Split Brain and of Emergency Mode 92
B.5. Handover of Primary Role . 93
B.6. Emergency Switching of Primary Role . 93

C. GNU Free Documentation License 95

5

1. Why You should Replicate Big Data
at Block Layer

Some people think that replication is easily done at filesystem layer. There exist lots of cluster
filesystems and other filesystem-layer solutions which claim to be able to replicate your data,
sometimes even over long distances.
Trying to replicate several petabytes of data, or some billions of inodes, is however a much

bigger challenge than many people can imagine.
Choosing the wrong layer for mass data replication may get you into trouble. Here is an

explaination why replication at the block layer is more easy and less error prone:

Linux System Architecture

Thomas Schöbel-Theuer

Userspace
Application Layer

Hardware-RAID,
BBU, etc

Apache, PHP,
etc

Filesystem
xfs, ext4, etc

Buffer / Page Cache
1:100 reduction

Kernelspace

Hardware

Block Layer

~ 25 Operation Types
~ 100.000 Ops / s

 2 Operation Types (r/w)
~ 1.000 Ops / s

Potential Cut Point A
for Distributed System

Potential Cut Point B
for Distributed System

The picture shows the main components of a standalone Unix / Linux system. In the late 1970s
/ early 1980s, a so-called Buffer Cache had been introduced into the architecture of Unix.
Today’s Linux has refined the concept to various internal caches such as the Page Cache and
the Dentry Cache.
All these caches serve only one purpose: they are reducing the load onto the storage by

exploitation of fast RAM. A well-tuned cache can yield high cache hit ratios, typically 99%. In
some cases (as observed in practice) even more than 99.9%.
Now start distributing the system over long distances. There are two potential cut points A

and B. Cutting at A means replication at filesystem level. B means replication at block level.
When replicating at A, you will notice that the caches are below your cut point. Thus you will

have to re-implement distributed caches, and you will have to maintain cache coherence.
When replicating at B, the Linux caches are above your cut point. Thus you will receive much

less traffic, typically already reduced by a factor of 100, or even more. This is much more easy
to cope with. You will also profit from journalling filesystems like ext4 or xfs. In contrast,
truly distributed1 journalling is typically not available with distributed cluster filesystems.

1In this context, “truly” means that the POSIX semantics would be always guaranteed cluster-wide, and even
in case of partial failures. In practice, some distributed filesystems like NFS don’t even obey the POSIX
standard locally on 1 standalone client. We know of projects which have failed right because of this.

6

A potential drawback of block layer replication is that you are typically limited to active-
passive replication. An active-active operation is not impossible at block layer (see combinations
of DRBD with ocfs2), but less common, and less safe to operate.
This limitation isn’t necessarily caused by the choice of layer. It is simply caused by the laws

of physics: communication is always limited by the speed of light. A distributed filesystem is
nothing else but a logically distributed shared memory (DSM).
Some decades of research on DSM have shown that there exist applications / workloads where

the DSM model is inferior to the direct communication paradigm. Even in short-distance /
cluster scenarios. Long-distance DSM is extremely cumbersome.
Therefore: you simply shouldn’t try to solve long-distance communication needs via commu-

nication over filesystems. Even simple producer-consumer scenarios (one-way communication)
are less performant (e.g. when compared to plain TCP/IP) when it comes to distributed POSIX
semantics. There is simply too much synchronisation overhead at metadata level.
If you have a need for mixed operations at different locations in parallel: just split your data

set into disjoint filesystem instances (or database / VM instances, etc). All you need is careful
thought about the appropriate granularity of your data sets (such as well-chosen sets of user
homedirectory subtrees, or database sets logically belonging together, etc).
Replication at filesystem level is often at single-file granularity. If you have several millions

or even billions of inodes, you may easily find yourself in a snakepit.
Conclusion: active-passive operation over long distances (such as between continents) is even

an advantage. It keeps you from trying bad / almost impossible things.

7

2. Use Cases for MARS vs DRBD

DRBD has a long history of successfully providing HA features to many users of Linux. With
the advent of MARS, many people are wondering what the difference is. They ask for recom-
mendations. In which use cases should DRBD be recommended, and in which other cases is
MARS the better choice?
There exist some cases where DRBD is better than MARS. 1&1 has a long history of expe-

riences with DRBD where it works very fine, in particular coupling Linux devices rack-to-rack
via crossover cables. DRBD is just constructed for that use case (RAID-1 over network).
On the other hand, there exist other cases where DRBD did not work as expected, leading

to incidents and other operational problems. We analyzed them for those use cases. The
later author of MARS came to the conclusion that they could only be resolved by fundamental
changes in the overall architecture of DRBD. The development of MARS started at the personal
initiative of the author, first in form of a personal project during holidays, but later picked up
by 1&1 as an official project.
MARS and DRBD simply have different application areas.
In the following, we will discuss the pros and cons of each system in particular situations and

contexts, and we shed some light at their conceptual and operational differences.

2.1. Network Bottlenecks

2.1.1. Behaviour of DRBD

In order to describe the most important problem we found when DRBD was used to couple
whole datacenters (each encompassing thousands of servers) over metro distances, we strip down
that complicated real-life scenario to a simplified laboratory scenario in order to demonstrate
the effect with minimal means. The following picture illustrates an effect which is not only
observable in practice, but is also reproducible by the MARS test suite1:

mirror inconsistency ... time

network throughput

decreasing throughput limit

DRBD throughput

additional throughput

needed for re−sync, not possible

(p
ot

en
tia

l)
in

ci
de

nt
 −

>

au
to

m
at

ic
 r

e−
co

n
n
ec

t

au
to

m
at

ic
 d

is
co

n
n
ec

t

wanted application throughput, not possible

The simplified scenario is the following:

1. DRBD is loaded with a low to medium, but constant rate of write operations for the sake
of simplicity of the scenario.

1The effect has been demonstrated with DRBD version 8.3.13. By construction, is is independent from any of
the DRBD series 8.3.x, 8.4.x, or 9.0.x.

8

2.1. Network Bottlenecks

2. The network has some throughput bottleneck, depicted as a red line. For the sake of
simplicity, we just linearly decrease it over time, starting from full throughput, down to
zero. The decrease is very slowly over time (some minutes, or even hours).

What will happen in this scenario?
As long as the actual DRBD write throughput is lower than the network bandwidth (left

part of the horizontal blue line), DRBD works as expected.
Once the maximum network throughput (red line) starts to fall short of the required applica-

tion throughput (first blue dotted line), we get into trouble. By its very nature, DRBD works
synchronously. Therefore, it must transfer all your application writes through the bottleneck,
but now it is impossible2 due to the bottleneck. As a consequence, the application running on
top of DRBD will see increasingly higher IO latencies and/or stalls / hangs. We found practical
cases (at least with former versions of DRBD) where IO latencies exceeded practical monitoring
limits such as 5 s by far, up to the range of minutes. As an experienced sysadmin, you know
what happens next: your application will run into an incident, and your customers will be
dissatisfied.
In order to deal with such situations, DRBD has lots of tuning parameters. In particular,

the timeout parameter and/or the ping-timeout parameter will determine when DRBD will
give up in such a situation and simply drop the network connection as an emergency measure.
Dropping the network connection is roughly equivalent to an automatic disconnect, followed by
an automatic re-connect attempt after connect-int seconds. During the dropped connection,
the incident will appear as being resolved, but at some hidden cost3.
What happens next in our scenario? During the disconnect, DRBD will record all positions

of writes in its bitmap and/or in its activity log. As soon as the automatic re-connect succeeds
after connect-int seconds, DRBD has to do a partial re-sync of those blocks which were
marked dirty in the meantime. This leads to an additional bandwidth demand4 as indicated
by the upper dotted blue box.
Of course, there is absolutely no chance to get the increased amount of data through our

bottleneck, since not even the ordinary application load (lower dotted lines) could be transferred.
Therefore, you run at a very high risk that the re-sync cannot finish before the next timeout

/ ping-timeout cycle will drop the network connection again.
What will be the final result when that risk becomes true? Simply, your secondary site will

be permanently in state inconsistent. This means, you have lost your redundancy. In our
scenario, there is no chance at all to become consistent again, because the network bottleneck
declines more and more, slowly. It is simply hopeless, by construction.
In case you lose your primary site now, you are lost at all.
Some people may argue that the probability for a similar scenario were low. We don’t agree

on such an argumentation. Not only because it really happens in pratice, and it may even last
some days until problems are fixed. In case of rolling disasters, the network is very likely to
become flaky and/or overloaded shortly before the final damage. Even in other cases, you can

2This is independent from the DRBD protocols A through C, because it just depends on an information-
theoretic argument independently from any protocol. We have a fundamental conflict between network
capabilities and application demands here, which cannot be circumvented due to the synchronous nature
of DRBD.

3By appropriately tuning various DRBD parameters, such as timeout and/or ping-timeout, you can keep
the impact of the incident below some viable limit. However, the automatic disconnect will then happen
earlier and more often in practice. Flaky or overloaded networks may easily lead to an enormous number of
automatic disconnects.

4DRBD parameters sync-rate resp resync-rate may be used to tune the height of the additional demand.
In addition, the newer parameters c-plan-ahead, c-fill-target, c-delay-target, c-min-rate, c-max-rate
and friends may be used to dynamically adapt to some situations where the application throughput could fit
through the bottleneck. These newer parameters were developed in a cooperation between 1&1 and Linbit,
the maker of DRBD.

Please note that lowering / dynamically adapting the resync rates may help in lowering the probability of
occurrences of the above problems in practical scenarios where the bottleneck would recover to viable limits
after some time. However, lowering the rates will also increase the duration of re-sync operations accordingly.
The total amount of re-sync data simply does not decrease when lowering resync-rate; it even tends to
increase over time when new requests arrive. Therefore, the expectancy value of problems caused by strong
network bottlenecks (i.e. when not even the ordinary application rate is fitting through) is not improved by
lowering or adapting resync-rate, but rather the expectancy value mostly depends on the relation between
the amount of holdback data versus the amount of application write data, both measured for the duration
of some given strong bottleneck.

9

2. Use Cases for MARS vs DRBD

easily end up with inconsistent secondaries. It occurs not only in the lab, but also in practice
if you operate some hundreds or even thousands of DRBD instances.

The point is that you can produce an ill behaviour systematically just by overloading the
network a bit for some sufficient duration.

When coupling whole datacenters via some thousands of DRBD connections, any (short)
network loss will almost certainly increase the re-sync network load each time the outage appears
to be over. As a consequence, overload may be provoked by the re-sync repair attempts. This
may easily lead to self-amplifying throughput storms in some resonance frequency (similar
to self-destruction of a bridge when an army is marching over it in lockstep).

The only way for reliable prevention of loss of secondaries is to start any re-connect only in
such situations where you can predict in advance that the re-sync is guaranteed to finish before
any network bottleneck / loss will cause an automatic disconnect again. We don’t know of any
method which can reliably predict the future behaviour of a complex network.

Conclusion: in the presence of network bottlenecks, you run a considerable risk that
your DRBD mirrors get destroyed just in that moment when you desperately need them.

Notice that crossover cables usually never show a behaviour like depicted by the red
line. Crossover cables are passive components which normally5 either work, or not. The binary
connect / disconnect behaviour of DRBD has no problems to cope with that.

or Linbit recommends a workaround for the inconsistencies during re-sync:
LVM snapshots. We tried it, but found a performance penalty which made it prohibitive for
our concrete application. A problem seems to be the cost of destroying snapshots. LVM uses
by default a BOW strategy (Backup On Write, which is the counterpart of COW = Copy On
Write). BOW increases IO latencies during ordinary operation. Retaining snapshots is cheap,
but reverting them may be very costly, depending on workload. We didn’t fully investigate
that effect, and our experience is a few years old. You might come to a different conclusion
for a different workload, for newer versions of system software, or for a different strategy if you
carefully investigate the field.

DRBD problems usually arise only when the network throughput shows some “awkward”
analog behaviour, such as overload, or as occasionally produced by various switches / routers
/ transmitters, or other potential sources of packet loss.

2.1.2. Behaviour of MARS

The behaviour of MARS in the above scenario:

5Exceptions might be mechanical jiggling of plugs, or electro-magnetical interferences. We never noticed any
of them.

10

2.1. Network Bottlenecks

time

network throughput

decreasing throughput limit

application throughput, recorded in transaction log
replication network throughput

MARS

When the network is restrained, an asynchronous system like MARS will continue to serve the
user IO requests (dotted green line) without any impact / incident while the actual network
throughput (solid green line) follows the red line. In the meantime, all changes to the block
device are recorded at the transaction logfiles.

Here is one point in favour of DRBD: MARS stores its transaction logs on the filesystem
/mars/. When the network bottleneck is lasting very long (some days or even some weeks),
the filesystem will eventually run out of space some day. Section 4.4 discusses countermeasures
against that in detail. In contrast to MARS, DRBD allocates its bitmap statically at resource
creation time. It uses up less space, and you don’t have to monitor it for (potential) over-
flows. The space for transaction logs is the price you have to pay if you want or need anytime
consistency, or asynchronous replication in general.
In order to really grasp the heart of the difference between synchronous and asynchronous

replication, we look at the following modified scenario:

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

time

network throughput

flaky throughput limit

MARS application throughput

corresponding DRBD inconsistency

MARS network throughput

This time, the network throughput (red line) is varying6 in some unpredictable way. As before,
the application throughput served by MARS is assumed to be constant (dotted green line, often
superseded by the solid green line). The actual replication network throughput is depicted by
the solid green line.
As you can see, a network dropdown undershooting the application demand has no impact

on the application throughput, but only on the replication network throughput. Whenever the
network throughput is held back due to the flaky network, it simply catches up as soon as

6In real life, many long-distance lines or even some heavily used metro lines usually show fluctuations of
their network bandwidth by an order of magnitude, or even higher. We have measured them. The overall
behaviour can be characterized as “chaotic”.

11

2. Use Cases for MARS vs DRBD

possible by overshooting the application throughput. The amount of lag-behind is visualized
as shaded area: downward shading (below the application throughput) means an increase of
the lag-behind, while the upwards shaded areas (beyond the application throughput) indicate
a decrease of the lag-behind (catch-up). Once the lag-behind has been fully caught up, the
network throughput suddenly jumps back to the application throughput (here visible in two
cases).

Note that the existence of lag-behind areas is roughly corresponding to DRBD disconnect
states, and in turn to DRBD inconsistent states of the secondary as long as the lag-behind has
not been fully cought up. The very rough7 duration of the corresponding DRBD inconsistency
phase is visualized as magenta line at the time scale.

MARS utilizes the existing network bandwidth as best as possible in order to pipe
through as much data as possible, provided that there exists some data requiring expedition.
Conceptually, there exists no better way due to information theoretic limits (besides data
compression).

In case of lag-behind, the version of the data replicated to the secondary site corresponds
to some time in the past. Since the data is always transferred in the same order as originally
submitted at the primary site, the secondary never gets inconsistent. Your mirror always
remains usable. Your only potential problem could be the outdated state, corresponding to
some state in the past. However, the “as-best-as-possible” approach to the network transfer
ensures that your version is always as up-to-date as possible even under ill-behaving network
bottlenecks. There is simply no better way to do it. In presence of network bottlenecks,
there exists no better method than prescribed by the information theoretic limit (red line,
neglecting data compression).

MARS’ property of never sacrificing local data consistency (at the possible cost of
actuality) is called Anytime Consistency.

Conclusion: you can even use traffic shaping on MARS’ TCP connections in order
to globally balance your network throughput (of course at the cost of actuality, but without
sacrificing local data consistency). If you would try to do the same with DRBD, you could
easily provoke a disaster. MARS simply tolerates any network problems, provided that there is
enough disk space for transaction logfiles. Even in case of completely filling up your disk with
transaction logfiles after some days or weeks, you will not lose local consistency anywhere (see
section 4.4).

Finally, here is yet another scenario where MARS can cope with the situation:

7Of course, this visualization is not exact. On one hand, the DRBD inconsistency phase may start later as
depicted here, because it only starts after the first automatic disconnect, upon the first automatic re-connect.
In addition, the amount of resync data may be smaller than the amount of corresponding MARS transaction
logfile data, because the DRBD bitmap will coalesce multiple writes to the same block into one single transfer.
On the other hand, DRBD will transfer no data at all during its disconnected state, while MARS continues
its best. This leads to a prolongation of the DRBD inconsistent phase. Depending on properties of the
workload and of the network, the real duration of the inconsistency phase may be both shorter or longer.

12

2.2. Long Distances / High Latencies

time

network throughput

MARS

replication network throughput

constant throughput limit

application throughput, showing heavy peaks

This time, the network throughput limit (solid red line) is assumed to be constant. However,
the application workload (dotted green line) shows some heavy peaks. We know from our 1&1
datacenters that such an application behaviour is very common (e.g. in case of certain kinds of
DDOS attacks etc).
When the peaks are exceeding the network capabilities for some time, the replication network

throughput (solid green line) will be limited for a short time, stay a little bit longer at the limit,
and finally drop down again to the normal workload. In other words, you get a flexible buffering
behaviour, coping with the peaks.
Similar scenarios (where both the application workload has peaks and the network is flaky

to some degree) are rather common. If you would use DRBD there, you were likely to run
into regular application performance problems and/or frequent automatic disconnect cycles,
depending on the height and on the duration of the peaks, and on network resources.

2.2. Long Distances / High Latencies

In general and in some theories, latencies are conceptually independent from throughput, at
least to some degree. There exist all 4 possible combinations:

1. There exist communication lines with high latencies but also high throughput. Examples
are raw fibre cables at the ground of the Atlantic.

2. High latencies on low-throughput lines is very easy to achieve. If you never saw it, you
never ran interactive vi over ssh in parallel to downloads on your old-fashioned modem
line.

3. Low latencies need not be incompatible with high throughput. See Myrinet, InfiniBand
or high-speed point-to-point interconnects, such as modern RAM busses.

4. Low latency combined with low throughput is also possible: in an ATM system (or another
pre-reservation system for bandwidth), just increase the multiplex factor on low-capacity
but short lines, which is only possible at the cost of assigned bandwidth.

In the internet practice, however, it is very likely that high latencies will also lead to worse
throughput, because of the congestion control algorithms running all over the world.
We have experimented with extremely large TCP send/receive buffers plus various window

sizes and congestion control algorithms over long-distance lines between the USA and Europe.
Yes, it is possible to improve the behaviour to some degree. But magic does not happen.
Natural laws will always hold. You simply cannot travel faster than the speed of light.
Our experience leads to the following rule of thumb, not formally proven by anything, but

just observed in practice:

In general, synchronous data replication (not limited to applications of DRBD)
works reliably only over distances < 50 km.

13

2. Use Cases for MARS vs DRBD

There may be some exceptions, at least when dealing with low-end workstation loads. But
when you are responsible for a whole datacenter and/or some centralized storage units, don’t
waste your time by trying (almost) impossible things. We recommend to use MARS in such
use cases.

2.3. Higher Consistency Guarantees vs Actuality

We already saw in section 2.1 that certain types of network bottlenecks can easily (and re-
producibly) destroy the consistency of your DRBD secondary, while MARS will preserve local
consistency at the cost of actuality (anytime consistency).
Some people, often located at database operations, are obtrusively arguing that actuality is

such a high good that it must not be sacrificed under any circumstances.
Anyone arguing this way has at least the following choices (list may be incomplete):

1. None of the above use cases for MARS apply. For instance, short distance replication
over crossover cables is sufficient (which occurs very often), or the network is reliable
enough such that bottlenecks can never occur (e.g. because the total load is extremely
low, or conversely the network is extremely overengineered / expensive), or the occurrence
of bottlenecks can provably be taken into account. In such cases, DRBD is clearly the
better solution than MARS, because it provides better actuality than the current version
of MARS, and it uses up less disk resources.

2. In the presence of network bottlenecks, people didn’t notice and/or didn’t understand
and/or did under-estimate the risk of accidental invalidation of their DRBD secondaries.
They should carefully check that risk. They should convince themselves that the risk is
really bearable. Once they are hit by a systematic chain of events which reproducibly
provoke the bad effect, it is too late8.

3. In the presence of network bottlenecks, people found a solution such that DRBD does not
automatically re-connect after the connection has been dropped due to network problems
(c.f. ko-count parameter). So the risk of inconsistency appears to have vanished. In
some cases, people did not notice that the risk has not completely9 vanished, and/or they
did not notice that now the actuality produced by DRBD is even drastically worse than
that of MARS (in the same situation). It is true that DRBD provides better actuality in
connected state, but for a full picture the actuality in disconnected state should not be
neglected10. So they didn’t notice that their argumentation on the importance of actuality
may be fundamentally wrong. A possible way to overcome that may be re-reading section
2.1.2 and comparing its outcome with the corresponding outcome of DRBD in the same
situation.

4. People are stuck in contradictive requirements because the current version of MARS Light
does not yet support synchronous or pseudo-synchronous operation modes. This should
be resolved some day.

A common misunderstanding is about the actuality guarantees provided by filesystems.
The buffer cache / page cache uses by default a writeback strategy for performance reasons.
Even modern journalling filesystems will (by default) provide only consistency guarantees, but
no strong actuality guarantee. In case of power loss, some transactions may be even rolled back

8Some people seem to need a bad experience before they get the difference between risk caused by reproducible
effects and inverted luck.

9Hint: what’s the conceptual difference beween an automatic and a manual re-connect? Yes, you can try to
lower the risk in some cases by transferring risks to human analysis and human decisions, but did you take
into account the possibility of human errors?

10Hint: a potential hurdle may be the fact that the current format of /proc/drbd does neither display the
timestamp of the first relevant network drop nor the total amount of lag-behind user data (which is not the
same as the number of dirty bits in the bitmap), while marsadm view can display it. So it is difficult to judge
the risks. Possibly a chance is inspection of DRBD messages in the syslog, but quantification could remain
hard.

14

2.3. Higher Consistency Guarantees vs Actuality

in order to restore consistency. According to POSIX11 and other standards, the only reliable
way to achieve actuality is usage of system calls like sync(), fsync(), fdatasync(), flags like
O_DIRECT, or similar. For performance reasons, the vast majority of applications don’t use them
at all, or use them only sparingly!

It makes no sense to require strong actuality guarantees from any block layer replication
(whether DRBD or future versions of MARS) while higher layers such as filesystems or even
applications are already sacrificing them!

In summary, the anytime consistency provided by MARS is an argument you should
consider, even if you need an extra hard disk for transaction logfiles.

11The above argumentation also applies to Windows filesystems in analogous way.

15

3. Quick Start Guide

This chapter is for impatient but experienced sysadmins who already know DRBD. For more
complete information, refer to chapter The Sysadmin Interface (marsadm and /proc/sys/mars/)
.

3.1. Preparation: What you Need

Typically, you will use MARS Light at servers in a datacenter for replication of big masses of
data.
Typically, you will use MARS Light for replication between multiple datacenters, when the

distances are greater than ≈ 50 km. Many other solutions, even from commercial storage
vendors, will not work reliably over large distances when your network is not extremely reliable,
or when you try to push huge masses of data from high-performance applications through
a network bottleneck. If you ever encountered suchalike problems (or try to avoid them in
advance), MARS is for you.
You can use MARS Light both at dedicated storage servers (e.g. for serving Windows clients),

or at standalone Linux servers where CPU and storage are not separated.
In order to protect your data from low-level disk failures, you should use a hardware RAID

controller with BBU. Software RAID is explicitly not recommended, because it generally pro-
vides worse performance due to the lack of a hardware BBU (for some benchmark comparisons
with/out BBU, see https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.
pdf).
Typically, you will need more than one RAID set1 for big masses of data. Therefore, use of

LVM is also recommended2 for your data.
MARS’ tolerance of networking problems comes with some cost. You will need some extra

space for the transaction logfiles of MARS, residing at the /mars/ filesystem.
The exact space requirements for /mars/ depend on the average write rate of your application,

not on the size of your data. We found that only few applications are writing more than 1 TB
per day. Most are writing even less than 100 GB per day. Usually, you want to dimension
/mars/ such that you can survive a network loss lasting 3 days / about one weekend. This
can be achieved with current technology rather easily: as a simple rule of thumb, just use one
dedicated disk having a capacity of 4 TB or more. Typically, that will provide you with
plenty of headroom even for bigger networking incidents.
Dedicated disks for /mars/ have another advantage: their mechanical head movement is

completely independent from your data head movements. For best performance, attach that
dedicated disk to your hardware RAID controller with BBU, building a separate RAID set
(even if it consists only of a single disk – notice that the hardware BBU is the crucial point).
If you are concerned about reliability, use two disks switched together as a relatively small

RAID-1 set. For extremely high performance demands, you may consider (and check) RAID-10.
Since the transaction logfiles are highly sequential in their access pattern, a cheap but high-

capacity SATA disk (or nearline-SAS disk) is usually sufficient. At the time of this writing,
standard SATA SSDs have shown to be not (yet) preferable. Although they offer high random
IOPS rate, their sequential throughput is worse, and their long-term stability is questioned by
many people at the time of this writing. However, as technology evolves and becomes more
mature, this could change in future.

1For low-cost storage, RAID-5 is no longer regarded safe for today’s typical storage sizes, because the error rate
is regarded too high. Therefore, use RAID-6. If you need more than 15 disks in total, create multiple RAID
sets (each having at most 15 disks, better about 12 disks) and stripe them via LVM (or via your hardware
RAID controller if it supports RAID-60).

2You may also combine MARS with commercial storage boxes connected via Fibrechannel or iSCSI, but we
have not yet operational experiences at 1&1 with such setups.

16

https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf
https://github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf

3.2. Setup Primary and Secondary Cluster Nodes

Use ext4 for /mars/. Avoid ext3, and don’t use xfs3 at all.

Like DRBD, the current version of MARS has no security built in. MARS assumes
that it is running in a trusted network. Anyone who can connect to the MARS ports (default
7777 to 7779) can potentially breach in and become root! Therefore, you must protect your
network by appropriate means, such as firewalling and/or encrypted VPN.
Currently, MARS provides no shared secret like DRBD, because a simple shared secret is

way too weak to provide any real security (potentially misleading people about the real level
of security). Future versions of MARS should provide at least 2-factor authorization, and
encryption via dynamic session keys. Until that is implemented, use a secured VPN instead!
And don’t forget to audit it for security holes!

3.2. Setup Primary and Secondary Cluster Nodes

If you already use DRBD, you may migrate to MARS (or even back from MARS to DRBD) if
you use external4 DRBD metadata (which is not touched by MARS).

3.2.1. Kernel and MARS Module

At the time of this writing, a small pre-patch for the Linux kernel is needed. It it trivial and
consists mostly of EXPORT_SYMBOL() statements. The pre-patch must be applied to the kernel
source tree before building your (custom) kernel. Future versions of MARS are planned to
require no pre-patch anymore.
The MARS kernel module can be built in two different ways:

1. inplace in the kernel source tree: cd block/ && git clone git://github.com/schoebel/mars

2. as a separate kernel module, only for experienced5 sysadmins: see file Makefile.dist
(tested with some older versions of Debian; may need some extra work with other distros).

Further / more accurate / latest instructions can be found in README and in INSTALL. You must
not only install the kernel and the mars.ko kernel module to all of your cluster nodes, but also
the marsadm userspace tool.

3.2.2. Setup your Cluster Nodes

For your cluster, you need at least two nodes. In the following, they will be called A and B. In
the beginning, A will have the primary role, while B will be your initial secondary. The roles
may change later.

1. You must be root.

2. On each of A and B, create the /mars/ mountpoint.

3. On each node, create an ext4 filesystem on your separate disk / RAID set via mkfs.ext4
(for requirements on size etc see section Preparation: What you Need).

4. On each node, mount that filesystem to /mars/. It is advisable to add an entry to
/etc/fstab.

3It seems that the late internal resource allocation strategy of xfs (or another currently unknown reason) could
be the reason for some resource deadlocks which appear only with xfs and only under extremely high IO
load in combination with high memory pressure.

4Internal DRBD metadata should also work as long as the filesystem inside your block device / disk already
exists and is not re-created. The latter would destroy the DRBD metadata, but even that will not hurt you
really: you can always switch back to DRBD using external metadata, as long as you have some small spare
space somewhere.

5You should be familiar with the problems arising from orthogonal combination of different kernel versions
with different MARS module versions and with different marsadm userspace tool versions at the package
management level. Hint: modinfo is your friend.

17

3. Quick Start Guide

5. On node A, say marsadm create-cluster.
This must be done exactly once, on exactly one node of your cluster. Never do this twice
or on different nodes, because that would create two different clusters which would have
nothing to do with each other. The marsadm tool protects you against accidentally joining
/ merging two different clusters. If you accidentally created two different clusters, just
umount that /mars/ partition and start over with step 3 at that node.

6. On node B, you must have a working ssh connection to node A (as root). Test it by
saying ssh A w on node B. It should work without entering a password (otherwise, use
ssh-agent to achieve that). In addition, rsync must be installed.

7. On node B, say marsadm join-cluster A

8. Only after6 that, do modprobe mars on each node.

3.3. Creating and Maintaining Resources
In the following example session, a block device /dev/lv-x/mydata (shortly called disk) must
already exist on both nodes A and B, respectively, having the same7 size. For the sake of
simplicity, the disk (underlying block device) as well as its later logical resource name as well as
its later virtual device name will all be named uniformly by the same suffix mydata. In general,
you might name each of them differently, but that is not recommended since it may easily lead
to confusion in larger installations.
You may have already some data inside your disk /dev/lv-x/mydata at the initially primary

side A. Before using it for MARS, it must be unused for any other purpose (such as being
mounted, or used by DRBD, etc). MARS will require exclusive access to it.

1. On node A, say marsadm create-resource mydata /dev/lv-x/mydata.
As a result, a directory /mars/resource-mydata/ will be created on node A, containing
some symlinks. Node A will automatically start in the primary role for this resource.
Therefore, a new pseudo-device /dev/mars/mydata will also appear after a few seconds.
Note that the initial contents of /dev/mars/mydata will be exactly the same as in your
pre-existing disk /dev/lv-x/mydata.
If you like, you may already use /dev/mars/mydata for mounting your already pre-existing
data, or for creating a fresh filesystem, or for exporting via iSCSI, and so on. You may
even do so before any other cluster node has joined the resource (so-called “standalone
mode”). But you can also do so later after setup of (one ore many) secondaries.

2. Wait a few seconds until the directory /mars/resource-mydata/ and its symlink contents
also appears on cluster node B. The command marsadm wait-cluster may be helpful.

3. On node B, say marsadm join-resource mydata /dev/lv-x/mydata.
As a result, the initial full-sync from node A to node B should start automatically.

Of course, your old contents of your disk /dev/lv-x/mydata at side B (and only
there!) is overwritten by the version from side A. Since you are an experienced sysadmin,
you knew that, and it was just the effect you deliberately wanted to achieve. If you didn’t
check that your old contents didn’t contain any valuable data (or if you accidentally
provided a wrong disk device argument), it is too late now. The marsadm command
checks that the disk device argument is really a block device, and that exclusive access
to it is possible (as well as some further safety checks, e.g. matching sizes). However,
MARS cannot know the purpose of your generic block device. MARS (as well as DRBD)
is completely ignorant of the contents of a generic block device; it does not interpret it
in any way. Therefore, you may use MARS (as well as DRBD) for mirroring Windows
filesystems, or raw devices from databases, or virtual machines, or whatever.

6In fact, you may already modprobe mars at node A after the marsadm create-cluster. Just don’t do any
of the *-cluster operations when the kernel module is loaded. All other operations should have no such
restriction.

7Actually, the disk at the initially secondary side may be larger than that at the initially primary side. This
will waste space and is therefore not recommended.

18

3.4. Keeping Resources Operational

Hint: by default, MARS uses the so-called “fast fullsync” algorithm. It works
similar to rsync, first reading the data on both sides and computing an md5 checksum for
each block. Heavy-weight data is only transferred over the long-distance network upon
checksum mismatch. This is extremely fast if your data is already (almost) identical
on both sides. Conversely, if you know in advance that your initial data is completely
different on both sides, you may choose to switch off the fast fullsync algorithm via echo 0
> /proc/sys/mars/do_fast_fullsync in order to save the additional IO overhead and
network latencies introduced by the separate checksum comparison steps.

4. Optionally, only for experienced sysadmins who really know what they are doing: if you
will create a new filesystem on /dev/mars/mydata after(!) having created the MARS
resource as well as after having already joined it on every replica, you may abandon
the fast fullsync phase before creating the fresh filesystem, because the old content of
/dev/mars/mydata will then be just garbage not used by the freshly created filesystem8.
Then, and only then, you may say marsadm fake-sync mydata in order to abort the sync
operation.

Never do a fake-sync unless you are absolutely sure that you really don’t need to
sync the data! Otherwise, you are guaranteed to have produced harmful inconsistencies. If
you accidentally issued fake-sync, you may startover the fast full sync at your secondary
side by saying marsadm invalidate mydata (analogously to the corresponding DRBD
command).

3.4. Keeping Resources Operational

3.4.1. Logfile Rotation / Deletion
As explained in section The Transaction Logger, all changes to your resource data are recorded
in transaction logfiles residing on the /mars/ filesystem. These files are always growing over
time. In order to avoid filesystem overflow, the following must be done in regular time intervals:

1. marsadm log-rotate all
This starts appending to a new logfile on all of your resources. The logfiles are automati-
cally numbered by an increasing 9-digit logfile number. This will suffice for many centuries
even if you would logrotate once a minute. Practical frequencies for logfile rotation are
more like once an hour9, or once a day (depending on your load).

2. marsadm log-delete-all all
This determines all logfiles from all resources which are no longer needed (i.e. which
are fully replayed, on all relevant secondaries). All superfluous logfiles are then deleted,
including all copies on all secondaries.

The current version of MARS deletes either all replicas of a logfile everywhere,
or none of the replicas. This is a simple rule, but has the drawback that one node may
hinder other nodes from freeing space in /mars/. In particular, the command marsadm
pause-replay $res (as well as marsadm disconnect $res) will freeze the space recla-
mation in the whole cluster when the pause is lasting very long.

8It is vital that the transaction logfile contents created by mkfs is fully propagated to the secondaries and then
replayed there.

Analogously, another exception is also possible, but at your own risk (be careful, really!): when migrating
your data from DRBD to MARS, and you have ensured that (1) at the end of using DRBD both your
replicas were really equal (you should have checked that), and (2) before and after setting up any side of
MARS (create-resource as well as join-resource) nothing has been written at all to it (i.e. no usage,
neither of /dev/lv/mydata nor of /dev/mars/mydata has occurred in any way), the first transaction logfile
/mars/resource-mydata/log-000000001-$primary created by MARS will be empty. Check whether this is
really true! Then, and only then, you may also issue a fake-sync.

9Under extremely high load conditions, you might want to log-rotate serveral times an hour, in order to keep
the size of each logfile under some practical limit.

19

3. Quick Start Guide

Best practice is to do both log-rotate and log-delete-all in a cron job. In
addition, you should establish some regular monitoring of the free space present in the
/mars/ filesystem.

More detailed information about about avoidance of /mars/ overflow is in section 4.4.

3.4.2. Switch Primary / Secondary Roles

Planned

Handover

Temporary Node

or Network Failure
Scenario

Method
Switching

Intended

Dead Node

Forced

Switching Switching

Forced

Split Brain

Resolution Damaged Node

Destruction of

Redundancy

Rebuild of

Phase

Reconstruction

In contrast to DRBD, MARS Light distinguishes between intended and forced switching. This
distinction is necessary due to differences in the communication architecture (asynchronous
communication vs synchronous communication, see sections 4.2 and 4.3).
Asynchronous communication means that (in worst case) a message may take (almost) ar-

bitrary time in a distorted network to propagate to another node. As a consequence, the risk
for accidentally creating an (unintended) split brain is increased (compared to a synchronous
system like DRBD).
In order to minimize this risk, MARS has invested a lot of effort into an internal handover

protocol when you start an intended primary switch.

3.4.2.1. Intended Switching / Planned Handover

Before starting a planned handover from your old primary A to a new primary B, you should
check the replication of the resource. As a human, use marsadm view mydata. For scripting,
use the macros from section 3.6.1.2 (see also section 3.7). The network should be OK, and the
amount of replication delay should be as low as possible. Otherwise, handover may take a very
long time, or it may produce a split brain, or it may even fail.

Best practice is to prepare a planned handover by the following steps:

1. Check the network and the replication lag. It should be low (a few hundred megabytes,
or a low number of gigabytes - see also the rough time forecast shown by marsadm view
mydata when there is a larger replication delay, or directly access the forecast by marsadm
view-replinfo).

2. Stop your application, then umount /dev/mars/mydata on host A.

20

3.4. Keeping Resources Operational

3. When scripting, or when typing extremely fast, or for better safety, say marsadm wait-umount
mydata host B. When your network is OK, the propagation of the device usage state10
should take only a few seconds. Otherwise, check for any network problems or any other
problems.

4. On host B, wait until marsadm view mydata (or view-diskstate) shows UpToDate. It is
possible to omit this step, but then you have no control on the duration of the handover,
and in case of any transfer problems, disk space problems, etc you are potentially risking
to produce a split brain (although marsadm will do its best to avoid it). Doing the wait
by yourself, before starting marsadm primary, has a big advantage: you can abort the
handover cycle at any time, just by re-mounting the device /dev/mars/mydata at the
old primary A again, and by re-starting your application. Once you have started marsadm
primary on host B, you might have to switch back, or possibly even via primary --force
(see sections 3.4.2.2 and 3.4.3).

Switching the roles is very similar to DRBD: just issue the command

• marsadm primary mydata

on your formerly secondary node B.

The most important difference to DRBD: don’t use an intermediate marsadm secondary
mydata anywhere. Although it would be possible, it has disadvantages, such as increased risk
of producing a split brain. Always switch directly !

In contrast to DRBD, MARS remembers the designated primary, even when your system
crashes and reboots. While in case of a crash you have to re-setup DRBD with commands like
drbdadm up . . .; drbdadm primary . . ., MARS will automatically resume its former roles just
by saying modprobe mars.

Another fundamental difference to DRBD: when the network is healthy, there can only
exist one designated primary at a time (modulo some communication delays caused by the
“eventually consistent” communication model, see section 4.2). By saying marsadm primary
mydata on host B, all other hosts (including A) will automatically go into secondary role
after a while!

You simply don’t need an intermediate marsadm secondary mydata for planned han-
dover!
Precondition for marsadm primary is that you are up, that means in attached and con-

nected state (cf. marsadm up), and that any old primary (in this case A) does not use its
/dev/mars/mydata device any longer, and that the network is healthy. If some (parts of) log-
files are not yet (fully) transferred to the new primary, you will need enough space on /mars/
at the target side. If one of the preconditions described in section 5.2.2 is violated, marsadm
primary may refuse to start.
The preconditions try to protect you from doing silly things, such as accidentally provoking a

split brain error state. We try to avoid split brain as best as we can. Therefore, we distinguish

10Notice that the usage check for /dev/mars/mydata on host B is based on the open count transferred from an-
other node A. Since MARS is operating asynchronously (in contrast to DRBD), it may take some time until
our node B knows that the device is no longer used at A. This can lead to a race condition if you automate an in-
tended takeover with a script like ssh root@A “umount /dev/mars/mydata”; ssh root@B “marsadm primary
mydata” because your second ssh command may be faster than the internal MARS symlink tree propagation
(cf section 4.3). In order to prevent such races, you are strongly advised to use the command

• marsadm wait-umount mydata

on node B before trying to become primary. See also section 3.7.

21

3. Quick Start Guide

between intended and emergeny switching. Intended switching will try to avoid split brain as
best as it can.

Don’t rely on split brain avoidance, in particular when scripting any higher-level appli-
cations such as cluster managers (cf. section 3.7). marsadm does its best, but at least in case
of (unnoticed) network outages / partitions (or extremely, really extremely slow / overloaded
networks), an attempt to become UpToDate may fail. If you want to ensure that no split brain
can result from intended primary switching, please obey the the best practices from above, and
please give the primary command only after your secondary is known11 to be really UpToDate
(see marsadm wait-cluster and marsadm view and other macros described in section 3.6).

A very rough estimation of the time to become UpToDate is displayed by marsadm view
mydata or other macros (e.g. view-replinfo). However, on very flaky networks, the estimation
may not only flicker much, but also be inaccurate.

3.4.2.2. Forced Switching

In case the connection to the old primary is lost for whatever reason, we just don’t know
anything about its current state (which may deviate from its last known state). The following
command sequence will skip many checks and tell your node to become primary forcefully:

• marsadm pause-fetch mydata

– notice that this is similar to drbdadm disconnect mydata as you are prob-
ably used from DRBD. For better compatibility with DRBD, you may use the al-
ternate syntax marsadm disconnect mydata instead. However, there is a subtle
difference to DRBD: DRBD will drop both sides of its single bi-directional connec-
tion and no longer try to re-connect from any of both sides, while pause-fetch is
equivalent to pause-fetch-local, which instructs only the local host to stop fetch-
ing logfiles. Other members of the cluster, including the former primary, are not
instructed to do so. They may continue fetching logfiles over their own private TCP
connections, potentially using many connections in parallel, and potentially even
from any other member of the resource, if they think they can get the data from
there. In order to instruct12 all members of the resource to stop fetching logfiles,
you may use marsadm pause-fetch-global mydata instead (cf section 5.2.2).

• marsadm primary mydata --force

– this is the forceful switchover. Use --force only if you know what you are
doing!

• marsadm resume-fetch mydata

– As such, the new primary does not really need this, because primaries are producing
their own logfiles without need for fetching. This is only to undo the previous
pause-fetch, in order to avoid future surprises when the new primary will somewhen
change to secondary mode again (in the far-distant future), and you have forgotten
to remember the fact that fetching had been switched off.

When using --force, not only many precondition checks and other internal checks are skipped,
but also the internal handover protocol for split brain avoidance.
Therefore, use of --force is very likely to provoke a split brain.

11As noted in many places in this manual, checking this cannot be done by looking at the local state of a single
cluster node. You have to check several nodes. marsadm can only check the local node reliably!

12Notice that not all such instructions may arrive at all sites when the network is interrupted (or extremely
slow).

22

3.4. Keeping Resources Operational

Split brain is always an erroneous state which should be never entered deliberately!
Once you have entered it accidentally, you must resolve it ASAP (see section 3.4.3), otherwise
you cannot operate your resource in the long term.
In order to impede you from giving an accidental --force, the precondition is different:

--force works only in locally disconnected state. This is similar to DRBD.
Remember: marsadm primary without --force tries to prevent split brain as best as it

can. Use of the --force option will almost certainly provoke a split brain, at least if the
old primary continues to operate on its local /dev/mars/mydata device. Therefore, you are
strongly advised to do this only after

1. marsadm primary without --force has failed for no good reason13, and

2. You are sure you really want to switch, even when that eventually leads to a split brain.
You also declare that you are willing to do manual split-brain resolution as described
in section 3.4.3, or even destruction / reconstruction of a damaged node as described in
section 3.4.4.

Notice: in case of connection loss (e.g. networking problems / network partitions), you
may not be able to reliably detect whether a split brain actually resulted, or not.

Caveats In contrast to DRBD, split brain situations are handled differently by MARS Light.
When two primaries are accidentally active at the same time, each of them writes into different
logfiles /mars/resource-mydata/log-000000001-A and /mars/resource-mydata/log-000000001-B
where the origin host is always recorded in the filename. Therefore, both nodes can theoreti-
cally run in primary mode independently from each other, at least for some time. They might
even log-rotate independently from each other. However, this is really no good idea. The
replication to third nodes will likely get stuck, and your /mars/ filesystem(s) will eventually run
out of space. Any further secondary node (when having k > 2 replicas) will certainly get into
serious problems: it simply does not know which split-brain version it should follow. Therefore,
you will certainly loose the actuality of your redundancy.

When one of your multiple split brain nodes has left its actual primary role, e.g. after
umounting its local /dev/mars/mydata device, and when the network is up (again), we cannot
guarantee14 that it is always possible to re-enter primary mode again, even when primary
--force is given. Therefore, use marsadm secondary is strongly discouraged. It tells the whole
cluster that nobody is designated as primary any more. All nodes should go into secondary
mode, globally. However, when the device /dev/mars/mydata is in use somewhere, it will remain
in actual primary mode during that time, even if another host is now the designated primary,
or if (none) is designated as primary as will result from a secondary command. As soon as the
local /dev/mars/mydata is released, the node will actually go into secondary mode if it is no
longer designated as primary. Thus, marsadm secondary can lead to a situation where noone
is actually in primary role, and noone is able to re-enter it due to split brain. Such a situation
can be resolved by split-brain resolution. You should avoid it in advance by always directly
switching over from one primary to another one, without intermediate secondary command.
This is different from DRBD.

In case you have accidentally entered such a situation where all nodes are refusing
to become primary due to split brain, you have to cleanup the split brain via leave-resource
and friends, or use the method described in section 3.4.5. Remember that split brain is an
erroneous state. Therefore it is generally no good idea to (re-)enter it deliberately,
or to stay in it any longer!

13Most reasons will be displayed by marsadm when it is rejecting the switchover.
14In a few cases which are covered by the test suite, it is likely to work. Future versions of MARS Light might

improve on this. It is generally no good idea to try to (forcefully) become primary in a split-brain situation
starting from being secondary, because the result is likely to be undefined at concept level.

23

3. Quick Start Guide

Split brain situations are detected passively by secondaries. Whenever a secondary detects
that somewhere a split brain has happend, it refuses to replay any logfiles behind the split
point (and also to fetch them when possible), or anywhere where something appears suspect
or ambiguous. This tries to keep its local disk state always being consistent, but outdated
with respect to any of the split brain versions. As a consequence, becoming primary may be
impossible, because it cannot always know which logfiles are the correct ones to replay before
/dev/mars/mydata can appear. The ambiguity must be resolved first.

If you really need the local device /dev/mars/mydata to disappear everywhere in a
split brain situation, you don’t need a strongly discouraged marsadm secondary command for
this. marsadm detach or marsadm down can do it also, without destroying information about
the former designated primary.

3.4.3. Split Brain Resolution
Split brain can naturally occur during a long-lasting network outage (aka network partition)
when you (forcefully) switch primaries inbetween, or due to final loss of your old primary node
(fatal node crash) when not all logfile data had been transferred immediately before the final
crash.

Remember that split brain is an erroneous state which must be resolved as soon as
possible!
Whenever split brain occurs for whatever reason, you have two choices for resolution: either

destroy one of your versions, or retain it under a different resource name.
In any of both cases, do the following steps ASAP:

1. Manually check which (surviving) version is the “right” one. Any error is up to you:
destroying the wrong version is your fault, not the fault of MARS.

2. If you did not already switch your primary to the final destination determined in the
previous step, do it now (see description in section 3.4.2.2). Don’t use an intermedi-
ate marsadm secondary command (as known from DRBD): directly switch to the new
designated primary!

3. On each non-right version (which you don’t want to retain) which had been primary
before, umount your /dev/mars/mydata or otherwise stop using it (e.g. stop iSCSI or
other users of the device). Wait until each of them has actually left primary state and
until their local logfile(s) have been fully written back to the underlying disk.

4. Wait until the network works again. All your (surviving) cluster nodes must15 be able to
communicate with each other. If that is not possible, or if it takes too long, you may fall
back to the method described in section 3.4.4, but do this only as far as necessary.

5. If any of your (surviving) cluster nodes has already the “right” version and was not in a
primary role when the split brain happened, you don’t need to do the following step for
it, of course. The following applies only to those nodes which deviate from the correct
version:

6. It may happen that the “right” version you want to retain is not the version which is
currently designated as primary for the whole cluster. Only in such a case, switch the
primary role as described in sections 3.4.2.1 or 3.4.2.2. Here is a repetition of the necessary
steps:

a) First try marsadm primary mydata on the new designated primary host. Don’t mix
up your shell windows!

b) Only if that refuses working for no good reason, do the following steps:
15If you are a MARS expert and you really know what you are doing (in particular, you can anticipate the effects

of the Lamport clock and of the symlink update protocol including the “eventually consistent” behaviour
including the not-yet-consistent intermediate states, see sections 4.2 and 4.3), you may deviate from this
requirement.

24

3.4. Keeping Resources Operational

i. marsadm pause-fetch mydata.

ii. marsadm primary mydata --force.

iii. marsadm resume-fetch mydata.

The next steps are different for different use cases:

Destroying a Wrong Split Brain Version Continue with the following steps, each on those
cluster node(s) where you cannot retain its split-brain version, but start with the old “wrong”
primaries first (see advice at the end of this section):

7. marsadm leave-resource mydata

8. After having done this on one cluster node, check whether the split brain is already
gone (e.g. by saying marsadm view mydata). There are chances that you don’t need
this on all of your nodes. Only in very rare16 cases, it might happen that the preceding
leave-resource operations were not able to clean up all logfiles produced in parallel
by the split brain situation. Only in such rare cases, read the documentation about
log-purge-all (see page 68) and try it.

If you want to restore redundancy, you can follow-up a join-resource phase to the old
resource name (using the correct device name, double-check it!) This should restore your
redundancy by overwriting your bad split brain version with the correct one.

It is important to resolve the split brain before you can start the join-resource
reconstruction phase! In order to keep as many “good” versions as possible (e.g. for emergency
cases), don’t re-join them all in parallel, but rather start with the oldest / most outdated / worst
/ inconsistent version first. It is recommended to start the next one only when the previous
one has sucessfully finished.
Alternatively, but only if you have only k = 2 replicas in total, you may use the following

short procedure instead, which works in almost all k = 2 cases, but cannot resolve all (desperate,
very scarce) split-brain situations (see documentation of log-purge-all on page 68):

7. On the single (new) secondary with a non-”right” version, and only if the split brain has
not yet been resolved, say marsadm invalidate mydata.

Keeping a Split Brain Version This case starts indentical as before, but continues differently.
On each of those cluster node(s) you don’t want to retain:

7. marsadm leave-resource mydata

8. After having done this on all those cluster nodes, check that the split brain is gone (e.g.
by saying marsadm view mydata), as documented above. In very rare cases, you might
also need a log-purge-all (see page 68).

9. Check that each underlying local disk /dev/lv-x/mydata is really usable afterwards, e.g.
by test-mounting it (or fsck if you can afford it). If all is OK, don’t forget to umount it
before proceeding with the next step.

10. Create a completely new MARS resource out of the underlying disk /dev/lv-x/mydata
having a different name, such as mynewdata (see description in section Creating and
Maintaining Resources).

16When your network had partitioned in a very awkward way for a long time, and when your partitioned
primaries did several log-rotate operations indendently from each other, there is a small chance that
leave-resource does not clean up all remains of such an awkward situation. Only in such a case, try
log-purge-all.

25

3. Quick Start Guide

Keeping a Good Version When you had a secondary which did not participate in the split
brain, but just got confused and therefore stopped replaying logfiles immediately before the
split-brain point, it may very well happen17 that you don’t need to do any action for it. When
all wrong versions have disappeared from the cluster (by leave-resource as described before),
the confusion should be over, and the secondary should automatically resume tracking of the
new unique version.
Please check that all of your secondaries are no longer stuck. You need to execute split brain

resolution only for stuck nodes.

Hint / advice: it is a good idea to start split brain resolution first with those (few)
nodes which had been (accidentally) primary before, but are not the new designated primary.
Usually, you had 2 primaries during split brain, so this will apply only to one of them. Leave the
other one intact, by not leaving its primary state at all (if it is possible – notice that if you have
enough space on /mars/ it may be even possible to not only continue your application during
the split brain without interruption, just by not umounting /dev/mars/mydata at all, but in
addition to avoid invalidations caused by emergency mode, see section 4.4.2). First resolve the
problem of the “wrong” primary(s) via leave-resource. Wait for a short while. Then check
the rest of your secondaries (if you have k > 2 replicas in total), whether they now are already
following the new (unique) primary, and finally check whether the split brain warning reported
by marsadm view all is already gone. This way, you can often omit unnecessary invalidations
of replicas.

3.4.4. Final Destruction of a Damaged Node

When a node has eventually died, do the following steps ASAP:

1. Physically remove the dead node from your network. Unplug all network cables! Fail-
ing to do so might provoke a disaster in case it somehow resurrects in an uncontrolled
manner, such as a partly-damaged /mars/ filesystem, a half-defective kernel, RAM / ker-
nel memory corruption, disk corruption, or whatever. Don’t risk any such unpredictable
behaviour!

2. Manually check which of the surviving versions will be the “right” one. Any error is up
to you: resurrecting an unnecessarily old / outdated version and/or destroying the newest
/ best version is your fault, not the fault of MARS.

3. If you did not already switch your primary to the final destination determined in the
previous step, do it now (see description in section 3.4.2.2).

4. On a surviving node, but preferably not the new designated primary, give the following
commands:

a) marsadm --host=your-damaged-host down mydata

b) marsadm --host=your-damaged-host leave-resource mydata

Check for misspellings, in particular the hostname of the dead node, and check the
command syntax before typing return! Otherwise, you may forcefully destroy the wrong
node!

5. In case any of the previous commands should fail (which is rather likely), repeat it with an
additional --force option. Don’t use --force in the first place, alway try first without
it!

6. Repeat the same with all resources which were formerly present at your-damaged-host.

17In general, such a “good” behaviour cannot be guaranteed for all secondaries. Race conditions in complex
networks may asynchronously transfer “wrong” logfile data to a secondary much earlier than conflicting
“good” logfile data which will be marked “good” only in the future. It is impossible to predict this in advance.

26

3.4. Keeping Resources Operational

7. Finally, say marsadm --host=your-damaged-host leave-cluster (optionally augmented
with --force).

Now your surviving nodes should believe that the old node your-damaged-host does no longer
exist, and that it does no longer participate in any resource.

Even if your dead node comes to life again in some way: always ensure that the mars
kernel module cannot run any more. Never do a modprobe mars on a node marked as dead
this way!
In case leave-resource --host= does not work, you can start over with the following fall-

back:

4. On the surviving new designated primary, give the following commands

a) marsadm disconnect-all mydata

b) marsadm down mydata

c) Check by hand whether your local disk is consistent, e.g. by test-mounting it read-
only, fsck, etc.

d) marsadm delete-resource mydata

e) Check whether the other vital cluster nodes don’t report the dead resource any
more, e.g. marsadm view all at each of them. In case the resource has not dis-
appeared anywhere (which may happen during network problems), do the down ;
delete-resource steps also there (optionally again with --force).

f) Be sure that the resource has disappeared everywhere.

g) marsadm create-resource newmydata ... at the correct node using the correct
disk device containing the correct version, and further steps to setup your resource
from scratch, preferably under a different name to minimize any risk.

In any case, manually check whether a split brain is reported for any resource on any of your
surviving cluster nodes. If you find one there (and only then), please (re-)execute the split
brain resolution steps on the affected node(s).

3.4.5. Cleanup in case of Complicated Cascading Failures

MARS Light does its best to recover even from multiple failures (e.g. rolling disasters).
Chances are high that the previous instructions will work even in case of multiple failures, such
as a network failure plus local node failure at only 1 node (even if that node is the former
primary node).
However, in general (e.g. when more than 1 node is damaged) there is no general guarantee

that recovery will always succeed under any (weird) circumstances. That said, your chances
for recovery are very high when some disk remains usable at least at one of your surviving
secondaries.

It should be very hard to finally trash a secondary, because the transaction logfiles are
containing md5 checksums for all data records. Any attempt to replay currupted logfiles is
refused by MARS. In addition, the sequence numbers of log-rotated logfiles are checked for
contiguity. Finally, the sequence path of logfile applications (consisting of logfile names plus
their respective length) is additionally secured by a git-like incremental checksum over the
whole path history (so-called “version links”). This should detect split brains even if logfiles are
appended / modified after a (forceful) switchover has already taken place.

That said, your “chances” for final loss of data are very high if you remove the BBU
from your hardware RAID controller before all hot data has been flushed to the physical disks.
Therefore, never try to “repair” a seemingly dead node before your replication is up again
somewhere else! Only unplug the network cables when advised, but never try to repair the
hardware instantly!

27

3. Quick Start Guide

In case of desperate situations where none of the previous instructions have succeeded, your
last chance is rebuilding all your resources from intact disks as follows:

1. Do rmmod mars on all your cluster nodes and/or reboot them. Note: if you are less
desperate, chances are high that the following will also work when the kernel module
remains active and everywhere a marsadm down is given instead, but for an ultimate
instruction you should eliminate potential kernel problems by rmmod / reboot, at least if
you can afford the downtime on concurrently operating resources.

2. For safety, physically remove the storage network cables on all your cluster nodes. Note:
the same disclaimer holds. MARS really does its best, even when delete-resource is
given while the network is fully active and multiple split-brain primaries are actively using
their local device in parallel (approved by some testcases from the automatic test suite,
but note that it is impossible to catch all possible failure scenarios). Don’t challenge your
fate if you are desperate! Don’t rely on this! Nothing is absolutely fail-safe!

3. Manually check which surviving disk is usable, and which is the “best” one for your
purpose.

4. Do modprobe mars only on that node. If that fails, rmmod and/or reboot again, and start
over with a completely fresh /mars/ partition (mkfs.ext4 /mars/ or similar) everywhere
on all cluster nodes, and continue with step 7.

5. If your old /mars/ works, and you did not already (forcefully) switch your designated
primary to the final destination, do it now (see description in section 3.4.2.2). Wait until
any old logfile data has been replayed.

6. Say marsadm delete-resource mydata --force. This will cleanup all internal symlink
tree information for the resource, but will leave your disk data intact.

7. Locally build up the new resource(s>) as usual, out of the underlying disk<8s<9.

8. Check whether the new resource(s) work in standalone mode.

9. When necessary, repeat these steps with other resources.

Now you can choose how the rebuild your cluster. If you rebuilt /mars/ anywhere, you must
rebuild it on all new cluster nodes and start over with a fresh join-cluster on each of them,
from scratch. It is not possible to mix the old cluster with the new one.

11. Finally, do all the necessary join-resources on the respective cluster nodes, according to
your new redundancy scenario after the failures (e.g. after activating spare nodes, etc). If
you have k > 2 replicas, start join-resource on the worst / most damaged version first,
and start the next preferably only after the previous sync has successfully completed.
This way, you will be retaining some very old and outdated, but hopefully potentially
usable old replicas while a sync is running. Don’t start too many syncs in parallel.

Never use delete-resource twice on the same resource name, after you have already
a working standalone primary18. You might accidentally destroy your again-working copy!
You can issue delete-resource multiple times on different nodes, e.g. when the network has
problems, but doing so after re-establishment of the initial primary bears some risk. Therefore,
the safest way is first deleting the resources everywhere, and then starting over afresh.
Before re-connecting any network cable on any non-primary (new secondaries), ensure that all

/dev/mars/mydata devices are no longer in use (e.g. from an old primary role before the incident
happened), and that each local disk is detached. Only after that, you should be able to safely
re-connect the network. The delete-resource given at the new primary should propagate now
to each of your secondaries, and your local disk should be usable for a re-join-resource.

18Of course, when you don’t have created the same resource anew, you may repeat delete-resource on other
cluster nodes in order to get rid of local files / symlinks which had not been propagated to other nodes
before.

28

3.4. Keeping Resources Operational

When you did not rebuild your cluster from scratch with fresh /mars/ filesystems, and
one of the old cluster nodes is supposed to be removed permanently, use leave-resource
(optionally with --host= and/or --force) and finally leave-cluster.

3.4.6. Experts only: Special Trick Switching and Rebuild
The following is a further alternative for experts who really know what they are doing. The
method is very simple and therefore well-suited for coping with mass failures, e.g. power
blackout of whole datacenters.
In case a primary datacenter fails as a whole for whatever reason and you have a backup

datacenter, do the following steps in the backup datacenter:

1. Fencing step: by means of firewalling, ensure that the (virtually) damaged datacenter
nodes cannot be reached over the network. For example, you may place REJECT rules
into all of your local iptables firewalls at the backup datacenter. Alternatively / addition-
ally, you may block the routes at the appropriate central router(s) in your network.

2. Run the sequence marsadm disconnect all; marsadm primary --force all on all nodes
in the backup datacenter.

3. Restart your services in the backup datacenter (as far as necessary). Depending on your
network setup, further steps like switching BGP routes etc may be necessary.

4. Check that all your services are really up and running, before you try to repair anything!
Failing to do so may result in data loss when you execute the following restore method
for experts.

Now your backup datacenter should continue servicing your clients. The final reconstruction of
the originally primary datacenter works as follows:

1. At the damaged primary datacenter, ensure that nowhere the MARS kernel module is
running. In case of a power blackout, you shouldn’t have executed an automatic modprobe
mars anywhere during reboot, so you should be already done when all your nodes are up
again. In case some nodes had no reboot, execute rmmod mars everywhere. If rmmod
refuses to run, you may need to umount the /dev/mars/mydata device first. When
nothing else helps, you may just reboot your hanging nodes.

2. At the failed side, do rm -rf /mars/resource-$mydata/ for all those resources which
had been primary before the blackout. Do this only for those cases, otherwise you will
need unnecessary leave-resources or invalidates later (e.g. when half of your nodes
were already running at the surving side). In order to avoid unnecessary traffic, please
do this only as far as really necessary. Don’t remove any other directories. In particular,
/mars/ips/ must remain intact. In case you accidentally deleted them, or you had to
re-create /mars/ from scratch, try rsync with the correct options.

Caution! before doing this, check that the corresponding directory exists at the
backup datacenter, and that it is really healthy!

3. Un-Fencing: restore your network firewall / routes and check that they work (ping etc).

4. Do modprobe mars everywhere. All missing directories and their missing symlinks should
be automatically fetched from the backup datacenter.

5. Run marsadm join-resource $res, but only at those places where the directory was
removed previously, while using the same disk devices as before. This will minimize
actual traffic thanks to the fast full sync algorithm.

It is crucial that the fencing step must be executed before any primary --force!
This way, no split brain will be visible at the backup datacenter side, because there is simply

29

3. Quick Start Guide

no chance for transferring different versions over the network. It is also crucial to remove
any (potentially diverging) resource directories before the modprobe! This way, the backup
datacenter never runs into split brain. This saves you a lot of detail work for split brain
resolution when you have to restore bulks of nodes in a short time.

In case the repair of a full datacenter should take so extremely long that some /mars/
partitions are about to run out of space at the surviving side, you may use the leave-resource
--host=failed-node trick described earlier, followed by log-delete-all. Best if you have
prepared a fully automatic script long before the incident, which executes suchalike only as far
as necessary in each individual case.

Even better: train such scenarios in advance, and prepare scripts for mass automation.
Look into section 3.7.

3.4.7. Online Resizing during Operation
You should have LVM or some other means of increasing the physical size of your disk (e.g. via
firmware of some RAID controllers). The network must be healthy. Do the following steps:

1. Increase your local disks (usually /dev/vg/mydata) everywhere in the whole cluster. In
order to avoid wasting space, increase them uniformly to the same size (when possible).
The lvresize tool is documented elsewhere.

2. Check that all MARS switches are on. If not, say marsadm up mydata everywhere.

3. At the primary: marsadm resize mydata

4. If you have intermediate layers such as iSCSI, you may need some iscsiadm update or
other command.

5. Now you may increase your filesystem. This is specific for the filesystem type and docu-
mented elsewhere.

Hint: the secondaries will start syncing the increased new part of the underlying primary
disk. In many cases, this is not really needed, because the new junk data just does not care. If
you are sure and if you know what you are doing, you may use marsadm fake-sync mydata to
abort such unnecessary traffic.

3.5. The State of MARS
In general, MARS tries to hide any network failures from you as best as it can. After a
network problem, any internal low-level socket connections are transparently tried to re-open
ASAP, without need for sysadmin intervention. In difference to DRBD, network failures will not
automatically alter the state of MARS, such as switching to disconnected after a ko_timeout
or similar. From a high-level sysadmin viewpoint, communication may just take a very long
time to succeed.
When the behaviour of MARS is different from DRBD, it is usually intended as a feature.
MARS is not only an asynchronous system at block IO level, but also at control level.
This is necessary because in a widely distributed long-distance system running on slow or

even temporarily failing networks, actions may take a long time, and there may be many actions
started in parallel.

Synchronous concepts are generally not sufficient for expressing that. Because of
inherent asynchronicity and of dynamic creation / joining of resources, it is neither possible to

30

3.6. Inspecting the State of MARS

comprehensively depict a complex distributed MARS system, nor a comprehensive standalone
snippet of MARS, as a finite state transition diagram19.
Although MARS tries to approximate / emulate the synchronous control behaviour of DRBD

at the interface level (marsadm) in many situations as best as it can, the internal control model
is necessarily asynchronous. As an experiencend sysadmin, you will be curious how it works
in principle. When you know something about it, you will no longer be surprised when some
(detail) behaviour is different from DRBD.
The general principle is an asynchronous 2-edge handshake protocol, which is used almost

everywhere in MARS:

1 3

2

actual response

todo switch

time

4

We have a binary todo switch, which can be either in state “on” or “off”. In addition, we have
an actual response indicator, which is similar to an LED indicating the actual status. In our
example, we imagine that both are used for controlling a big ventilator, having a huge inert
mass. Imagine a big machine from a power plant, which is as tall as a human.
We start in a situation where the binary switch is off, and the ventilator is stopped. At point

1, we turn on the switch. At that moment, a big contactor will sound like “zonggg”, and a
big motor will start to hum. At first you won’t hear anything else. It will take a while, say 1
minute, until the big wheel will have reached its final operating RPM, due to the huge inert
mass. During that spin-up, the lights in your room will become slightly darker. When having
reached the full RPM at point 2, your workplace will then be noisier, but in exchange your
room lights will be back at ordinary strength, and the actual response LED will start to lit in
order to indicate that the big fan is now operational.
Assume we want to turn the system off. When turning the todo switch to “off” at point 3,

first nothing will seem to happen at all. The big wheel will keep spinning due to its heavy
inert mass, and the RPM as well as the sound will go down only slowly. During spin-down,
the actual response LED will stay illuminated, in order to warn you that you should not touch
the wheel, otherwise you may get injuried20. The LED will only go off after, say, 2 minutes,
when the wheel has actually stopped at point 4. After that, the cycle may potentially start
over again.
As you can see, all four possible cartesian product combinations between two boolean values

are occurring in the diagram.
The same handshake protocol is used in MARS for communication between userspace and

kernelspace, as well as for communication in the widely distributed system.

3.6. Inspecting the State of MARS

The main command for viewing the current state of MARS Light is

• marsadm view mydata

19Probably it could be possible to formally model MARS as a Petri net. However, complete Petri nets are tending
to become very conplex, and to describe lots of low-level details. Expressing hierarchy, in a top-down fashion,
is cumbersome. We find no clue in trying to do so.

20Notice that it is only safe to access the wheel when both the switch and the LED are off. Conversely, if at
least one of them is on, something is going on inside the machine. Transferred to MARS: always look at both
the todo switch and the correponding actual indicator in order to not miss something.

31

3. Quick Start Guide

or its more specialized variant

• marsadm view-$macroname mydata

where $macroname is one of the following macros described in the following sections, or a macro
which has been written by yourself.
As always, you may replace the resource name mydata with the special keyword all in order

to get the state of all locally joined resources, as well as a list of all those resources.

When using the variant marsadm view all, additionally the global communication sta-
tus will be displayed. This helps humans in diagnosing problems.

In general, the command marsadm view-$macroname all will first call the macro
$macroname in a loop for all resources we are a member locally. Finally, a trailing macro
$macroname -global will be called with an empty %{res} argument, provided that such a
macro is defined. This way, you can produce per-resource output followed by global output
which does not depend on a particular resource.

3.6.1. Predefined Macros
The macro processor is a very flexible and versatile tool for customizing. You can create your
own macros, but probably the rich set of predefined macros is already sufficient for your needs.

3.6.1.1. Predefined Complex and High-Level Macros

The following predefined complex macros try to address the information needs of humans. Use
them only in scripts when you are prepared about the fact that the output format may change
during development of MARS.
Notice: the definitions of predefined complex macros may be updated in the course of the

MARS project. However, the primitive macros recursively called by the complex ones will be
hopefully rather stable in future (with the exception of bugfixes). If you want to retain an old
/ outdated version of a complex macro, just check it out from git, follow the instructions in
section 3.6.2, and preferably give it a different name in order to avoid confusion with the newer
version. In general, it should be possible to use old macros with newer versions of marsadm21.

default This is equivalent to marsadm view mydata without -maroname suffix. It shows a
one-line status summary for each resource, optionally followed by informational lines
such as progress bars whenever a sync or a fetch of logfiles is currently running. The
status line has the following fields:

%{res} resource name.

%include{diskstate} see diskstate macro below.

%include{replstate} see replstate macro below.

%include{flags} see flags macro below.

%include{role} see role macro below.

%include{primarynode} see primarynode macro below.

%include{commstate} see commstate macro below.

After that, optional lines such as progress bars are appearing only when something
unusual is happening. These lines are subject to future changes. For examples,
wasted disk space due to missing resize is reported when %{threshold} is exceeded.

1and1 or default-1and1 A variant of default for internal use by 1&1 Internet AG. You may
call this complex macro by saying marsadm view-1and1 all.

21You might need to check out also old versions of further macros and adapt their names, whenever complex
macros call each other.

32

3.6. Inspecting the State of MARS

Note: the marsadm view-1and1 command has been intensely tested in Spring 2014 to
produce exactly the same output than the 1&1 internal22 tool marsview23

Customization via your own macros (see section 3.6.2) is explicitly encouraged by the
developer. It would be nice if a vibrant user community would emerge, helping each other by
exchange of macros.

Hint: in order to produce your own customized inspection / monitoring tools, you may
ask the author for an official reservation of a macro sub-namespace such as *-yourcompanyname .
You will be fully responsible for your own reserved namespace and can do with it whatever you
want. The official MARS release will guarantee that no name clashes with your reserved sub-
namespace will occur in future.

default-global Currently, this just calls comminfo (see below). May be extended in future.

diskstate Shows the status of the underlying disk device, in the following order of prece-
dence24:

NotJoined (cf %get-disk{}) No underlying disk device is configured.

NotPresent (cf %present-disk{}) The underlying disk device (as configured, see
marsadm view-get-disk) does not exist or the device node is not acces-
sible. Therefore MARS cannot work. Check that LVM or other software
is properly configured and running.

Detached (cf InConsistent, NeedsReplay, %todo-attach{}, %is-attach{}) The
underlying disk is willingly switched off (see marsadm detach), and it ac-
tually is no longer opened by MARS.

Detaching (cf %todo-attach{} and %is-attach{}) Access to the underlying disk
is switched off, but actually not yet close()d by MARS. This can happen
for a long time on a primary when other secondaries are accessing the disk
remotely for syncing.

NoAttach (cf %is-attach{}) The underlying disk is currently not opened by MARS.
Reasons may be that the kernel module is not loaded, or an exclusive
open() is currently not possible because somebody else has already opened
it.

InConsistent (cf %is-consistent{}) A logfile replay and/or sync is known to be
needed / or to complete (e.g. after invalidate has started) in order to
restore local consistency (for details, look at flags).

Hint: in the current implementation of MARS, this will never hap-
pen on secondaries during ordinary replay (but only when either sync has
not yet finished, or when the initial logfile replay after the sync has not

22In addition to allow for customization, the macro processor is also meant as an exit strategy for removing
dependencies from non-free software. Please put your future macros also under GPL!

23There are some subtle differences: numbers are displayed in a different precision, some bug fixes in the macro
version (which might have occurred in the meantime) may lead to different output as a side effect from
bug fixes in predefined macros, because the original marsview command is currently not actively maintained.
Documentation of marsview can be found in the corresponding manpage, see man marsview. By construction,
this is also the (unmaintained) documentation of marsadm view-1and1 and other -1and1 macros. Notice that
all *-1and1macros are not officially supported by the developer of MARS, and they may disappear in a future
major release. However, they could be useful for your own customization macros.

24When an earlier list item is displayed, no combinations with following items are possible. This kind of “hiding
effect” can lead to an information loss. In order to get a non-lossy picture from the state of your system,
please look at the flags which are able to display cartesian combinations of more detailed internal states.

33

3. Quick Start Guide

yet finished), because the ordinary logfile replay always maintains any-
time consistency once a consistent state had been reached. On a running
primary, this display does not mean that something went wrong. It just
means that there exists some writeback in the temporary memory buffer
which has to be flushed before consistency of the underlying local disk (as
opposed to /dev/mars/mydata which will always appear as being consis-
tent) will be reached again. Only in case of a primary node crash, and
only after attempts have failed to become primary again (e.g. IO errors,
etc), this can (but need not) mean that something went wrong. Even in
such an extremely unlikely event, chances are high that fsck can fix any
remaining problems (and, of course, you can also switchover to a former
secondary).

OutDated[FR] (cf %work-reached{}) Only at secondaries. Tells whether it is cur-
rently known that the disk has any lag-behind when compared to the
currently known state of the current designated primary (if there exists
one). Only meaningful if a current designated primary exists. Notice that
this kind of status display is subject to natural races, for example when
new logfile data has been produced in parallel, or network propagation is
very slow. Additional information is in brackets:

[F] Fetch is known to be needed.

[R] Replay is known to be needed.

[FR] Both are known to be needed.

WriteBack (cf %is-primary{}) Appears only at actual primaries (whether desig-
nated or not), when the writeback from the RAM buffer is active (see
section 4.1)

Recovery (cf %todo-primary{}) Appears only at the designated primary before it
actually has become primary. Similar to database recovery, this indicates
the recovery phase after a crash25.

EmergencyMode (cf %is-emergency{}) A current designated primary exists, and it
is known that this host has entered emergency mode. See section 4.4.2.

UpToDate Displayed when none of the above has been detected.

diskstate-1and1 A variant for internal use by 1&1 Internet AG. See above note.

replstate Shows the status of the replication in the following order of precedence:

ModuleNotLoaded (cf %is-module-loaded{}) No kernel module is loaded, and as a
consequence no /proc/sys/mars/ does exist.

UnResponsive (cf %is-alive{%{host}}) The main thread mars_light did not do
any noticable work for more than %{window} (default 30) seconds. Notice
that this may happen when deleting extremely large logfiles (up to hun-
dreds of gigabytes or terabytes). If this happens for a very long time, you
should check whether you might need a reboot in order to fix the hang.
The time window may be changed by --window=$seconds.

NotJoined (cf %get-disk{}) No underlying disk device is configured for this re-
source.

NotStarted (cf %todo-attach{}) Replication has not been started.

• When the current host is designated as a primary, the rest of the precedence
list looks as follows:

EmergencyMode (cf. %is-emergency{}) See section 4.4.2.

Replicating (cf. %is-primary{}) Primary mode has been entered.

25In some cases, primary --force may also trigger this message.

34

3.6. Inspecting the State of MARS

NotYetPrimary (catchall) This means the current host should act as a primary
(see marsadm primary or marsadm primary --force), but currently
doesn’t (yet). This happens during logfile replay, before primary
mode is actually entered. Notice that replay of very big logfiles may
take a long time.

• When the current host is not designated as a primary:
PausedSync (cf. %sync-rest{} and %todo-sync{}) Some data needs to be

synced, but sync is currently switched off. See marsadm {pause,resume}-sync.
Syncing (cf. %is-sync{}) Sync is currently running.
PausedFetch (cf. %todo{fetch}) Fetch is currently switched off. See marsadm

{pause,resume}-fetch.
PausedReplay (cf. %todo{replay}) Replay is currently switched off. See marsadm

{pause,resume}-replay.
NoPrimaryDesignated (cf. %get-primary{}) A secondary command has been

given somewhere in the cluster. Thus no designated primary exists.
All resource members are in state Secondary or try to approach it.
Sync and other operations are not possible. This state is therefore
not recommended.

PrimaryUnreachable (cf. %is-alive{}) A current designated primary has
been set, but this host has not been remotely updated for more than
30 seconds (see also --window=$seconds).

Replaying (catchall) None of the previous conditions have triggered.

replstate-1and1 A variant for internal use by 1&1 Internet AG. See above note.

flags For each of disk, consistency, attach, sync, fetch, and replay, show exactly one char-
acter. Each character is either a capital one, or the corresponding lowercase one, or
a dash. The meaning is as follows:

disk/device: D = the device /dev/mars/mydata is present, d = only the underlying
disk /dev/lv-x/mydata is present, - = none present / configured.

consistency: this relates to the underlying disk, not to /dev/mars/mydata! C =
locally consistent, c = maybe inconsistent (no guarantee), - = cannot
determine. Notice: this does not tell anything about actuality. Notice: like
the other flags, this flag is subject to races and therefore should be relied
on only in detached state! See also description of macro is-consistent
below.

attach: A = attached, a = currently trying to attach/detach but not yet ready
(intermediate state), - = attach is switched off.

sync: S = sync finished, s = currently syncing, - = sync is switched off.
fetch: F = according to knowlege, fetched logfiles are up-to-date, f = currently

fetching (some parts of) a logfile, - = fetch is switched off.
replay: R = all fetched logfiles are replayed, r = currently replaying, - = replay is

switched off.

flags-1and1 A variant for internal use by 1&1 Internet AG.

todo-role Shows the designated state: None, Primary or Secondary.

role Shows the actual state: None, NotYetPrimary, Primary, RemainsPrimary, or Secondary.
Any differences to the designated state are indicated by a prefix to the keyword
Primary: NotYet means that it should become primary, but actually hasn’t. Vice
versa, Remainsmeans that it should leave primary state in order to become secondary,
but actually cannot do that because the /dev/mars/mydata device is currently in use
.

%todo-primary{} == 0 %todo-primary{} == 1
%is-primary{} == 0 None / Secondary NotYetPrimary
%is-primary{} == 1 RemainsPrimary Primary

35

3. Quick Start Guide

role-1and1 A variant for internal use by 1&1 Internet AG.

primarynode Display (none) or the hostname of the designated primary.

primarynode-1and1 A variant for internal use by 1&1 Internet AG.

commstate When the last metadata communication to the designated primary is longer ago
than ${window} (see also --window=seconds option), display that age in human
readable form. See also primitive macro %alive-age{}.

syncinfo Shows an informational progress bar when sync is running. Intended for humans.
Scripts should not rely on any details from this. Scripts may use this only as an
approximate means for detecting progress (when comparing the full output text to a
prior version and finding any difference, they may conclude that some progress has
happened, how small whatsoever).

syncinfo-1and1 A variant for internal use by 1&1 Internet AG.

replinfo Shows an informational progress bar when fetch is running. This should not be used
for scripting at all, because it contains realtime information in human-readable form.

replinfo-1and1 A variant for internal use by 1&1 Internet AG.

fetch-line Additional details, called by replinfo. Shows the amount of data to be fetched, as
well as the current transfer rate and a very rough estimation of the future duration.
When primitive macros %fetch-age{} or %fetch-lag{} exceed ${window}, their
values are also displayed for human informational purposes. See description of these
primitive macros.

replay-line Additional details, called by replinfo. Shows the amount of data to be replayed,
as well as the current replay rate and a very rough estimation of the future duration.
When primitive macro %replay-age{} exceeds ${window}, it is also displayed for
human informational purposes.

comminfo When the network communication is in an unusual condition, display it. Otherwise,
don’t produce any output.

3.6.1.2. Predefined Primitive Macros

Intended for Humans In the following, shell glob notation {a,b} is used to document similar
variants of similar macros in a single place. When you actually call the macro, you must choose
one of the possible variants (excluding the braces).

the-err-msg Show reported errors for a resource. When the resource argument is missing or
empty, show global error information.

all-err-msg Like before, but show all information including those which are OK. This way,
you get a list26 of all potential error information present in the system.

{all,the}-wrn-msg Show all / reported warnings in the system.

{all,the}-inf-msg Show all / reported informational messages in the system.

{all,the}-msg Show all / reported messages regardless of its classification.

{all,the}-global-msg Show global messages not associated with any resource (the resource
argument of the marsadm command is ignored in this case).

{all,the}-global-{inf,wrn,err}-msg Dito, but more specific.

{all,the}-pretty-{global-,}{inf-,wrn-,err-,}msg Dito, but show numerical timestamps
in a human readable form.

26The list may be extended in future versions of MARS.

36

3.6. Inspecting the State of MARS

{all,the}-{global-,}{inf-,wrn-,err-,}count Instead of showing the messages, show their
count (number of lines).

todo-{attach,sync,fetch,replay,primary} Shows a boolean value (0 or 1) indicating the
current state of the corresponding todo switch (whether on or off). The meaning of
todo switches is illustrated in section 3.5.

get-resource-{fat,err,wrn} Access to the internal error status files. This is not an official
interface and may thus change at any time without notice. Use this only for human
inspection, not for scripting!

These macros, as well as the error status files, are likely to disappear in future
versions of MARS. They should be used for debugging only. At least when merging
into the upstream Linux kernel, only the *-msg macros will likely survive.

get-resource-{fat,err,wrn}-count Dito, but get the number of lines instead of the text.

is-{attach,sync,fetch,replay,primary,module-loaded} Shows a boolean value (0 or 1)
indicating the actual state, whether the corresponding action has been actually car-
ried out, or not (yet). Notice that the values indicated by is-* may differ from the
todo-* values when something is not (yet) working. More explanations can be found
in section 3.5.

is-split-brain Shows whether split brain (see section 3.4.3) has been detected, or not.

is-consistent Shows whether the underlying disk is in a locally consistent state, i.e. whether
it could be (potentially) detached and then used for read-only test-mounting27. Don’t
confuse this with the consistency of /dev/mars/mydata, which is by construction
always locally consistent once it has appeared28. By construction of MARS, the disk
of secondaries will always remain in a locally consistent state once the initial sync
has finished as well as the initial logfile replay. Notice that local consistency does not
necessarily imply actuality (see high-level explanation in section 2.1.2).

is-emergency Shows whether emergency mode (see section 4.4.2) has been entered for the
named resource, or not.

rest-space (global, no resource argument necessary) Shows the logically available space in
/mars/, which may deviate from the physically available space as indicated by the
df command.

present-{disk,device} Show (as a boolean value) whether the underlying disk, or the /dev/mars/mydata
device, is available.

get-{disk,device} Show the name of the underlying disk, or of the /dev/mars/mydata device
(if it is available).

Intended for Scripting While complex macros may output a whole bunch of information, the
following primitive macros are outputting exactly one value. They are intended for script use
(cf. section 3.7). Of course, curious humans may also try them :)
In the following, shell glob notation {a,b} is used to document similar variants of similar

macros in a single place. When you actually call the macro, you must choose one of the possible
variants (excluding the braces).

27Notice that the writeback at the primary side is out-of-order by default, for performance reasons. Therefore,
the underlying disk is only guaranteed to be consistent when there is no data left to be written back. Notice
that this condition is racy by construction. When your primary node crashes during writeback and then
comes up again, you must do a modprobe mars first in order to automatically replay the transaction logfiles,
which will automatically heal such temporary inconsistencies.

28Exceptions are possible when using marsadm fake-sync. Even in split brain situations, marsadm primary
--force tries to prevent any further potential exception as best as it can, by not letting /dev/mars/mydata
to appear and by insisting on split brain resolution first. In future implementations, this might change if
more pressure is put on the developer to sacrifice consistency in preference to not waiting for a full logfile
replay.

37

3. Quick Start Guide

Name Querying

cluster-members Show a newline-separated list of all host names participating in the cluster.

resource-members Show a newline-separated list of all host names participating in the partic-
ular resource %{res}. Notice that this may be a subset of %cluster-members{}.

{my,all}-resources Show a newline-separated list of either all resource names existing in the
cluster, or only those where the current host %{host} is member. Optionally, you
may specify the hostname as a parameter, e.g. %my-resources{otherhost }.

fetch−rest

replay−size
fetch−pos fetch−size

work−size

deletable−size

replay−pos

work−pos

replay−rest

100%

occupied−size

work−rest

replay−pos

0%

Figure 3.1.: overview on amounts / cursors

Amounts of Data Inquiry The following macros are meaningful for both primary and sec-
ondary nodes:

deletable-size Show the total amount of locally present logfile data which could be deleted by
marsadm log-delete-all mydata. This differs almost always from both replay-pos
and occupied-size due to granularity reasons (only whole logfiles can be deleted).
Units are bytes, not kilobytes.

occupied-size Show the total amount of locally present logfile data (sum of all file sizes).
This is often roughly approximate to fetch-pos, but it may differ vastly (in both
directions) when logfiles are not completely transferred, when some are damaged,
during split brain, after a join-resource / invalidate, or when the resource is in
emergency mode (see section 4.4.2).

disk-size Show the size of the underlying local disk in bytes.

resource-size Show the logical size of the resource in bytes. When this value is lower than
disk-size, you are wasting space.

device-size At a primary node, this may differ from resource-size only for a very short
time during the resize operation. At secondaries, there will be no difference.

The following macros are only meaningful for secondary nodes. By information theoretic limits,
they can only tell what is locally known. They cannot reflect the “true (global) state29” of a
cluster, in particular during network partitions.

{sync,fetch,replay,work}-size Show the total amount of data which is / was to be pro-
cessed by either sync, fetch, or replay. work-size is equivalent to fetch-size.
replay-size is equivalent to fetch-pos (see below). Units are bytes, not kilobytes.

{sync,fetch,replay,work}-pos Show the total amount of data which is already processed
(current “cursor” position). work-pos is equivalent to replay-pos.

The 0% point is the locally contiguous amount of data since the last create-resource,
join-resource, or invalidate, or since the last emergency mode, but possibly shortened
29Notice that according to Einstein’s law, and according to observations by Lamport, the concept of “true state”

does not exist at all in a distributed system. Anything you can know in a distributed system is always local
knowlege, which races with other (remote) knowlege, and may be outdated at any time.

38

3.6. Inspecting the State of MARS

by log-deletes. Notice that the 0% point may be different on different cluster nodes, be-
cause their resource history may be different or non-contiguous during split brain, or after a
join-resource, or after invalidate, or during / after emergency mode.

{sync,fetch,replay,work}-rest Shows the difference between *-size and *-pos (amount
of work to do). work-rest is therefore the difference between fetch-size and
replay-pos, which is the total amount of work to do (regardless whether to be
fetched and/or to be replayed).

{sync,fetch,replay,work}-reached Boolean value indicating whether *-rest dropped down
to zero30.

{fetch,replay,work}-threshold-reached Boolean value indicating whether *-rest dropped
down to %{threshold}, which is pre-settable by the --threshold=size command
line option (default is 10 MiB). In asynchronous use cases of MARS, this should be
preferred over *-reached for human display, because it produces less flickering by
the inevitable replication delay.

{fetch,replay,work}-almost-reached Boolean value indicating whether *-rest almost /
approximately dropped down to zero. The default is that at lease 990 permille
are reached. In asynchronous use cases of MARS, this should be preferred over
*-reached for human display, because it produces less flickering by the inevitable
replication delay.

{sync,fetch,replay,work}-percent The cursor position *-pos as a percentage of *-size.

{sync,fetch,replay,work}-permille The cursor position *-pos as permille of *-size.

{sync,fetch,replay,work}-rate Show the current throughput in bytes31 per second. work-rate
is the maximum of fetch-rate and replay-rate.

{sync,fetch,replay,work}-remain Show the estimated remaining time for completion of the
respective operation. This is just a very raw guess. Units are seconds.

summary-vector Show the colon-separated CSV value %replay-pos{}:%fetch-pos{}:%fetch-size{}.

alive-timestamp Tell the Lamport Unix timestamp (seconds since 1970) of the last metadata
communication to the designated primary (or to any other host given by the first
argument). Returns −1 if no such host exists.

{fetch,replay,work}-timestamp Tell the Lamport Unix timestamp (seconds since 1970)
when the last progress has been made. When no such action exists, −1 is returned.
%work-timestamp{hostname } is the maximum of %fetch-timestamp{hostname }
and %replay-timestamp{hostname }. When the parameter hostname is empty, the
local host will be reported (default). Example usage: marsadm view all --macro=”%replay-timestamp{%todo-primary{}}”

30Recall from chapter 2 that MARS Light (in its current stage of development) does only guarantee local
consistency, but cannot guarantee actuality in all imaginable situations. Notice that a general notion of
“actuality” is undefinable in a widely distributed system at all, according to Einstein’s laws.

Let’s look at an example. In case of a node crash, and after the node is up again, a modprobe mars has
to occur, in order to replay the transaction logs of MARS again. However, at the recovery phase before, the
journalling ext4 filesystem /mars/ may have rolled back some internal symlink updates which have occurred
immediately before the crash. MARS is relying on the fact that journalling filesystems like ext4 should do
their recovery in a consistent way, possibly by sacrifycing actuality a little bit. Therefore, the above macros
cannot guarantee to deliver true information about what is persisted at the moment.

Notice that there are further potential caveats.
In case of {sync,fetch}-reached, MARS uses bio callbacks resp. fdatasync() by default, thus the

underlying storage layer has told us that it believes it has commited the data in a reboot-safe way. Whether
this is really true does not depend on MARS, but on the lower layers of the storage hierarchy. There exists
hardware where this claim is known to be wrong under certain circumstances, such as certain hard disk
drives in certain modes of operation. Please check the hardware for any violations of storage semantics
under certain circumstances such as power loss, and check information sources like magazines about the
problem area. Please notice that such a problem, if it exists at all, is independent from MARS. It would also
exist if you wouldn’t use MARS on the same system.

31Notice that the internal granularity reported by the kernel may be coarser, such as KiB. This interfaces
abstracts away from kernel internals and thus presents everything in byte units.

39

3. Quick Start Guide

shows the timestamp of the last reported32 writeback action at the designated pri-
mary.

{alive,fetch,replay,work}-age Tell the number of seconds since the last respective action,
or −1 if none exists.

{alive,fetch,replay,work}-lag Report the time difference (in seconds) between the last
known action at the local host and at the designated primary (or between any other
hosts when 2 parameters are given). Returns −1 if no such action exists at any of
the two hosts. Attention! This need not reflect the actual state in case of networking
problems. Don’t draw wrong conclusions from a high {fetch,replay}-lag value: it
could also mean that simply no write operation at all has occurred at the primary
side for a long time. Conversely, a low lag value does not imply that the replication
is recent: it may refer to different write operations at each of the hosts; therefore it
only tells that some progress has been made, but says nothing about the amount of
the progress.

Misc Informational Status

get-primary Return the name of the current designated primary node as locally known.

actual-primary (deprecated) try to determine the name of the node which appears to be the
actual primary. This only a guess, because it is not generally unique in split brain
situations! Don’t use this macro. Instead, use is-primary on those nodes you are
interested in. The explanations from section 3.5 also apply to get-primary versus
actual-primary analogously.

is-alive Boolean value indicating whether all other nodes participating in mydata are reach-
able / healthy.

uuid (global) Show the unique identifier created by create-cluster or by create-uuid.
Hint: this is immutable, and it is firmly bound to the /mars/ filesystem. It can only
be destroyed by deleting the whole filesystem (see section 5.2).

tree (global) Indicate symlink tree version (see section 4.3).

Experts Only The following is for hackers who know what they are doing. The following is
not officially supported.

wait-{is,todo}-{attach,sync,fetch,replay,primary}-{on,off} This may be used to pro-
gram some useful waiting conditions in advanced macro scripts. Use at your own risk!

3.6.2. Creating your own Macros

In order to create your own macros, you could start writing them from scratch with your favorite
ASCII text editor. However, it is much easier to take an existing macro and to customize it to
your needs. In addition, you can learn something about macro programming by looking at the
existing macro code.
Go to a new empty directory and say

• marsadm dump-macros

in order to get the most interesting complex macros, or say

• marsadm dump-all-macros

32Updates of this information are occurring with lower frequency than actual writebacks, for performance
reasons. The metadata network update protocol will add further delays. Therefore, the accuracy is only in
the range of minutes.

40

3.6. Inspecting the State of MARS

in order to additionally get some primitive macros which could be customized if needed. This
will write lots of files *.tpl into your current working directory.
Any modfied or new macro file should be placed either into the current working directory

./ , or into $HOME/.marsadm/ , or into /etc/marsadm/ . They will be searched in this order,
and the first match will win. When no macro file is found, the built-in version will be used if
it exists. This way, you may override builtin macros.
Example: if you have a file ./mymacro.tpl you just need to say marsadm view-mymacro

mydata in order to invoke it in the resource context mydata.

3.6.2.1. General Macro Syntax

Macros are simple ASCII text, enriched with calls to other macros.
ASCII text outside of comments are copied to the output verbatim. Comments are skipped.

Comments may have one of the following well-known forms:

• # skipped text until / including next newline character

• // skipped text until / including next newline character

• /* skipped text including any newline characters */

• denoted as Perl regex: \\\n\s* (single backslash directly followed by a newline character,
and eating up any whitespace characters at the beginning of the next line) Hint: this may
be fruitfully used to structure macros in a more readable form / indentation.

Special characters are always initiated by a backslash. The following pre-defined special char-
acter sequences are recognized:

• \n newline

• \r return (useful for DOS compatibility)

• \t tab

• \f formfeed

• \b backspace

• \a alarm (bell)

• \e escape (e.g. for generating ANSI escape sequences)

• \ followed by anything else: assure that the next character is taken verbatim. Although
possible, please don’t use this for escaping letters, because further escape sequences might
be pre-defined in future. Best practice is to use this only for escaping the backslash itself,
or for escaping the percent sign when you don’t want to call a macro (protect against
evaluation), or to escape a brace directly after a macro call (verbatim brace not to be
interpreted as a macro parameter).

• All other characters stand for their own. If you like, you should be able to produce XML,
HTML, JSON and other ASCII-based output formats this way.

Macro calls have the following syntax:

• %macroname {arg1 }{arg2 }{argn }

• Of course, arguments may be empty, denoted as {}

• It is possible to supply more arguments than required. These are simply ignored.

• There must be always at least 1 argument, even for parameterless macros. In such
a case, it is good style to leave it empty (even if it is actually ignored). Just write
%parameterlessmacro{} in such a case.

41

3. Quick Start Guide

• %{varname } syntax: As a special case, the macro name may be empty, but then the first
argument must denote a previously defined variable (such as assigned via %let{varname}{myvalue},
or a pre-defined standard variable like %{res} for the current resource name, see later
paragraph 3.6.2.2).

• Of course, parameter calls may be (almost) arbitrarily nested.

• Of course, the correctness of nesting of braces must be generally obeyed, as usual in any
other macro processor language. General rule: for each opening brace, there must be
exactly one closing brace somewhere afterwards.

These rules are hopefully simple and intuitive. There are currently no exceptions. In particular,
there is no special infix operator syntax for arithmetic expressions, and therefore no operator
precedence rules are necessary. You have to write nested arithmetic expressions always in the
above prefix syntax, like %*{7}{%+{2}{3}} (similar to non-inverse polish notation).

When deeply nesting macros and their braces, you may easily find yourself in a feeling
like in the goodDELL.shared-derived.istore.parallel-08.threads-032.test.g000.overview.thrp.png.pdf
old days of Lisp. Use the above backslash-newline syntax to indent your macros in a readable
and structured way. Fortunately, modern text editors like (x)emacs or vim have modes for
dealing with the correctness of nested braces.

3.6.2.2. Builtin / Primitive Macros

Primitive macros can be called in two alternate forms:

• %primitive-macroname {something }

• %macroname {something }

When using the %primitive-*{} form, you explicitly disallow interception of the call by a
*.tpl file. Otherwise, you may override the standard definition even of primitive macros by
your own template files.

Notice that %call{} conventions are used in such a case. The parameters are passed via
%{0} . . .%{n} variables (see description below).

Standard MARS State Inspection Macros These are already described in section 3.6.1.2.
When calling one of them, the call will simply expand to the corresponding value.
Example: %get-primary{} will expand to the hostname of the current designated primary

node.

Further MARS State Inspection Macros

Variable Access Macros

• %let{varname }{expression } Evaluates both varname and the expression . The expression
is then assigned to varname.

• %let{varname }{expression } Evaluates both varname and the expression . The expression
is then appended to varname (concatenation).

• %{varname } Evaluates varname , and outputs the value of the corresponding variable.
When the variable does not exist, the empty string is returned.

• %{++}{varname } or %{varname }{++} Has the obvious well-known side effect e.g. from
C or Java. You may also use -- instead of ++. This is handy for programming loops (see
below).

• %dump-vars{} Writes all currently defined variables (from the currently active scope) to
stderr. This is handy for debugging.

42

3.6. Inspecting the State of MARS

CSV Array Macros

• %{varname }{delimiter }{index } Evaluates all arguments. The contents of varname
is interpreted as a comma-separated list, delimited by delimiter . The index ’th list
element is returned.

• %set{varname }{delimiter }{index }{expression } Evaluates all arguments. The con-
tents of the old varname is interpreted as a comma-separated list, delimited by delimiter .
The index ’th list element is the assigend to, or substituted by, expression .

Arithmetic Expression Macros The following macros can also take more than two arguments,
carrying out the corresponding arithmetic operation in sequence (it depends on the operator
whether this accords to the associative law).

• %+{arg1 }{arg2 } Evaluates the arguments, inteprets them as numbers, and adds them
together.

• %-{arg1 }{arg2 } Subtraction.

• %*{arg1 }{arg2 } Multiplication.

• %/{arg1 }{arg2 } Division.

• %%{arg1 }{arg2 } Modulus.

• %&{arg1 }{arg2 } Bitwise Binary And.

• %|{arg1 }{arg2 } Bitwise Binary Or.

• %^{arg1 }{arg2 } Bitwise Binary Exclusive Or.

• %<<{arg1 }{arg2 } Binary Shift Left.

• %>>{arg1 }{arg2 } Binary Shift Right.

• %min{arg1 }{arg2 } Compute the arithmetic minimum of the arguments.

• %max{arg1 }{arg2 } Compute the arithmetic maximum of the arguments.

Boolean Condition Macros

• %=={arg1 }{arg2 } Numeral Equality.

• %!={arg1 }{arg2 } Numeral Inequality.

• %<{arg1 }{arg2 } Numeral Less Then.

• %<={arg1 }{arg2 } Numeral Less or Equal.

• %>{arg1 }{arg2 } Numeral Greater Then.

• %>={arg1 }{arg2 } Numeral Greater or Equal.

• %eq{arg1 }{arg2 } String Equality.

• %ne{arg1 }{arg2 } String Inequality.

• %lt{arg1 }{arg2 } String Less Then.

• %le{arg1 }{arg2 } String Less or Equal.

• %gt{arg1 }{arg2 } String Greater Then.

• %ge{arg1 }{arg2 } String Greater or Equal.

• %=~{string }{regex }{opts } Checks whether string matches the Perl regular expres-
sion regex . Modifiers can be given via opts .

43

3. Quick Start Guide

Shortcut Evaluation Operators The following operators evaluate their arguments only when
needed (like in C).

• %&&{arg1 }{arg2 } Logical And.

• %and{arg1 }{arg2 } Alias for %&&{}.

• %||{arg1 }{arg2 } Logical Or.

• %or{arg1 }{arg2 } Alias for %||{}.

Unary Operators

• %!{arg } Logical Not.

• %not{arg } Alias for %!{}.

• %~{arg } Bitwise Ńegation.

String Functions

• %length{string } Return the number of ASCII characters present in string .

• %toupper{string } Return all ASCII characters converted to uppercase.

• %tolower{string } Return all ASCII characters converted to lowercase.

• %append{varname }{string } Equivalent to %let{varname }{%{varname }string }.

• %subst{string }{regex }{subst }{opts } Perl regex substitution.

• %sprintf{fmt }{arg1 }{arg2 }{argn } Perl sprintf() operator. Details see Perl man-
ual.

• %human-number{unit }{delim }{unit-sep }{number 1}{number 2}. . . Convert a number
or a list of numbers into human-readable B, KiB, MiB, GiB, TiB, as given by unit . When
unit is empty, a reasonable unit will be guessed automatically from the maximum of all
given numbers. A single result string is produced, where multiple numbers are separated
by delim when necessary. When delim is empty, the slash symbol / is used by default
(the most obvious use case is result strings like “17/32 KiB”). The final unit text is
separated from the previous number(s) by unit-sep . When unit-sep is empty, a single
blank is used by default.

• %human-seconds{number } Convert the given number of seconds into hh:mm:ss format.

Complex Helper Macros

• %progress{20} Return a string containing a progress bar showing the values from %summary-vector{}.
The default width is 20 characters plus two braces.

• %progress{20}{minvalue }{midvalue }{maxvalue } Instead of taking the values from
%summary-vector{}, use the supplied values. minvalue and midvalue indicate two dif-
ferent intermediate points, while maxvalue will determine the 100% point.

Control Flow Macros

• %if{expression }{then-part } or %if{expression }{then-part }{else-part } Like in
any other macro or programming language, this evaluates the expression once, not
copying its outcome to the output. If the result is non-empty and is not a string denoting
the number 0, the then-part is evaluated and copied to the output. Otherwise, the
else-part is evaluated and copied, provided that one exists.

• %unless{expression }{then-part } or %unless{expression }{then-part }{else-part }
Like %if{}, but the expression is logically negated. Essentially, this is a shorthand for
%if{%not{expression}}{...} or similar.

44

3.6. Inspecting the State of MARS

• %elsif{expr1 }{then1 }{expr2 }{then2 }. . . or %elsif{expr1 }{then1 }{expr2 }{then2 }. . .{odd-else-part }
This is for simplification of boring if-else-if chains. The classical if-syntax (as shown above)
has the drawback that inner if-parts need to be nested into outer else-parts, so rather deep
nestings may occur when you are programming longer chains. This is an alternate syn-
tax for avoidance of deep nesting. When giving an odd number of arguments, the last
argument is taken as final else-part.

• %elsunless. . . Like %elsif, but all conditions are negated.

• %while{expression }{body } Evaluates the expression in a while loop, like in any other
macro or programming language. The body is evaluated exactly as many times as the
expression holds. Notice that endless loops can be only avoided by a calling a non-pure
macro inspecting external state information, or by creating (and checking) another side
effect somewhere, like assigning to a variable somewhere.

• %until{expression }{body } Like %while{expression }{body }, but negate the expres-
sion.

• %for{exp r1}{exp r2}{exp r3}{body } As you will expect from the corresponding C, Perl,
Java, or (add your favorite language) construct. Only the syntactic sugar is a little bit
different.

• %foreach{varname }{CSV-delimited-string }{delimiter }{body } As you can expect
from similar foreach constructs in other languages like Perl. Currently, the macro pro-
cessor has no arrays, but can use comma-separated strings as a substitute.

• %eval{count }{body } Evaluates the body exactly as many times as indicated by the
numeric argument count . This may be used to re-evaluate the output of other macros
once again.

• %protect{body } Equivalent to %eval{0}{body }, which means that the body is not eval-
uated at all, but copied to the output verbatim33.

• %eval-down{body } Evaluates the body in a loop until the result does not change any
more34.

• %tmp{body } Evaluates the body once in a temporary scope which is thrown away after-
wards.

• %call{macroname }{arg1 }{arg2 }{argn } Like in many other macro languages, this eval-
uates the named macro in the a new scope. This means that any side effects produced
by the called macro, such as variable assignments, will be reverted after the call, and
therefore not influence the old scope. However notice that the arguments arg1 to argn
are evaluted in the old scope before the call actually happens (possibly producing side
effects if they contain some), and their result is respectively assigned to %{1} until %{n }
in the new scope, analogously to the Shell or to Perl. In addition, the new %{0} gets the
macroname . Notice that the argument evaluation happens non-lazily in the old scope and
therefore differs from other macro processors like TEX.

• %include{macroname }{arg1 }{arg2 }{argn } Like %call{}, but evaluates the named
macro in the current scope (similar to the source command of the bourne shell). This
means that any side effects produced by the called macro, such as variable assignments,
will not be reverted after the call. Even the %{0} until %{n } variables will continue to
exist (and may lead to confusion if you aren’t aware of that).

• %callstack{} Useful for debugging: show the current chain of macro invocations.

33TEX or LATEX fans usually know what this is good for ;)
34Mathematicians knowing Banach’s fixedpoint theorem will know what this is good for ;)

45

3. Quick Start Guide

Time Handling Macros

• %time{} Return the current Lamport timestamp (see section 4.2), in units of seconds
since the Unix epoch.

• %sleep{seconds } Pause the given number of seconds.

• %timeout{seconds } Like %sleep{seconds }, but abort the marsadm command after the
total waiting time has exceeded the timeout given by the --timeout= parameter.

Misc Macros

• %warn{text } Show a WARNING:

• %die{text } Abort execution with an error message.

Experts Only - Risky The following macros are unstable and may change at any time without
notice.

• %get-msg{name } Low-level access to system messages. You should not use this, since this
is not extensible (you must know the name in advance).

• %readlink{path } Low-level access to symlinks. Don’t misuse this for circumvention of
the abstraction macros from the symlink tree!

• %setlink{value }{path } Low-level creation of symlinks. Don’t misuse this for circum-
vention of the abstraction macros for the symlink tree!

• %fetch-info{} etc. Low-level access to internal symlink formats. Don’t use this in
scripts! Only for curious humans.

• %fetch-lognr{} etc. Get logfile numbers. Only for curious humans - don’t use in scripts,
don’t base any decisions on this.

• %is-almost-consistent{} Whatever you guess what this could mean, don’t use it, at
least never in place of %is-consistent{} - it is risky to base decisions on this.

• %does{name } Equivalent to %is-name {} (just more handy for computing the macro
name). Use with care!

Predefined Variables

• %{cmd} The command argument of the invoked marsadm command.

• %{res} The resource name given to the marsadm command as a command line parameter
(or, possibly expanded from all).

• %{resdir} The corresponding resource directory. The current version of MARS uses
/mars/resource-%{res}/, but this may change in future. Normally, you should not
need this, since anything should be already abstracted for you. In case you really need
low-level access to something, please prefer this variable over %{mars}/resource-%{res}
because it is a bit more abstracted.

• %{mars} Currently the fixed string /mars. This may change in future, probably with the
advent of MARS Full.

• %{host} The hostname of the local node.

• %{ip} The IP address of the local node.

• %{timeout} The value given by the --timeout= option, or the corresonding default value.

• %{threshold} The value given by the --threshold= option, or the corresonding default
value.

46

3.7. Scripting HOWTO

• %{window} The value given by the --window= option, or the corresonding default value.

• %{force} The number of times the --force option has been given.

• %{dry-run} The number of times the --dry-run option has been given.

• %{verbose} The number of times the --verbose option has been given.

• %{callstack} Same as the %callstack{} macro. The latter gives you an opportunity
for overriding, while the former is firmly built in.

3.7. Scripting HOWTO
Both the asynchronous communication model of MARS (cf section 4.2) including the
Lamport clock, and the state model (cf section 3.5) is something you definitely should have
in mind when you want to do some scripting. Here is some further concrete advice:

• Don’t access anything on /mars/ directly, except for debugging purposes. Use marsadm.

• Avoid running scripts in parallel, other than for inspection / monitoring purposes. When
you give two marsadm commands in parallel (whether on the same host, or on different
hosts belonging to the same cluster), it is very likely to produce a mess. marsadm has
no internal locking. There is no cluster-wide locking at all. Unfortunately, some systems
like Pacemaker are violating this in many cases (depending on their configuration). Best
is if you have a dedicated / more or less centralized control machine which controls
masses of your georedundant working servers. This reduces the risk of running interfering
actions in parallel. Of course, you need backup machines for your control machines, and
in different locations. Not obeying this advice can easily lead to problems such as complex
races which are very difficult to solve in long-distance distributed systems, even in general
(not limited to MARS).

• marsadm wait-cluster is your friend. Whenever your (near-)central script has to switch
between different hosts A and B (of the same cluster), use it in the following way:
ssh A “marsadm action1”; ssh B “marsadm wait-cluster; marsadm action2”

Don’t ignore this advice! Interference is almost sure! As a rule of thumb, precede
almost any action command with some appropriate waiting command!

• Further friends are any marsadm wait-* commands, such as wait-umount.

• In some places, busy-wait loops might be needed, e.g. for waiting until a specific resource is
UpToDate or matches some other condition. Examples of waiting conditions can be found
under github.com/schoebel/test-suite in subdirectory mars/modules/, specifically
02_predicates.sh or similar.

• In case of network problems, some command may hang (forever), if you don’t set the
--timeout= option. Don’t forget the check the return state of any failed / timeouted
commands, and to take appropriate measures!

• Test your scripts in failure scenarios!

47

4. Basic Working Principle

Even if you are impatient, please read this chapter. At the surface, MARS appears to be very
similar to DRBD. It looks like almost being a drop-in replacement for DRBD.
When taking this naïvely, you could easily step into some trivial pitfalls, because the internal

working principle of MARS is totally different from DRBD. Please forget (almost) anything you
already know about the internal working principles of DRBD, and look at the very different
working principles of MARS.

4.1. The Transaction Logger

MARS Data Flow Principle

MARS LCA2014 Presentation by Thomas Schöbel-Theuer

Temporary
Memory
Buffer

Host A
(primary)

/dev/mars/mydata

/dev/lv-x/mydata /mars/resource-
mydata/log-00001-

hostA

Logfile
Replicator

/mars/resource-
mydata/log-00001-

hostA
/dev/lv-
x/mydata

Logfile
Applicator

Host A
(primary)

Host B
(secondary)

w
ri

te
ba

ck
 in

ba
ck

gr
ou

nd

long-distance

tra
nsfer

append

Transaction Logger

The basic idea of MARS is to record all changes made to your block device in a so-called
transaction logfile. Any write reqeuest is treated like a transaction which changes the contents
of your block device.
This is similar in concept to some database systems, but there exists no separate “commit”

operation: any write request is acting like a commit.
The picture shows the flow of write requests. Let’s start with the primary node.
Upon submission of a write request on /dev/mars/mydata, it is first buffered in a temporary

memory buffer.
The temporary memory buffer serves multiple purposes:

• It keeps track of the order of write operations.

• Additionally, it keeps track of the positions in the underlying disk /dev/lv-x/mydata. In
particular, it detects when the same block is overwritten multiple times.

• During pending write operation, any concurrent reads are served from the memory buffer.

48

4.1. The Transaction Logger

After the write has been buffered in the temporary memory buffer, the main logger thread of
the transaction logger creates a so-called log entry and starts an “append” operation on the
transaction logfile. The log entry contains vital information such as the logical block number in
the underlying disk, the length of the data, a timestamp, some header magic in order to detect
corruption, the log entry sequence number, of course the data itself, and optional information
like a checksum or compression information.
Once the log entry has been written through to the /mars/ filesystem via fsync(), the ap-

plication waiting for the write operation at /dev/mars/mydata is signalled that the write was
successful.
This may happen even before the writeback to the underlying disk /dev/lv-x/mydata has

started. Even when you power off the system right now, the information is not lost: it is present
in the logfile, and can be reconstructed from there.
Notice that the order of log records present in the transaction log defines a total order

among the write requests which is compatible to the partial order of write requests issued on
/dev/mars/mydata.
Also notice that despite its sequential nature, the transaction logfile is typically not the

performance bottleneck of the system: since appending to a logfile is almost purely sequential
IO, it runs much faster than random IO on typical datacenter workloads.
In order to reclaim the temporary memory buffer, its content must be written back to the

underlying disk /dev/lv-x/mydata somewhen. After writeback, the temporary space is freed.
The writeback can do the following optimizations:

1. writeback may be in any order; in particular, it may be sorted according to ascending
sector ´numbers. This will reduce the average seek distances of magnetic disks in general.

2. when the same sector is overwritten multiple times, only the “last” version need to be
written back, skipping some intermediate versions.

In case the primary node crashes during writeback, it suffices to replay the log entries from some
point in the past until the end of the transaction logfile. It does no harm if you accidentally
replay some log entries twice or even more often: since the replay is in the original total order,
any temporary inconsistency is healed by the logfile application.

In mathematics, the property that you can apply your logfile twice to your data (or even
as often as you want), is called idempotence. This is a very desirable property: it ensures that
nothing goes wrong when replaying “too much” / starting your replay “too early”. Idempotence
is even more beneficial: in case anything should go wrong with your data on your disk (e.g. IO
errors), replaying your logfile once more often may1 even heal some defects. Good news for
desperate sysadmins forced to work with flaky hardware!
The basic idea of the asynchronous replication of MARS is rather simple: just transfer the

logfiles to your secondary nodes, and replay them onto their copy of the disk data (also called
mirror) in the same order as the total order defined by the primary.
Therefore, a mirror of your data on any secondary may be outdated, but it always corresponds

to some version which was valid in the past. This property is called anytime consistency2.

As you can see in the picture, the process of transfering the logfiles is independent from
the process which replays the logfiles onto the data at some secondary site. Both processes
can be switched on / off separately (see commands marsadm {dis,}connect and marsadm
{pause,resume}-replay in section 5.2.2). This may be exploited : for example, you may repli-
cate your logfiles as soon as possible (to protect against catastrophic failures), but deliberately
1Miracles cannot be guaranteed, but higher chances and improvements can be expected (e.g. better chances
for fsck).

2Your secondary nodes are always consistent in themselves. Notice that this kind of consistency is a local
consistency model. There exists no global consistency in MARS. Global consistency would be practically
impossible in long-distance replication where Einstein’s law of the speed of light is limiting global consistency.
The front-cover pictures showing the planets Earth and Mars tries to lead your imagination away from global
consistency models as used in “DRBD Think(tm)”, and try to prepare you mentally for local consistency as
in “MARS Think(tm)”.

49

4. Basic Working Principle

wait one hour until it is replayed (under regular circumstances). If your data inside your filesys-
tem /mydata/ at the primary site is accidentally destroyed by rm -rf /mydata/, you have an
old copy at the secondary site. This way, you can substitute some parts3 of conventional backup
functionality by MARS. In case you need the actual version, just replay in “fast-forward” mode
(similar to old-fashioned video tapes).

Future versions of MARS Full are planned to also allow “fast-backward” rewinding, of
course at some cost.

4.2. The Lamport Clock
MARS is always asynchonously communicating in the distributed system on any topics, even
strategic decisions.
If there were a strict global consistency model, which would be roughly equivalent to a

standalone model, we would need locking in order to serialize conflicting requests. It is known
for many decades that distributed locks do not only suffer from performance problems, but they
are also cumbersome to get them working reliably in scenarios where nodes or network links
may fail at any time.
Therefore, MARS uses a very different consistency model: Eventually Consistent.

Notice that the network bottleneck problems described in section 2.1 are demanding an
“eventually consistent” model. You have no chance against natural laws, like Einstein’s laws. In
order to cope with the problem area, you have to invest some additional effort. Unfortunately,
asynchronous communication models are more tricky to program and to debug than simple
strictly consistent models. In particular, you have to cope with additional race conditions
inherent to the “eventually consistent” model. In the face of the laws of the universe, motivate
yourself by looking at the graphics at the cover page: the planets are a symbol for what you
have to do!

Example: the asynchronous communication protocol of MARS leads to a different be-
haviour from DRBD in case of network partitions (temporary interruption of communication
between some cluster nodes), because MARS remembers the old state of remote nodes over long
periods of time, while DRBD knows absolutely nothing about its peers in disconnected state.
Sysadmins familiar with DRBD might find the following behaviour unusual:

Event DRBD Behaviour MARS Behaviour

1. the network partitions automatic disconnect nothing happens, but replication lags behind

2. on A: umount $device works works

3. on A: {drbd,mars}adm secondary works works

4. on B: {drbd,mars}adm primary works, split brain happens refused because B believes that A is primary

5. the network resumes automatic connect attempt fails communication automatically resumes

If you intentionally want to switch over (and to produce a split brain as a side effect), the
following variant must be used with MARS:

Event DRBD Behaviour MARS Behaviour

1. the network partitions automatic disconnect nothing happens, but replication lags behind

2. on A: umount $device works works

3. on A: {drbd,mars}adm secondary works works (but not remmonended!)

4. on B: {drbd,mars}adm primary split brain, but nobody knows refused because B believes that A is primary

5. on B: marsadm disconnect - works, nothing happens

6. on B: marsadm primary --force - works, split brain happens on B, but A doesn’t know

7. on B: marsadm connect - works, nothing happens

8. the network resumes automatic connect attempt fails communication resumes, A now detects the split brain

3Please note that MARS cannot fully substitute a backup system, because it can keep only physical copies,
and does not create logical copies.

50

4.3. The Symlink Tree

In order to implement the consistency model “eventually consistent”, MARS uses a so-called
Lamport4 clock. MARS uses a special variant called “physical Lamport clock”.
The physical Lamport clock is another almost-realtime clock which can run independently

from the Linux kernel system clock. However, the Lamport clock tries to remain as near as
possible to the system clock.
Both clocks can be queried at any time via cat /proc/sys/mars/lamport_clock. The result

will show both clocks in parallel, in units of seconds since the Unix epoch, with nanosecond
resolution.
When there are no network messages at all, both the system clock and the Lamport clock

will show almost the same time (except some minor differences of a few nanoseconds resulting
from the finite processor clock speed).
The physical Lamport clock works rather simple: any message on the network is augmented

with a Lamport time stamp telling when the message was sent according to the local Lamport
clock of the sender. Whenever that message is received by some receiver, it checks whether
the time ordering relation would be violated: whenever the Lamport timestamp in the message
would claim that the sender had sent it after it arrived at the receiver (according to drifts in
their respective local clocks), something must be wrong. In this case, the local Lamport clock
of the receiver is advanced shortly after the sender Lamport timestamp, such that the time
ordering relation is no longer violated.
As a consequence, any local Lamport clock may precede the corresponding local system

clock. In order to avoid accumulation of deltas between the Lamport and the system clock, the
Lamport clock will run slower after that, possibly until it reaches the system clock again (if no
other message arrives which sets it forward again). After having reached the system clock, the
Lamport clock will continue with “normal” speed.
MARS uses the local Lamport clock for anything where other systems would use the local

system clock: for example, timestamp generation in the /mars/ filesystem. Even symlinks
created there are timestamped according to the Lamport clock. Both the kernel module and
the userspace tool marsadm are always operating in the timescale of the Lamport clock. Most
importantly, all timestamp comparisons are always carried out with respect to Lamport time.

Bigger differences between the Lamport and the system clock can be annoying from a
human point of view: when typing ls -l /mars/resource-mydata/ many timestamps may
appear as if they were created in the “future”, because the ls command compares the output
formatting against the system clock (it does not even know of the existence of the MARS
Lamport clock).

Always use ntp (or another clock synchronization service) in order to pre-synchronize
your system clocks as close as possible. Bigger differences are not only annoying, but may lead
some people to wrong conclusions and therefore even lead to bad human decisions!
In a professional datacenter, you should use ntp anyway, and you should monitor its effec-

tiveness anyway.

Hint: many internal logfiles produced by the MARS kernel module contain Lamport
timestamps written as numerical values. In order to convert them into human-readable form,
use the command marsadm cat /mars/5.total.status or similar.

4.3. The Symlink Tree

The symlink tree as described here will be replaced by another representation in future
versions of MARS. Therefore, don’t do any scripting by directly accessing symlinks! Use the
primitive macros described in section 3.6.1.2.
The /mars/ filesystem contains not only transaction logfiles, but also acts as a generic storage

for (persistent) state information. Both configuration information and runtime state informa-

4Published in the late 1970s by Leslie Lamport, also known as inventor of LATEX.

51

4. Basic Working Principle

tion are currently stored in symlinks. Symlinks are “misused5” in order to represent some key
-> value pairs.

Therefrom results a fundamentally different behaviour than DRBD. When your DRBD
primary crashed before and now comes up again, you have to setup DRBD again by a sequence
of commands like modprobe drbd; drbdadm up all; drbdadm primary all or similar. In
contrast, MARS needs only modprobe mars (after /mars/ has been mounted by /etc/fstab).
The persistence of the symlinks residing in /mars/ will automatically remember your previous
state, even if some your resources were primary while others were secondary (mixed operations).
You don’t need to do any actions in order to “restore” a previous state, no matter how “complex”
it was.
(Almost) all symlinks appearing in the /mars/ directory tree are automatically replicated

thoughout the whole cluster, provided that the cluster uuids are equal6 at all sites. Thus the
/mars/ directory forms some kind of global namespace.
Since the symlink replication works generically, you may use the /mars/userspace/ directory

in order to place your own symlink there (for whatever purpose, which need not have to do
with MARS).
In order to avoid name clashes, each symlink created at node A should have the name A in its

path name. Typically, internal MARS names follow the scheme /mars/something /myname-A,
and you should follow the best practice of systematically using /mars/userspace/myname-A
or similar. As a result, each node will automatically get informed about the state at any
other node, like B when the corresponding information is recorded on node B under the name
/mars/userspace/myname-B (context-dependent names).

Important: the convention of placing the creator host name inside your symlink
names should be used wherever possible. The name part is a kind of “ownership indicator”. It
is crucial that no other host writes any symlink not “belonging” to him. Other hosts may read
foreign symlinks as often as they want, but never modify them. This way, your cluster nodes
are able to communicate with each other via symlink updates.
Although you may create (and change) your symlinks with userspace tools like ln -s, you

should use the following marsadm commands instead:

• marsadm set-link myvalue /mars/userspace/mykey-A

• marsadm delete-file /mars/userspace/mykey-A

There are two reasons for this: first, the marsadm set-link command will automatically use
the Lamport clock for symlink creation, and therefore will avoid any errors resulting from a
“wrong” system clock (as in ln -s). Second, the marsadm delete-file (which also deletes
symlinks) works on the whole cluster.
What’s the difference? If you try to remove your symlink locally by hand via rm -f, you

will be surprised: since the symlink has been replicated to other cluster nodes, it will be
re-transferred from there and will be resurrected locally after some short time. This way, you
cannot delete any object reliably, because your whole cluster (which may consist of many nodes)
remembers all your state information and will resurrect it whenever “necessary”.
In order to solve the deletion problem, MARS Light uses some internal deletion protocol

using auxiliary symlinks residing in /mars/todo-global/. The deletion protocol ensures that
all replicas get deleted in the whole cluster, and only after that the auxiliary symlinks in
/mars/todo-global/ are also deleted eventually.
You may change your already existing symlink via marsadm set-link some-other-value

/mars/userspace/mykey-A . The new value will be propagated in the cluster according to a
timestamp comparison protocol: whenever node B notices that A has a newer version of
some symlink (according to the Lamport timestamp), it will replace its elder version by the
5This means, the symlink targets need not be other files or directories, but just any values like integers or
strings.

6This is protection against accidental “merging” of two unrelated clusters which had been created at different
times with different uuids.

52

4.4. Defending Overflow of /mars/

newer one. The opposite does not work: if B notices that A has an elder version, just nothing
happens. This way, the timestamps of symlinks can only progress in forward direction, but
never backwards in time.
As a consequence, symlink updates made “by hand” via ln -s may get lost when the local

system clock is much more earlier than the Lamport clock.
When your cluster is fully connected by the network, the last timestamp will finally win ev-

erywhere. Only in case of network outages leading to network partitions, some information may
be temporarily inconsistent, but only for the duration of the network outage. The timestamp
comparison protocol in combination with the Lamport clock and with the persistence of the
/mars/ filesystem will automatically heal any temporary inconsistencies as soon as possible,
even in case of temporary node shutdown.
The meaning of the internal MARS Light symlinks residing in /mars/ is documented in

section 7.4.

4.4. Defending Overflow of /mars/

This section describes an important difference to DRBD. The metadata of DRBD is allocated
statically at creation time of the resource. In contrast, the MARS transaction logfiles are
allocated dynamically at runtime.
This leads to a potential risk from the perspective of a sysadmin: what happens if the /mars/

filesystem runs out of space?
No risk, no fun. If you want a system which survives long-lasting network outages while

keeping your replicas always consistent (anytime consistency), you need dynamic memory for
that. It is impossible to solve that problem using static memory7.
Therefore, DRBD and MARS have different application areas. If you just want a simple

system for mirroring your data over short distances like a crossover cable, DRBD will be a
suitable choice. However, if you need to replicate over longer distances, or if you need higher
levels of reliability even when multiple failures may accumulate (such as network loss during a
resync of DRBD), the transaction logs of MARS can solve that, but at some cost.

4.4.1. Countermeasures
4.4.1.1. Dimensioning of /mars/

The first (and most important) measure against overflow of /mars/ is simply to dimension it
large enough to survive longer-lasting problems, at least one weekend.
Recommended size is at least one dedicated disk, residing at a hardware RAID controller with

BBU (see section 3.1). During normal operation, that size is needed only for a small fraction,
typically a few percent or even less than one percent. However, it is your safety margin. Keep
it high enough!

4.4.1.2. Monitoring

The next (equally important) measure is monitoring in userspace.
Following is a list of countermeasures both in userspace and in kernelspace, in the order of

“defensive walling”:

1. Regular userspace monitoring must throw an INFO if a certain freespace limit l1 of /mars/
is undershot. Typical values for l1 are 30%. Typical actions are automated calls of
marsadm log-rotate all followed by marsadm log-delete-all all. You have to im-
plement that yourself in sysadmin space.

2. Regular userspace monitoring must throw a WARNING if a certain freespace limit l2 of
/mars/ is undershot. Typical values for l2 are 20%. Typical actions are (in addition to
log-rotate and log-delete-all) alarming human supervisors via SMS and/or further
stronger automated actions.

7The bitmaps used by DRBD don’t preserve the order of write operations. They cannot do that, because their
space is O(k) for some constant k. In contrast, MARS preserves the order. Preserving the order as such
(even when only facts about the order were recorded without recording the actual data contents) requires
O(n) space where n is infinitely growing over time.

53

4. Basic Working Principle

Frequently large space is occupied by files stemming from debugging output, or
from other programs or processes. A hot candidate is “forgotten” removal of debugging
output to /mars/. Sometimes, an rm -rf $(find /mars/ -name “*.log”) can work
miracles.

Another source of space hogging is a “forgotten” pause-sync or disconnect.
Therefore, a simple marsadm connect-global all followed by marsadm resume-replay-global
all may also work miracles (if you didn’t want to freeze some mirror deliberately).

If you just wanted to freeze a mirror at an outdated state for a very long time,
you simply cannot do that without causing infinite growth of space consumption in
/mars/. Therefore, a marsadm leave-resource $res at exactly that(!) secondary site
where the mirror is frozen, can also work miracles. If you want to automate this in un-
serspace, be careful. It is easy to get unintended effects when choosing the wrong site for
leave-resource.

Hint: you can / should start some of these measures even earlier at the INFO
level (see item 1), or even earlier.

3. Regular userspace monitoring must throw an ERROR if a certain freespace limit l3 of
/mars/ is undershot. Typical values for l3 are 10%. Typical actions are alarming the
CEO via SMS and/or even stronger automated actions. For example, you may choose
to automatically call marsadm leave-resource $res on some or all secondary nodes,
such that the primary will be left alone and now has a chance to really delete its logfiles
because no one else is any longer potentially needing it.

4. First-level kernelspace action, automatically executed when /proc/sys/mars/required_
free_space_4_gb + /proc/sys/mars/required_free_space_3_gb + /proc/sys/mars/
required_free_space_2_gb + /proc/sys/mars/required_free_space_1_gb is under-
shot:
a warning will be issued.

5. Second-level kernelspace action, automatically executed when /proc/sys/mars/required_
free_space_3_gb + /proc/sys/mars/required_free_space_2_gb + /proc/sys/mars/
required_free_space_1_gb is undershot:
all locally secondary resources will delete local copies of transaction logfiles which are no
longer needed locally. This is a desperate action of the kernel module.

6. Third-level kernelspace action, automatically executed when /proc/sys/mars/required_
free_space_2_gb + /proc/sys/mars/required_free_space_1_gb is undershot:
all locally secondary resources will stop fetching transaction logfiles. This is a more
desperate action of the kernel module. You don’t want to get there (except for testing).

7. Last desperate kernelspace action when all else has failed and /proc/sys/mars/required_
free_space_1_gb is undershot:
all locally primary resources will enter emergency mode (see description below in sec-
tion 4.4.2). This is the most desperate action of the kernel module. You don’t want to
get there (except for testing).

In addition, the kernel module obeys a general global limit /proc/sys/mars/required_total_
space_0_gb + the sum of all of the above limits. When the total size of /mars/ undershots
that sum, the kernel module refuses to start at all, because it assumes that it is senseless to try
to operate MARS on a system with such low memory resources.

54

/proc/sys/mars/required_free_space_4_gb
/proc/sys/mars/required_free_space_4_gb
/proc/sys/mars/required_free_space_3_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_3_gb
/proc/sys/mars/required_free_space_3_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_2_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_free_space_1_gb
/proc/sys/mars/required_total_space_0_gb
/proc/sys/mars/required_total_space_0_gb

4.4. Defending Overflow of /mars/

The current level of emergency kernel actions may be viewed at any time via /proc/
sys/mars/mars_emergency_mode.

4.4.1.3. Throttling

The last measure for defense of overflow is throttling your performance pigs.
Motivation: in rare cases, some users with ssh access can do very silly things. For example,

some of them are creating their own backups via user-cron jobs, and they do it every 5 minutes.
Some example guy created a zip archive (almost 1GB) by regularly copying his old zip archive
into a new one, then appending deltas to the new one, and finally deleting the old archive.
Every 5 minutes. Yes, every 5 minutes, although almost never any new files were added to the
archive. Essentially, he copied over his archive, for nothing. This led to massive bulk write
requests, for ridiculous reasons.
In general, your hard disks (or even RAID systems) allow much higher write IO rates than

you can ever transport over a standard TCP network from your primary site to your secondary,
at least over longer distances (see use cases for MARS in chapter 2). Therefore, it is easy to
create a such a high write load that it will be impossible to replicate it over the network, by
construction.
Therefore, we need some mechanism for throttling bulk writers whenever the network is

weaker than your IO subsystem.

Notice that DRBD will always throttle your writes whenever the network forms a bot-
tleneck, due to its synchronous operation mode. In contrast, MARS allows for buffering of
performance peaks in the transaction logfiles. Only when your buffer in /mars/ runs short (cf
subsection 4.4.1.1), MARS will start to throttle your application writes.
There are a lot of screws named /proc/sys/mars/write_throttle_* with the following

meaning:

write_throttle_start_percent Whenever the used space in /mars/ is below this threshold,
no throttling will occur at all. Only when this threshold is exceeded, throttling will start
slowly. Typical values for this are 60%.

write_throttle_end_percent Maximum throttling will occur once this space threshold is
reached, i.e. the throttling is now at its maximum effect. Typical values for this are
90%. When the actual space in /mars/ lies between write_throttle_start_percent
and write_throttle_end_percent, the strength of throttling will be interpolated linearly
between the extremes. In practice, this should lead to an equilibrum between new input
flow into /mars/ and output flow over the network to secondaries.

write_throttle_size_threshold_kb (readonly) This parameter shows the internal strength
calculation of the throttling. Only write8 requests exceeding this size (in KB) are throttled
at all. Typically, this will hurt the bulk performance pigs first, while leaving ordinary users
(issuing small requests) unaffected.

write_throttle_ratelimit_kb Set the global IO rate in KB/s for those write requests which
are throttled. In case of strongest9 throttling, this parameters determines the input flow
into /mars/. The default value is 5.000 KB/s. Please adjust this value to your application
needs and to your environment.

write_throttle_rate_kb (readonly) Shows the current rate of exactly those requests which
are actually throttled (in contrast to all requests).

write_throttle_cumul_kb (logically readonly) Same as before, but the cumulative sum of all
throttled requests since startup / reset. This value can be reset from userspace in order
to prevent integer overflow.

8Read requests are never throttled at all.
9In case of lighter throttling, the input flow into /mars/ may be higher because small requests are not throttled.

55

/proc/sys/mars/mars_emergency_mode
/proc/sys/mars/mars_emergency_mode

4. Basic Working Principle

write_throttle_count_ops (logically readonly) Shows the cumulative number of throttled
requests. This value can be reset from userspace in order to prevent integer overflow.

write_throttle_maxdelay_ms Each request is delayed at most for this timespan. Smaller
values will improve the responsiveness of your userspace application, but at the cost of
potentially retarding the requests not sufficiently.

write_throttle_minwindow_ms Set the minimum length of the measuring window. The mea-
suring window is the timespan for which the average (throughput) rate is computed (see
write_throttle_rate_kb). Lower values can increase the responsiveness of the controller
algorithm, but at the cost of accuracy.

write_throttle_maxwindow_ms This parameter must be set sufficiently much greater than
write_throttle_minwindow_ms. In case the flow of throttled operations pauses for some
natural reason (e.g. switched off, low load, etc), this parameter determines when a com-
pletely new rate calculation should be started over10.

4.4.2. Emergency Mode

When /mars/ is almost full and there is really absolutely no chance of getting rid of any local
transaction logfile (or free some space in any other way), there is only one exit strategy: stop
creating new logfile data.
This means that the ability for replication gets lost.
When entering emergency mode, the kernel module will execute the following steps for all

resources where the affected host is acting as a primary:

1. Do a kind of “logrotate”, but create a hole in the sequence of transaction logfile numbers.
The “new” logfile is left empty, i.e. no data ist written to it (for now). The hole in
the numbering will prevent any secondaries from replaying any logfiles behind the hole
(should they ever contain some data, e.g. because the emergency mode has been left
again). This works because the secondaries are regularly checking the logfile numbers for
contiguity, and they will refuse to replay anything which is not contiguous. As a result,
the secondaries will be left in a consistent, but outdated state (at least if they already
were consistent before that).

2. The kernel module writes back all data present in the temporary memory buffer (see
figure in section 4.1). This may lead to a (short) delay of user write requests until
that has finished (typically fractions of a second or a few seconds). The reason is that
the temporary memory buffer must not be increased in parallel during this phase (race
conditions).

3. After the temporary memory buffer is empty, all local IO requests (whether reads or
writes) are directly going to the underlying disk. This has the same effect as if MARS
would not be present anymore. Transaction logging does no longer take place.

4. Any sync from any secondary is stopped ASAP. In case they are resuming their sync
somewhen later, they will start over from the beginning (position 0).

In order to leave emergency mode, the sysadmin should do the following steps:

1. Free enough space. For example, delete any foreign files on /mars/ which have nothing
to do with MARS, or resize the /mars/ filesystem, or whatever.

2. If /proc/sys/mars/mars_reset_emergency is not set, now it is time to set it. Normally,
it should be already set.

3. Notice: as long as not enough space has been freed, a message containing “EMEGENCY
MODE HYSTERESIS” (or similar) will be displayed by marsadm view all.

10Motivation: if requests would pause for one hour, the measuring window could become also an hour. Of
course, that would lead to completely meaningless results. Two requests in one hour is “incorrect” from
a human point of view: we just have to ensure that averages are computed with respect to a reasonable
maximum time window in the magnitude of 10s.

56

/proc/sys/mars/mars_reset_emergency

4.4. Defending Overflow of /mars/

4. On the secondaries, and when there is no split brain, use marsadm invalidate $res in
order to start updating your outdated mirrors. Alternatively, or in case of split brain,
follow the instructions from section 3.4.3. That means, do leave-resource now every-
where on all secondaries, but don’t start the join-resource phase for now.

If you had only 1 mirror per resource before the overflow happened, and provided
that you have enough space on /mars/ such that transaction logging has automatically
restarted, you can now start creating a new one via marsadm join-resource $res on
a third node. After the initial full sync has finished there, do an marsadm invalidate
$res on the outdated mirror (if you had no split brain; otherwise follow the instruc-
tions from section 3.4.3). This way, you will always retain at least one consistent mirror
somewhere. After all is up-to-date, you can delete the superfluous mirror by marsadm
leave-resource $res and reclaim the disk space from its underlying disk.

In contrast, if you already have k > 2 replicas in total, it may be a wise idea to
prefer the leave-resource ; join-resource method in front of invalidate because it
does not invalidate all your replicas at the same time (when handled properly).

5. In case the message “EMEGENCY MODE HYSTERESIS” did not disappear until now, then
issue marsadm log-delete-all all at the primary side after all your secondaries have
started invalidate or leave-resource. In very rare and complicated cases, you might
also need marsadm log-delete-all all at some of your secondary sites.

6. In case of mixed operations where some resources are primary while others are secondaries
at the same site, you may also need to cleanup the other resources before enough space
on /mars/ can be freed.

7. As a consequence, the primary side should henceforth have enough space and therefore
continue transaction logging automatically (if not earlier).

8. After that, if you had issued leave-resource in previous steps, don’t do the join-resource
phase everywhere in parallel, but sequentially step by step. This way, you will always re-
tain at least one consistent, but outdated copy.

57

5. The Sysadmin Interface (marsadm and
/proc/sys/mars/)

In general, the term “after a while” means that other cluster nodes will take notice of your
actions according to the “eventually consistent” propagation protocol described in sections 4.2
and 4.3. Please be aware that this “while” may last very long in case of network outages or bad
firewall rules.
In the following tables, column “Cmp” means compatibility with DRBD. Please note that

100% exact compatibility is not possible, because of the asynchronous communication paradigm.
The following table documents common options which work with (almost) any command:

Option Cmp Description

--dry-run no Run the command without actually creating symlinks or touching files
or executing rsync. This option should be used first at any dangerous
command, in order to check what would happen.

Don’t use in scripts! Only use by hand!
This option does not change the waiting logic. Many commands are
waiting until the desired effect has taken place. However, with --dry-run
the desired effect will never happen, so the command may wait forever
(or abort with a timeout).
In addition, this option can lead to additional aborts of the commands
due to unmet conditions, which cannot be met because the symlinks are
not actually created / altered.

Thus this option can give only a rough estimate of what would happen

later!
--force almost Some preconditions are skipped, i.e. the command will / should work

although some (more or less) vital preconditions are violated.
Instead of giving --force, you may alternatively prefix your command
with force-

THIS OPTION IS DANGEROUS!
Use it only when you are absolutely sure that you know what you are
doing!

Use it only as a last resort if the same command without --force has

failed for no good reason!
--verbose no Some (few) commands will become more speaky.

--timeout=$seconds no Some commands require response from either the local kernel module,
or from other cluster nodes. In order to prevent infinite waiting in case
of network outages or other problems, the command will fail after the
given timeout has been reached.
When $seconds is -1, the command will wait forever.
When $seconds is 0, the command will not wait in case any precondition
is not met, und abort without performing an action..

The default timeout is 5s.
--window=$seconds no The time window for checking the aliveness of other nodes in the net-

work. When no symlink updates have occurred during the last window,

the node is considered dead. Default is 30s
--threshold=$size no The macros containing the substring -threshold- or -almost- are using

this as a default value for approximation whether something has been
approximately reached. Default is 10MiB.

The $size argument may be a number optionally followed by one the

lowercase characters k m g t p for indicating kilo mega giga tera or peta

bytes as multiples of 1000. When using the corresponding uppercase

character, multiples of 1024 are formed instead.
Option Cmp Description

58

5.1. Cluster Operations

Option Cmp Description

--host=$host no The command acts as if the command were executed on another host
$host. This option should not be used regularly, because the local in-
formation in the symlink tree may be outdated or even wrong. Ad-
ditionally, some local information like remote sizes of physical devices
(e.g. remote disks) is not present in the symlink tree at all, or is wrong
(reflecting only the local state).

THIS OPTION IS DANGEROUS!
Use it only for final destruction of dead cluster nodes, see section 3.4.4.

--ip=$ip no By default, marsadm always uses the IP for $host as stored in the symlink
tree (directory /mars/ips/). When such an IP entry does not (yet) exist
(e.g. create-cluster or join-cluster), all local network interfaces are
automatically scanned for IPv4 adresses, and the first one is taken. This
may lead to wrong decisions if you have multiple network interfaces.
In order to override the automatic IP detection and.to explicitly tell the
IP address of your storage network, use this option.

Usually you will need this only at {create,join}-cluster.
--verbose no Some (few) commands will become more speaky.

Option Cmp Description

5.1. Cluster Operations

Command / Params Cmp Description

create-cluster no Precondition: the /mars/ filesystem must be mounted and it must be
empty (mkfs.ext4, see instructions in section 3.2.2). The kernel module
must not be loaded.
Postcondition: the initial symlink tree is created in /mars/. Addition-
ally, the /mars/uuid symlink is created for later distribution in the clus-
ter. It uniquely indentifies the cluster in the world.
This must be called exactly once at the initial primary.

Hint: use the --ip= option if you have multiple interfaces.
join-cluster

$host

no Precondition: the /mars/ filesystem must be mounted and it must be
empty (mkfs.ext4, see instructions in section 3.2.2). The kernel module
must not be loaded. The cluster must have been already created at
another node $host. A working ssh connecttion to $host as root must
exist (without password). rsync must be installed at all cluster nodes.
Postcondition: the initial symlink tree /mars/ is replicated from the
remote host $host, and the local host has been added as another cluster
member.
This must be called exactly once at every initial secondary node.

Hint: use the --ip= option if you have multiple interfaces.
Command / Params Cmp Description

59

5. The Sysadmin Interface (marsadm and /proc/sys/mars/)

Command / Params Cmp Description

leave-cluster no Precondition: the /mars/ filesystem must be mounted and it must con-
tain a valid MARS symlink tree produced by the other marsadm com-
mands. The local node must no longer be member of any resource (see
marsadm leave-resource). The kernel module should be loaded and the
network should be operating in order to also propogate the effect to the
other nodes.
Postcondition: the local node is removed from the replicated symlink
tree /mars/ such that other nodes will cease to communicate with it
after a while. The converse it not true: the local node may continuea

passivley fetching the symlink tree. In order to really stop all commu-
nication, the kernel module should be unloaded afterwards. The local
/mars/ filesystem may be manually destroyed after that (at least if you
need to reuse it).
In case of an eventual node loss (e.g. fire, water, ...) this command
should be used on another node $helper in order to finally remove
$damaged from the cluster via the command marsadm leave-cluster
--host=$damaged --force.

In case you cannot use leave-resource for any reason, you
may do the following: just destroy the /mars/ filesystem on the host
$deadhost you want to remove (e.g. by mkfs), or take other measures
to ensure that it cannot be accidentally re-used in any way (e.g. phys-
ical destruction of the underlying RAID, lvremove, etc). On all other
hosts, do rmmod mars, then delete the symlink /mars/ips/ip-$deadhost
everywhere by hand, and finally modprobe mars again.

Notice that the last leave-resource operation does not delete the
cluster as such. It just creates an empty cluster which has no longer
any members. In particular, the cluster ID /mars/uuid is not removed,
deliberatelyb.

Before you can re-use any left-over /mars/ filesystem for cre-

ating / joining a new / different cluster, you must obey the instructions

in section 3.2.2 and use mkfs.ext4 accordingly.

aReason: leave-cluster removes only its own IP address from
/mars/ips/, but does not destroy the usual symmetry of the sym-
link tree by leaving the other IPs intact. Therefore, the local node
will continue fetching updates from all nodes present in /mars/ips/.
As an effect, the local node will passively mirror the symlinks of
other cluster members, but not vice versa. There is no communica-
tion from the local node to the other ones, turning the local node
into a whitness according to some terminology from Distributed
Systems. This is a feature, not a bug. It could be used for porst-
mortem analysis, or for monitoring purposes. However, deletions of
symlinks are not guaranteed to take place, so your whitness may ac-
cumulate thousands of old symlinks over a long time. If you want to
eventually stop all communication to the local node, just run rmmod.

bThis is a feature, not a bug. The uuid is created once, but never alter-
ered anywhere. The only way to get rid of it is external deletion (not
by marsadm) together(!) with all other contents of /mars/. This pre-
vents you from accidentally merging half-dead remains which could
have survived a disaster for any reason, such as snapshotting filesys-
tems / VMs or whatever.

wait-cluster no See section 5.3.3.

create-uuid no Deprecated. Only for compatibility with light0.1beta05
or earlier.
Precondition: the /mars/ filesystem must be mounted. A uuid (such
as automatically created by recent versions of marsadm create-cluster)
must not already exist; i.e. you have a very old and outdated symlink
tree.
Postcondition: the /mars/uuid symlink is created for later distribution
in the cluster. It uniquely indentifies the cluster in the world.

This must be called at most once at the current primary.
Command / Params Cmp Description

60

5.2. Resource Operations

5.2. Resource Operations
Common precondition for all resource operations is that the /mars/ filesystem is mounted,
that it contains a valid MARS symlink tree produced by other marsadm commands (including
a unique uuid), that your current node is a valid member of the cluster, and that the kernel
module is loaded. When communication is impossible due to network outages or bad firewall
rules, most commands will succeed, but other cluster nodes may take a long time to notice your
changes.
Instead of executing marsadm commands serveral times for each resource argument, you may

give the special resource argument all. This work even when combined with --force, but
be cautious when giving dangerous command combinations like marsadm delete-resource
--force all.

Beware when combining this with --host=somebody. In some very rare cases, like
final destruction of a whole datacenter after an earthquake, you might need a combination like
marsadm --host=defective delete-resource --force all. Don’t use such combinations if
you don’t need them really ! You can easily shoot yourself in your head if you are not carefully
operating such commands!

5.2.1. Resource Creation / Deletion / Modification

Command / Params Cmp Description

create-resource

$res

$disk_dev

[$mars_name]

[$size]

no Precondition: the resource argument $res must not denote an already
existing resource name in the cluster. The argument $disk_dev must
denote an absolute path to a usable local block device, its size must
be greater zero. When the optional $mars_name is given, that name
must not already exist on the local node; when not given, $mars_name
defaults to $res. When the optional $size argument is given, it must
be a number, optionally followed by a lowercase suffix k, m, g, t, or p
(denoting size factors as multiples of 1000), or an uppercase suffix K,
M, G, T or P (denoting size factors as multiples of 1024). The given size
must not exceed the actual size of $disk_dev. It will specify the future
resource size as shown by marsadm view-resource-size $res.
Postcondition: the resource $res is created, the inital role of the current
node is primary. The corresponding symlink tree information is asyn-
chonously distributed in the cluster (in the background). The device
/dev/mars/$mars_name should appear after a while.
Notice: when $size is strictly smaller than the size of $disk_dev, you
will unnecessarily waste some space..

This must be called exactly once for any new resource.
join-resource

$res

$disk_dev

[$mars_name]

no Precondition: the resource argument $res must denote an already exist-
ing resource in the cluster (i.e. its symlink tree information must have
been received). The resource must have a designated primary, and it
must no be in emergency mode. There must not exist a split brain in the
cluster. The local node must not be already member of that resource.
The argument $disk_dev must denote an absolute path to a usable (but
currently unused) local block device, its size must be greater or equal to
the logical size of the resource. When the optional $mars_name is given,
that name must not already exist on the local node; when not given,
$mars_name defaults to $res.
Postcondition: the current node becomes a member of resource $res,
the inital role is secondary. The initial full sync should start after a
while.

Notice: when the size of $disk_dev is strictly greater than the size of

the resource, you will unnecessarily waste some space..
Command / Params Cmp Description

61

5. The Sysadmin Interface (marsadm and /proc/sys/mars/)

Command / Params Cmp Description

leave-resource

$res

no Precondition: the local node must be a member of the resource $res; its
current role must be secondary. Sync, fetch and replay must be paused
(see commands pause-{sync,fetch,replay} or their abbreviation down).
The disk must be detatched (see commands detach or down). The kernel
module should be loaded and the network should be operating in order
to also propogate the effect to the other nodes.
Postcondition: the local node is no longer a member of $res.
Notice: as a side effect for other nodes, their log-delete may now be-
come possible, since the current node does no longer count as a candi-
date for logfile application. In addition, a split brain situation may be
(partly) resolved by this.

Please notice that this command may lead to (but does not
guarantee) split-brain resolution.

The contents of the disk is not changed by this command. Before
issuing this command, check whether the disk appears to be locally
consistent (see view-is-consistent)! After giving this command, any
internal information indicating the consistency state will be gone, and
you will no longer be able to guess consistency properties.

When you are sure.that the disk was consistent before (or is
now by manually checking it), you may re-create a new resource out of
it via create-resource.

In case of an eventual node loss (e.g. fire, water, ...) this command

may be used on another node $helper in order to finally remove all

the resources $damaged from the cluster via the command marsadm

leave-resource $res --host=$damaged --force.
Command / Params Cmp Description

62

5.2. Resource Operations

Command / Params Cmp Description

delete-resource

$res

no Precondition: the resource must be empty (i.e. all members must have
left via leave-resource). This precondition is overridable by --force, in-
creasing the danger to maximum! It is even possible to combine --force
with an invalid resource argument and an invalid --host=somebodyelse
argument in order to desperately try to destroy remains of incomplete
or pysically damaged hardware.
Postcondition: all cluster members will somewhen be forcefully removed
from $res. In case of network interruptions, the forced removal may take
place far in the future.

THIS COMMAND IS VERY DANGEROUS!
Use this only in desperate situations, and only manually. Don’t call this
from scripts. You are forcefully using a sledgehammer, even without
--force! The danger is that the true state of other cluster nodes need
not be known in case of network problems .Even when it were known,
it could be compromised by byzantine failures.
It is strongly advised to try this command with --dry-run first.
When combined with --force, this command will definitely murder
other cluster nodes, possibly after a long while, and even when they
are operating in primary mode / having split brains / etc. However,
there is no guarantee that other cluster nodes will be really dead – it is
(theoretically) possible that they remain only half dead. For example,
a half dead node may continue to write data to /mars/ and thus lead to
overflow somewhen.

This command implies a forceful detach, possibly
destroying consistency. It is similar in spirit to a STONITH.
In particular, when a cluster node was operating in primary mode
(/dev/mars/mydata being continuously in use), the forceful detach cannot
be carried out until the device is completely unused. In the meantime,
the current transaction logfile will be appended to, but the file might
be already unlinked (orphan file filling up the disk). After the force-
ful detach, the underlying disk need not be consistent (although MARS
does its best). Since this command deletes any symlinks which normally
would indicate the consistency state, no guarantees about consistency
can be given after this in general! Always check consistency by hand!
When possible / as soon as possible, check the local state on the other
nodes in order to really shutdown the resource everywhere (e.g. to
really unuse the /dev/mars/mydata device, etc).
After this command, you should rebuild the resource under a different
name, in order to avoid any clashes caused by unexpected resurrection
of “dead” or “half-dead” nodes (beware of shapshot / restores on virtual
machines!!). MARS Light does its best to avoid problems even in case
the new resource name should equal the old one, but there can be no
guarantee in all possible failure scenarios / usage scenarios.

When possible, prefer leave-resource over this!
wait-resource

$res

{is-,}{attach,

primary,

device}{-off,}

no See section 5.3.3.

Command / Params Cmp Description

5.2.2. Operation of the Resource
Common preconditions are the preconditions from section 5.2, plus the respective resource $res
must exist, and the local node must be a member of it. With the single exception of attach
itself, all other operations must be started in attached state.
When $res has the special reserved value all, the following operations will work on all

resources where the current node is a member (analogously to DRBD).

Command / Params Cmp Description

Command / Params Cmp Description

63

5. The Sysadmin Interface (marsadm and /proc/sys/mars/)

Command / Params Cmp Description

attach

$res

yes Precondition: the local disk belonging to $res is not in use by anyone
else. Its contents has not been altered in the meantime since the last
detach.

Mounting read-only is allowed during the detached phase.

However, be careful! If you accidentally forget to give the right
readonly-mount flags, if you use fsck in repair mode inbetween, or alter
the disk content in any other way (beware of LVM snapshots / restores
etc), you will almost certainly produce an unnoticed inconsistency
(not reported by view-is-consistent)! MARS has no chance to notice
suchalike!
Postcondition: MARS uses the local disk and is able to work with it
(e.g. replay logfiles on it).
Note: the local disk is opened in exclusive read-write mode. This should
protect against most common misuse, such as opening the disk in par-
allel to MARS.

However, this does not necessarily protect against non-exclusive

openers.
detach

$res

yes Precondition: the local /dev/mars/mydata device (when present) is no
longer opened by anybody.
Postcondition: the local disk belonging to $res is no longer in use.

In contrast to DRBD, you need not explicitly pause syncing,
fetching, or replaying to (as apposed to from) the local disk. These
processes are automatically paused. As another contrast to DRBD, the
respective processes will usually automatically resume after re-attach,
as far as possible in the respective new situation. This will usually
work even over rmmod or reboot cycles, since the internal symlink tree
will automatically persist all todo switches for you (c.f. section 3.5).

Notice: only local transfer operations to the local disk are
paused by a detach. When another node is remotely running a sync
from your local disk, it will likely remain in use for remote reading.
The reason is that the server part of MARS is operating purely pas-
sively, in order serve all remote requests as best as possible (similar to
the original Unix philosophy). In order to really stop all accesses, do
a pause-sync on all other resource member where a sync is currently
running. You may also try pause-sync-global.

WARNING! After this, and ather having paused any remote
data access, you might use the underlying disk for your own purposes,
such as test-mounting it in readonly mode. Don’t modifiy its contents
in any way! Not even by an fscka! Otherwise, you will have inconsis-
tencies guaranteed. MARS has no way for knowing of any modifications
to your disk when bypassing /dev/mars/*.

In case you accidentally modified the underlying disk at the

primary side, you may choose to resolve the inconsistencies by marsadm

invalide $res on each secondary.

aSome (but not all) fsck tools for some filesystems have options to
start only a test repair / verify mode / dry run, without doing
actual modifications to the data. Of course, these modes can be
used. But be really sure! Double-check for the right options!

pause-sync

$res

partly Equivalent to pause-sync-local.

Command / Params Cmp Description

64

5.2. Resource Operations

Command / Params Cmp Description

pause-sync-local

$res

partly Precondition: none additionally.

Postcondition: any sync operation targeting the local disk (when not yet

completed) is paused after a while (cf section 3.5). When successfully

completed, this operation will remember the switch state forever and

automatically become relevant if a sync is needed again (e.g. invalidate

or resize).
pause-sync-global

$res

partly Like *-local, but operates on all members of the resource.

resume-sync

$res

partly Equivalent to resume-sync-local.

resume-sync-local

$res

partly Precondition: additionally, a primary must be designated, and it must
not be in emergency mode.

Postcondition: any sync operation targeting the local disk (when not yet

completed) is resumed after a while. When completed, this operation

will remember the switch state forever and become relevant if a sync is

needed again (e.g. invalidate or resize).
resume-sync-global

$res

partly Like *-local, but operates on all members of the resource.

pause-fetch

$res

partly Equivalent to pause-fetch-local.

pause-fetch-local

$res

partly Precondition: none additionally. The resource should be in secondary
role. Otherwise the switch has no immediate effect, but will come
(possibly unexpectedly) into effect whenever secondary role is entered
later for whatever reason.
Postcondition: any transfer of (parts of) transaction logfiles which are
present at another primary host to the local /mars/ storage are paused
at their current stage.

This switch works independently from {pause,resume}-replay.
pause-fetch-global

$res

partly Like *-local, but operates on all members of the resource.

resume-fetch

$res

partly Equivalent to resume-fetch-local.

resume-fetch-local

$res

partly Precondition: none additionally. The resource should be in secondary
role. Otherwise the switch has no immediate effect, but will come
(possibly unexpectedly) into effect whenever secondary role is entered
later for whatever reason.
Postcondition: any (parts of) transaction logfiles which are present at
another primary host shouldl be transferred to the local /mars/ storage
as far as not yet locally present.

This works independently from {pause,resume}-replay.
resume-fetch-global

$res

partly Like *-local, but operates on all members of the resource.

pause-replay

$res

partly Equivalent to pause-replay-local.

pause-replay-local

$res

partly Precondition: none additionally. The resource should be in secondary
role. Otherwise the switch has no immediate effect, but will come
(possibly unexpectedly) into effect whenever secondary role is entered
later for whatever reason.
Postcondition: any local replay operations of transaction logfiles to the
local disk are paused at their current stage.

This works independently from {pause,resume}-fetch resp.

{dis,}connect.
pause-replay-global

$res

partly Like *-local, but operates on all members of the resource.

Command / Params Cmp Description

65

5. The Sysadmin Interface (marsadm and /proc/sys/mars/)

Command / Params Cmp Description

resume-replay

$res

partly Equivalent to pause-replay-local.

resume-replay-local

$res

partly Precondition: must be in secondary role.

Postcondition: any (parts of) locally existing transaction logfiles

(whether replicated from other hosts or produced locally) are started

for replay to the local disk, as far as they have not yet been applied.
resume-replay-global

$res

partly Like *-local, but operates on all members of the resource.

connect

$res

partly Equivalent to connect-local and to resume-fetch-local.

Note: although this sounds similar to DRBD’s drbdadm

connect, there are subtle differences. DRBD has exactly one connec-

tion per resource, which is associated with pairs of nodes. In contrast,

MARS may create multiple connections per resource at runtime, and

these are associated with the target host (not with pairs of hosts). As

a consequence, the fetch may potentially occur from any other other

source host which happens to be reachable (although the current imple-

mentation prefers the current designated primary, but this may change

in future). In addition, marsadm disconnect does not stop all commu-

nication. It only stops fetching logfiles. The symlink update running

in background is not stopped, in order to always propagate as much

metadata as possible in the cluster. In case of a later incident, chances

are higher for a better knowledge of the real state of the cluster.
connect-local

$res

partly Equivalent to resume-fetch-local.

connect-global

$res

partly Equivalent to resume-fetch-global.

disconnect

$res

partly Equivalent to disconnect-local and to pause-fetch-local.

See above note at connect.
disconnect-local

$res

partly Equivalent to pause-fetch-local.

disconnect-global

$res

partly Equivalent to pause-fetch-global.

up

$res

yes Equivalent to attach followed by resume-fetch followed by

resume-replay followed by resume-sync.

down

$res

yes Equivalent to pause-sync followed by pause-fetch followed by
pause-replay followed by detach.

Hint: consider to prefer plain detach over this, because detach

will remember the last state of all switches, while down will not.

Command / Params Cmp Description

66

5.2. Resource Operations

Command / Params Cmp Description

primary

$res

almost Precondition: sync must have finished at any resource member. All
relevant transaction logfiles must be either already locally present, or
be fetchable (see resume-fetch and resume-replay). When some logfile
data is locally missing, there must be enough space on /mars/ to fetch
it. The current designated primary must be reachable over network.
When there is no designated primary (i.e. marsadm secondary had been
executed before, which is explicitly not recommended), all other mem-
bers of the resource must be reachable (since we have no memory who
was the old primary before), and then they must also match the same
preconditions. When another host is currently primary (whether des-
ignated or not), it must match the preconditions of marsadm secondary
(that means, its local /dev/mars/mydata device must not be in use any
more). A split brain must not already exist.
Postcondition: /dev/mars/$dev_name appears locally and is usable; the
current host is in primary role.
Switches the designated primary. There are two variants:
1) Handover when not giving --force: when another host is currently
primary, it is first asked to leave its primary role, and it is waited until
it actually has become secondary. After that, the local host is asked
to become primary. Before actually becoming primary, all relevant log-
files are transferred over the network and replayed, in order to avoid
accidental creation of split brain as best as possiblea. Only after that,
/dev/mars/$dev_name will appear. When network transfers of the sym-
link tree are very slow (or currently impossible), this command may
take a very long time.
In case a split brain is already detected at the initial situation, the local
host will refuse to switch the designated primary without --force.

In case of k > 2 replicas: if you want to handover between
host A and B while a sync is currently running at host C, you have the
following options:

1. wait until the sync has finished (see macro sync-rest, or marsadm
view in general).

2. do a leave-resouce on host C, and later join-resource after the
handover completed successfully.

2) Forced switching: by giving –force while pause-fetch is active (but
not pause-replay), many preconditions are skipped, and MARS does
its best to actually become primary even if some logfiles are missing or
incomplete.

primary --force is a potentially harmful variant, because it will
provoke a split brain in many cases, and therefore in turn will lead to
data loss because one of your split brain versions must be discarded
later in order to resolve the split brain (see section 3.4.3).

Never call primary --force when primary without --force is
sufficient! If primary without --force complains that the device is in
use at the former primary side, take it seriously! Don’t override with
--force, but rather umountb the device at the other side!

Only use primary --force when something is already broken,
such as a network outage, or a node crash, etc. During ordinary opera-
tions (network OK, nodes OK), you should never need primary --force!

If you umount /dev/mars/mydata on the old primary A, and
then wait until marsadm view (or another suitable macro) on the target
host B shows that everything is UpToDate, you can prevent a split brain
by yourself even when giving primary --force afterwards. However,
checking / assuring this is your responsibility!

primary --force switches only the designated primary, but ac-
tually becoming the / an actual primary may be impossible in case
you are already in a split brain situation. In such a case, you must re-
solve the split brain immediately after giving this command (see section
3.4.3).

Hint in case of k > 2 replicas: marsadm invalidate cannot al-
ways resolve a split brain at other secondaries (which are neither the old
nor the new designated primary). Therefore, prefer the leave-resource
method described in section 3.4.3, starting with a leave-resource phase
at the old primary, and proceeding to “unrelated” secondaries step by
step, until the split brain is gone. Don’t join-resource again before the
split brain is gone! This way, all these replicas will remain consistent for
now, but of course outdated (or potentially even a “wrong” split-brain
version, but potentially usable in case you get under pressure in some
way). In the hopefully unlikely case that you should later discover that
you accidentally forced the wrong replica via primary --force, you will
have a chance to recover by either forcing the “correct” host to primary
(if it did not already leave the resource), or by creating a completely
fresh resource out of the “correct” local disk.

Generally: in case of primary --force, the preconditions are

different. The fetch must be switched off (see pause-fetch), in order to

get stable logfile positions. See section 3.4.2.2.

aNote that split brain avoidance is best effort and cannot be guar-
anteed in general. For example, it may be impossible to avoid split
brain in case of long-lasting network outages.

bA common misconception is when people think that they can keep
their filesystem mounted without provoking a split brain, because
they have their application stopped and thus don’t write any data
into the filesystem. This is a wrong idea, because filesystems may
write some metadata, like booking information, even after hours or
days of inactivity. Therefore MARS insists that the device is no
longer in use before any handover can take place.

Command / Params Cmp Description

67

5. The Sysadmin Interface (marsadm and /proc/sys/mars/)

Command / Params Cmp Description

secondary

$res

almost Precondition: the local /dev/mars/$dev_name is no longer in use (e.g.
umounted).
Postcondition: There exists no designated primary any more. During
split brain and when the network is OK (again), all actual primaries
(including the local host) will leave primary ASAP (i.e. when their
/dev/mars/mydata is no longer in use). Any secondary will start following
(old) logfiles (even from backlogs) by replaying transaction logs if it is
uniquely possible (which is often violated during split brain). On any
secondary, /dev/mars/$dev_name will have disappeared.

Notice: in difference to DRBD, you don’t need this com-
mand during normal operation, including handover. Any resource mem-
ber which is not designated as primary will automatically go into sec-
ondary role. For example, if you have k = 4 replicas, only one of them
can be designated as a primary. When the network is OK, all other 3
nodes will know this fact, and they will automatically go into secondary
mode, following the transaction logs from the (new) primary.

Hint: avoid this command. It turns off any primary, globallya.
You cannot start a sync after that (e.g. invalidate or join-resource
or resume-sync), because it is not unique wherefrom the data shall be
fetched. In split brain situations (when the network is OK again), this
may have further drawbacks. It is much better / easier to directly
switch the designated primary from one node to another via the
primary command. See also section 3.4.2.2.

There is only one valid use case where you really need

this command: before finally destroying a resouce via the last

leave-resource (or the dangerous delete-resource), you will need this

before you can do that.

aA serious misconception among some people is when they believe
that they can switch “a certain node to secondary”. It is not possi-
ble to switch individual nodes to secondary, without affecting other
nodes! The concept of “designated primary” is global throughout a
resource!

wait-umount

$res

no See section 5.3.3.

log-purge-all

$res

no Precondition: none additionally.
Postcondition: all locally known logfiles and version links are removed,
whenever they are not / no longer reachable by any split brain version.

Rationale: remove hindering split-brain /
leave-resource leftovers.
Use this only when split brain does not go away by means of
leave-resource (which could happen in very weird scenarios such as
MARS running on virtual machines doing a restore of their snapshots,
or otherwise unexpected resurrection of dead or half-dead nodes).

THIS IS POTENTIALLY DANGEROUS!
This command might destroy some valuable logfiles / other information
in case the local information is outdated or otherwise incorrect. MARS
Light does its best for checking anything, but there is no guarantee.

Hint: use --dry-run beforehand for checking!
resize

$res

[$size]

almost Precondition: The local host must be primary. All disks in the cluster
participating in $res must be physically larger than the logical resource
size (e.g, by use of lvm; can be checked by macros %disk-size{} and
%resource-size{}). When the optional $size argument is present, it
must be smaller than the minimum of all physical sizes, but larger than
the current logical size of the resource.

Postcondition: the logical size of /dev/mars/$dev_name will reflect the

new size after a while.
Command / Params Cmp Description

5.2.3. Logfile Operations

68

5.3. Further Operations

Command / Params Cmp Description

log-rotate

$res

no Precondition: the local node $host must be primary at $res.

Postcondition: after a while, a new transaction logfile

/mars/resource-$res/log-$new_nr-$host will be used instead of

/mars/resource-$res/log-$old_nr-$host where $new_nr = $old_nr + 1.

Without --force, this will only carry out actions at the primary side

since it makes no sense on secondaries. With --force, secondaries are

trying to remotely trigger a log-rotate, but without any guarantee

(likely even a split-brain may result instead, so use this only if you are

really desperate).
log-delete

$res

no Precondition: the local node must be a member of $res.

Postcondition: when there exists an old transaction logfile

/mars/resource-$res/log-$old_nr-$some_host where $old_nr is the min-

imum existing number and that logfile is no longer referenced by any of

the symlinks /mars/resource-$res/replay-* , that logfile is marked for

deletion in the whole cluster. When no such logfile exists, nothing will

happen.
log-delete-all

$res

no Like log-delete, but mark all currently unreferenced logfiles for dele-

tion.

Command / Params Cmp Description

5.2.4. Consistency Operations

Command / Params Cmp Description

invalidate

$res

no Precondition: the local node must be in secondary role at $res. A
designated primary must exist. When having k > 2 replicas, no split
brain must exist (otherwise, or when invalidate does not work in case
of k = 2, use the leave-resource ; join-resource method described in
section 3.4.3).

Postcondition: the local disk is marked as inconsistent, and a fast

fullsync from the designated primary will start after a while. Notice

that marsadm {pause,resume}-sync will influence whether the sync re-

ally starts. When the fullsync has finished successfully, the local node

will be consistent again.
fake-sync

$res

no Precondition: the local node must be in secondary role at $res.
Postcondition: when a fullsync is running, it will stop after a while,
and the local node will be marked as consistent as if it were consistent
again.

ONLY USE THIS IF YOU REALLY KNOW WHAT YOU ARE

DOING!

See the WARNING in section 3.3

Use this only before creating a fresh filesystem inside /dev/mars/$res.

set-replay no ONLY FOR ADVANCED HACKERS WHO KNOW WHAT

THEY ARE DOING!

This command is deliberately not documented. You need the compe-

tence level RTFS (“read the fucking sources”).
Command / Params Cmp Description

5.3. Further Operations

5.3.1. Inspection Commands

Command / Params Cmp Description

view-macroname

$res

no Display the output of a macro evaluation. See section 3.6 for a thorough

description.

Command / Params Cmp Description

69

5. The Sysadmin Interface (marsadm and /proc/sys/mars/)

Command / Params Cmp Description

view

$res

no Equivalent to view-default.

role

$res

no Deprectated. Use view-role instead.

state

$res

no Deprectated. Use view-state instead.

cstate

$res

no Deprectated. Use view-cstate instead.

dstate

$res

no Deprectated. Use view-dstate instead.

status

$res

no Deprectated. Use view-status instead.

show-state

$res

no Deprectated. Don’t use it. Use view-state instead, or other macros.

show-info

$res

no Deprectated. Don’t use it. Use view-info instead, or other macros.

show

$res

no Deprectated. Don’t use it. Use or implement some macros instead.

show-errors

$res

no Deprectated. Use view-the-err-msg or view-resource-err similar

macros.

cat

$file

no Write the file content to stdout, but replace all occurences of numeric

timestamps converted to a human-readable format. Thus is most useful

for inspection of status and log files, e.g. marsadm cat /mars/5.total.log

Command / Params Cmp Description

5.3.2. Setting Parameters
5.3.2.1. Per-Resource Parameters

Command / Params Cmp Description

set-emergency-limit

$res n

no The argument n must be percentage between 0 and 100 %. When

the remaining store space in /mars/ undershoots the given percentage,

the resource will go earlier into emergency mode than by the global

computation described in section 4.4. 0 means unlimited.
get-emergency-limit

$res

no Inquiry of the preceding value.

Command / Params Cmp Description

5.3.2.2. Global Parameters

Command / Params Cmp Description

set-sync-limit-value

n

no Limit the concurrency of sync operations to some maximum number. 0

means unlimited.
get-sync-limit-value no Inquiry of the preceding value.

set-sync-pref-list

res1,res2,resn

no Set the order of preferences for syning. The argument must be comma-

separated list of resource names.
get-sync-pref-list no Inquiry of the preceding value.

set-connect-pref-list

host1,host2,hostn

no Set the order of preferences for connections when there are more than

2 hosts participating in a cluster. The argument must be comma-

separated list of node names.
get-connect-pref-list no Inquiry of the preceding value.

Command / Params Cmp Description

5.3.3. Waiting

70

5.3. Further Operations

Command / Params Cmp Description

wait-cluster no Precondition: the /mars/ filesystem must be mounted and it must con-
tain a valid MARS symlink tree produced by the other marsadm com-
mands. The kernel module must be loaded.
Postcondition: none.

Wait until all nodes in the cluster have sent a message, or until time-

out. The default timeout is 30 s (exceptionally) and Be may be

changed by --timeout=$seconds
wait-resource

$res

{is-,}{attach,

primary,

device}{-off,}

no Precondition: the local node must be a member of the resource $res.
Postcondition: none.

Wait until the local node reaches a specified condition on $res, or

until timeout. The default timeout of 60 s may be changed by

--timeout=$seconds. The last argument denotes the condition. The

condition is inverted if suffixed by -off. When preceded by is- (which

is the most useful case), it is checked whether the condition is actually

reached. When the is- prefix is left off, the check is whether another

marsadm command has been already given which tries to achieves the

intended result (typicially, you may use this after the is- variant has

failed).
wait-connect

$res

almost This is an alias for wait-cluster waiting until only those nodes are

reachable which belong to $res (instead of waiting for the full cluster).

wait-umount

$res

no Precondition: none additionally.

Postcondition: the local /dev/mars/$dev_name is no longer in use (e.g.

umounted).
Command / Params Cmp Description

5.3.4. Low-Level Helpers
These commands are for experts and advanced sysadmins only. The interface is not stable, i.e.
the meaning may change at any time.

Command / Params Cmp Description

set-link no RTFS.

get-link no RTFS.

delete-file no RTFS.

Command / Params Cmp Description

5.3.5. Senseless Commands (from DRBD)

Command / Params Cmp Description

syncer no

new-current-uuid no

create-md no

dump-md no

dump no

get-gi no

show-gi no

outdate no

adjust yes Implemented as NOP (not necessary with MARS).

hidden-commands no

Command / Params Cmp Description

5.3.6. Forbidden Commands (from DRBD)
These commands are not implemented because they would be dangerous in MARS context:

71

5. The Sysadmin Interface (marsadm and /proc/sys/mars/)

Command / Params Cmp Description

invalidate-remote no This would be too dangerous in case you have multiple secondaries. A

similar effect can be achieved with the --host= option.
verify no This would cause unintended side effects due to races between log-

file transfer / application and block-wise comparison of the underly-

ing disks. However, marsadm join-resource or invalidate will do the

same as DRBD verify followed by DRBD resync, i.e. this will automat-

ically correct any found errors;. Note that the fast-fullsync algorithm

of MARS will minimize network traffic.
Command / Params Cmp Description

5.4. The /proc/sys/mars/ and other Expert Tweaks
In general, you shouldn’t need to deal with any tweaks in /proc/sys/mars/ because everything
should already default to reasonable predefined values. This interface allows access to some
internal kernel variables of the mars.ko kernel module at runtime. Thus it is not a stable
interface. It is not only specific for MARS Light, but may also change between releases without
notice.
This section describes only those tweaks intended for sysadmins, not those for developers /

very deep internals.

5.4.1. Syslogging

All internal messages produced by the kernel module belong to one of the following classes:

0 debug messages

1 info messages

2 warnings

3 error messages

4 fatal error messages

5 any message (summary of 0 to 4)

5.4.1.1. Logging to Files

These classes are used to produce status files $class.*.status in the /mars/ and/or in the
/mars/resource-mydata / directory / directories.
When you create a file $class.*.log in parallel to any $class.*.status, the *.log file

will be appended forever with the same messages as in *.status. The difference is that *.sta-
tus is regenerated anew from an empty starting point, while *.log can (potentially) increase
indefinitely unless you remove it, or rename it to something else.

Beware, any permamently present *.log file can easily fill up your /mars/ partition
until the problems described in section 4.4 will appear. Use *.log only for a limited time,
and only for debugging!

5.4.1.2. Logging to Syslog

The classes also play a role in the following /proc/sys/mars/ tweaks:

syslog_min_class (rw) The mimimum class number for permanent syslogging. By default,
this is set to -1 in order to switch off perment logging completely. Permament logging
can easily flood your syslog with such huge amounts of messages (in particular when
class=0), that your system as a whole may become unusable (because vital kernel
threads may be blocked too long or too often by the userspace syslog daemon).
Instead, please use the flood-protected syslogging described below!

72

5.4. The /proc/sys/mars/ and other Expert Tweaks

syslog_max_class (rw) The maximum class number for permanent syslogging. Please use the
flood-protected version instead.

syslog_flood_class (rw) The mimimum class of flood-protected syslogging. The maximum
class is always 4.

syslog_flood_limit (rw) The maxmimum number of messages after which the flood protec-
tion will start. This is a hard limit for the the number of messages written to the
syslog.

syslog_flood_recovery_s (rw) The number of seconds after which the internal flood counter
is reset (after flood protection state has been reached). When no new messages
appear after this time, the flood protection will start over at count 0.

The rationale behind flood protected syslogging: sysadmins are usually only interested
in the point in time where some problems / incidents / etc have started. They are usually
not interested in capturing each and every single error message (in particular when they are
flooding the system logs).

If you really need complete error information, use the *.log files described above,
compress them and save them to somewhere else regularly by a cron job. This bears much less
overhead than filtering via the syslog daemon, or even remote syslogging in real time which
will almost surely screw up your system in case of network problems co-inciding with flood
messages, such as caused in turn by those problems. Don’t rely on real-time concepts, just do
it the old-fashioned batch job way.

5.4.1.3. Tuning Verbosity of Logging

show_debug_messages Boolean switch, 0 or 1. Mostly useful only for developers. This can
easily flood your logs if our are not careful.

show_log_messages Boolean switch, 0 or 1.

show_connections Boolean switch, 0 or 1. Show detailed internal statistics on sockets.

show_statistics_local / show_statistics_global Only useful for kernel developers. Shows
some internal information on internal brick instances, memory usage, etc.

5.4.2. Tuning the Sync
sync_flip_interval_sec (rw) The sync process must not run in parallel to logfile replay, in

order to easily guarantee consistency of your disk. If logfile replay would be paused
for the full duration of very large or long-lasting syncs (which could take some days
over very slow networks), your /mars/ filesystem could overflow because no replay
would be possible in the meantime. Therefore, MARS Light regulary flips between
actually syncing and actually replaying, if both is enabled. You can set the time
interval for flipping here.

sync_limit (rw) When > 0, this limits the maximum number of sync processes actually run-
ning parallel. This is useful if you have a large number of resources, and you don’t
want to overload the network with sync processes.

sync_nr (ro) Passive indicator for the number of sync processes currently running.

sync_want (ro) Passive indicator for the number of sync processes which demand running.

73

6. Tips and Tricks

6.1. Avoiding Inappropriate Clustermanager Types for
Medium and Long-Distance Replication

This section addresses some wide-spread misconceptions. Its main target audience is developers,
but sysadmins will profit from detailed explainations of problems and pitfalls. When the
problems described in this section are solved somewhen in future, this section will be shortened
and some relevant parts moved to the appendix.
Doing High Availability (HA) wrong at concept level may easily get you into trouble, and

may cost you several millions of € or $ in larger installations, or even knock you out of business
when disasters are badly dealt with at higher levels such as clustermanagers.

6.1.1. General Cluster Models
The most commonly known cluster model is called shared-disk, and typically controlled by
clustermanagers like PaceMaker:

App Cluster Side A

(currently active)

App Cluster Side B

(currently passive)

Shared Disk

Clustermanager

e.g. PaceMaker

e.g. iSCSIe.g. iSCSI

The most important property of shared-disk is that there exists only a single disk instance.
Nowadays, this disk often has some internal redundancy such as RAID. At system architecure
layer / network level, there exists no redundant disk at all. Only the application cluster is built
redundant.

It should be immediately clear that shared-disk clusters are only suitable for short-
distance operations in the same datacenter. Although running one of the data access lines over
short distances between very near-by datacenters (e.g. 1 km) would be theoretically possible,
there would be no sufficient protection against failure of a whole datacenter.
Both DRBD and MARS belong to a different architectural model called shared-nothing:

App Cluster Side A

(currently active)

App Cluster Side B

(currently passive)

e.g. iSCSI e.g. iSCSI

Clustermanager

Disk A Disk B

Disk Coupling

e.g. DRBD or MARS

The characteristic feature of a shared-nothing model is (additional) redundancy at network
level.

74

6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication

Shared-nothing “clusters1” could theoretically be built for any distances, from short to
medium to long distances. However, concrete technologies of disk coupling such as synchronous
operation may pose practical limits on the distances (see chapter 2).
In general, clustermanagers must fit to the model. Some clustermanager can be configured

to fit to multiple models. If so, this must be done properly, or you may get into serious trouble.
Some people don’t know, or they don’t believe, that different architectural models like shared-

disk or shared-nothing will require an appropriate type of clustermanager and/or a different
configuration. Failing to do so, by selection of an inappropriate clustermanager type and/or an
inappropriate configuration may be hazardous.

Selection of the right model alone is not sufficient. Some, if not many, clustermanagers
have not been designed for long distances. As explained in section 6.1.5, long distances have
further hard requirements. Disregarding them may be also hazardous!

6.1.2. Handover / Failover Reasons and Scenarios
From a sysadmin perspective, there exist a number of different reasons why the application
workload must be switched from the currently active side A to the currently passive side B:

1. Some defect has occurred at cluster side A or at some corresponding part of the network.

2. Some maintenance has to be done at side A which would cause a longer downtime (e.g.
security kernel update or replacement of core network equipment or maintainance of UPS
or of the BBU cache etc - hardware isn’t 24/7/365 in practice, although some vendors
claim it - it is either not really true, or it becomes extremely expensive).

Both reasons are valid and must be automatically handled in larger installations. In order to
deal with all of these reasons, the following basic mechanisms can be used in either model:

1. Failover (triggered either manually or automatically)

2. Handover (triggered manually2)

It is important to not confuse handover with failover at concept level. Not only the reasons /
preconditions are very different, but also the requirements. Example: precondition for handover
is that both cluster sides are healthy, while precondition for failover is that some relevant(!)
failure has been detected somewhere (whether this is really true is another matter). Typi-
cally, failover must be able to run in masses, while planned handover often has lower scaling
requirements.
Not all existing clustermanagers are dealing with all of these cases (or their variants) equally

well, and some are not even dealing with some of these cases / variants at all.
Some clustermanagers cannot easily express the concept of “automatic triggering” versus

“manual triggering” of an action. There exists simply no cluster-global switch which selects ei-
ther “manual mode” or “automatic mode” (except when you start to hack the code and/or write
new plugins; then you might notice that there is almost no architectural layering / sufficient sep-
aration between mechanism and strategy). Being forced to permanently use an automatic mode
for several hundreds or even thousands of clusters is not only boring, but bears a considerable
risk when automatics do a wrong decision at hundreds of instances in parallel.

6.1.3. Granularity and Layering Hierarchy for Long Distances
Many existing clustermanager solutions are dealing with a single cluster instance, as the term
“clustermanager” suggests. However, when running several hundreds or thousands of cluster
instances, you likely will not want to manage each of them individually. In addition, failover
1Notice that the term “cluster computing” usually refers to short-distance only. Long-distance coupling should
be called “grid computing” in preference. As known from the scientific literature, grid computing requires
different concepts and methods in general. Only for the sake of simplicity, we use “cluster” and “grid”
interchangeably.

2Automatic triggering could be feasible for prophylactic treatments.

75

6. Tips and Tricks

should not only be triggered (not to be confused with executed) individually at cluster level,
but likely also at a higher granularity such as a room, or a whole datacenter. Otherwise, some
chaos is likely to happen.
Here is what you probably will need, possibly in difference to what you may find on the

market (whether OpenSource or not). For simplicity, the following diagram shows only two
levels of granularity, but can be easily extended to multiple layers of granularity, or to some
concept of various subsets of clusters:

Mechanics Layer: Handover+Failover of whole Datacenter

Mechanics Layer: Handover+Failover of single Cluster (several hundreds / thousands of instances)

(about a dozen of instances)

(one globally distributed instance)Automatics Layer: Failover of {Datacenters...Clusters}

Notice that many existing clustermanager solutions are not addressing the datacenter gran-
ularity at all. Typically, they use concepts like quorums for determining failures at cluster
level solely, and then immediately executing failover of the cluster, sometimes without clean
architectural distinction between trigger and execution (similar to the “separation of concerns”
betweenmechanism and strategy in Operating Systems). Sometimes there is even no internal
software layering / modularization according to this separation of concerns at all.

When there is no distinction between different levels of granularity, you are hopelessly
bound to a non-extensible and thus non-adaptable system when you need to operate masses of
clusters.

A lacking distinction between automatic mode and manual mode, and/or lack of corre-
sponding architectural software layers is not only a blatant ignoration of well-established
best practices of software engineering, but will bind you even more firmly to an inflexible
system.

Terminology: for practical reasons, we use the general term “clustermanager” also for
speaking about layers dealing with higher granularity, such as datacenter layers, and also for
long-distance replication scenarios, although some terminology from grid computing would be
more appropriate in a scientific background.
Please consider the following: when it comes to long-distance HA, the above layering archi-

tecture is also motivated by vastly different numbers of instances for each layer. Ideally, the
topmost automatics layer should be able to overview several datacenters in parallel, in order to
cope with (almost) global network problems such as network partitions. Additionally, it should
also detect single cluster failures, or intermediate problems like “rack failure” or “room failure”,
as well as various types of (partial / intermediate) (replication) network failures. Incompatible
decisions at each of the different granularities would be a no-go in practice. Somewhere and
somehow, you need one single3 top-most logical problem detection / ranking instance, which
should be internally distributed of course, typically using some distributed consensus pro-
tocol; but in difference to many published distributed consensus algorithms it should be able
to work with multiple granularities at the same time.

6.1.4. Methods and their Appropriateness

6.1.4.1. Failover Methods

Failover methods are only needed in case of an incident. They should not be used for regular
handover.
3If you have logical pairs of datacenters which are firmly bound together, you could also have several topmost
automatics instances, e.g. for each pair of datacenters. However, that would be very inflexible, because
then you cannot easily mix locations or migrate your servers between datacenters. Using k > 2 replicas with
MARS would also become a nightmare. In your own interest, please don’t create any concepts where masses
of hardware are firmly bound to fixed constants at some software layers.

76

6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication

STONITH-like Methods STONITH = Shoot The Other Node In The Head
These methods are widely known, although they have several serious drawbacks. Some people

even believe that any clustermanager must always have some STONITH-like functionality. This
is wrong. There exist alternatives, as shown in the next paragraph.
The most obvious drawback is that STONITH will always create a damage, by definition.
Example: a typical contemporary STONITH implementation uses IPMI for automatically

powering off your servers, or at least pushes the (virtual) reset button. This will always create
a certain type of damage: the affected systems will definitely not be available, at least for some
time until they have (manually) rebooted.
This is a conceptual contradiction: the reason for starting failover is that you want to restore

availability as soon as possible, but in order to do so you will first destroy the availability of a
particular component. This may be counter-productive.
Example: when your hot standby node B does not work as expected, or if it works even worse

than A before, you will loose some time until you can become operational again at the old side
A.
Here is an example method for handling a failure scenario. The old active side A is assumed

to be no longer healthy anymore. The method uses a sequential state transition chain with a
STONITH-like step:

Phase1 Check whether the hot standby B is currently usable. If this is violated (which may
happen during certain types of disasters), abort the failover for any affected resources.

Phase2 Try to shutdown the damaged side A (in the hope that there is no serious damage).

Phase3 In case phase2 did not work during a grace period / after a timeout, assume that A is
badly damaged and therefore STONITH it.

Phase4 Start the application at the hot standby B.

Notice: any cleanup actions, such as repair of defective hard- or software etc, are outside the
scope of failover processes. Typically, they are executed much later when restoring redundancy.
Also notice: this method is a heavily distributed one, in the sense that sequential actions are

alternated multiple times on different hosts. This is known to be cumbersome in distributed
systems, in particular in presence of network problems.
Phase4 in more detail for DRBD, augmented with some pseudo code for application control:

1. at side B: drbdadm disconnect all

2. at side B: drbdadm primary --force all

3. at side B: applicationmanager start all

The same phase4 using MARS:

1. at side B: marsadm pause-fetch all

2. at side B: marsadm primary --force all

3. at side B: applicationmanager start all

This sequential 4-phase method is far from optimal, for the following reasons:

• The method tries to handle both failover and handover scenarios with one single sequential
receipe. In case of a true failover scenario where it is already known for sure that side
A is badly damaged, this method will unnecessarily waste time for phase 2. This could
be fixed by introduction of a conceptual distinction between handover and failover, but
it would not fix the following problems.

• Before phase4 is started (which will re-establish the service from a user’s perspective), a
lot of time is wasted by both phases 2 and 3. Even if phase 2 would be skipped, phase
3 would unnecessarily cost some time. In the next paragraph, an alternative method is
explained which eliminates any unnecessary waiting time at all.

• The above method is adapted to the shared-disk model. It does not take advantage of
the shared-nothing model, where further possibilities for better solutions exist.

77

6. Tips and Tricks

• In case of long-distance network partitions and/or sysadmin / system management sub-
network outages, you may not even be able to (remotely) start STONITH at at. Thus
the above method misses an important failure scenario.

Some people seem to have a binary view at the healthiness of a system: in their view, a system
is either operational, or it is damaged. This kind of view is ignoring the fact that some systems
may be half-alive, showing only minor problems, or occurring only from time to time.
It is obvious that damaging a healthy system is a bad idea by itself. Even generally damaging

a half-alive system in order to “fix” problems is not generally a good idea, because it may increase
the damage when you don’t know the real reason4.
Even worse: in a distributed system5 you sometimes cannot(!) know whether a system is

healthy, or to what degree it is healthy. Typical STONITH methods as used in some contem-
porary clustermanagers are assuming a worst case, even if that worst case is currently not
for real.
Therefore, avoid the following fundamental flaws in failover concepts and healthiness mod-

els, which apply to implementors / configurators of clustermanagers:

• Don’t mix up knowledge with conclusions about a (sub)system, and also don’t mix this
up with the real state of that (sub)system. In reality, you don’t have any knowledge about
a complex distributed system. You only may have some knowledge about some parts of
the system, but you cannot “see” a complex distributed system as a whole. What you
think is your knowledge, isn’t knowledge in reality: in many cases, it is conclusion, not
knowledge. Don’t mix this up!

• Some systems are more complex than your model of it. Don’t neglect important parts
(such as networks, routers, switches, cables, plugs) which may lead you to wrong conclu-
sions!

• Don’t restrict your mind to boolean models of healthyness. Doing so can easily create
unnecessary damage by construction, and even at concept level. You should know from
software engineering that defects in concepts or models are much more serious than simple
bugs in implementations. Choosing the wrong model cannot be fixed as easily as a typical
bug or a typo.

• Try to deduce the state of a system as reliably as possible. If you don’t know something
for sure, don’t generally assume that it has gone wrong. Don’t confuse missing knowledge
with the conclusion that something is bad. Boolean algebra restricts your mind to either
“good” or “bad”. Use at least tri-state algebra which has a means for expressing “un-
known” . Even better: attach a probability to anything you (believe to) know. Errare
humanum est: nothing is absolutely sure.

• Oversimplification: don’t report an “unknown” or even a “broken” state for a complex
system whenever a smaller subsystem exists for which you have some knowledge (or you
can conclude something about it with reasonable evidence). Otherwise, your users /
sysadmins may draw wrong conclusions, and assume that the whole system is broken,
while in reality only some minor part has some minor problem. Users could then likely
make wrong decisions, which may then easily lead to bigger damages.

• Murphy’s law: never assume that something can’t go wrong! Doing so is a blatant
misconception at topmost level: the purpose of a clustermanager is creating High Avail-
ablity (HA) out of more or less “unreliable” components. It is the damn duty of both a
clustermanager and its configurator to try to compensate any failures, regardless of their
probability6, as best as possible.

4Example, occurring in masses: an incorrectly installed bootloader, or a wrong BIOS boot priority order
which unexpectedly lead to hangs or infinite reboot cycles once the DHCP or BOOTP servers are not longer
available / reachable.

5Notice: the STONITH concept is more or less associated with short-distance scenarios where crossover
cables or similare equipment are used. The assumption is that crossover cables can’t go defective, or at
least it would be an extremely unlikely scenario. For long-distance replication, this assumption is simply not
true.

6Never claim that something has only low probability (and therefore it were not relevant). In the HA area, you
simply cannot know that, because you typically have sporadic incidents. In extreme cases, the purpose of
your HA solution is protection against 1 failure per 10 years. You simply don’t have the time to wait for
creating an incident statistics about that!

78

6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication

• Never confuse probability with expectancy value! If you don’t know the mathematical
term “expectancy value”, or if you don’t know what this means in practice, don’t take
responsibility for millions of € or $.

• When operating masses of hard- and software: never assume that a particular failure can
occur only at a low number of instances. There are unknown(!) systematic errors
which may pop up at the wrong time and in huge masses when you don’t expect them.

• Multiple layers of fallback: any action can fail. Be prepared to have a plan B, and even
a plan C, and even better a plan D, wherever possible.

• Never increase any damage anywhere, unnecessarily! Always try to miminize any damage!
It can be mathematically proven that in deterministic probabilistic systems having finite
state, increases of a damage level at the wrong place will introduce an additional risk of
getting into an endless loop. This is also true for nondeterministic systems, as known
from formal language theory7.

• Use the best effort principle. You should be aware of the following fact: in general,
it is impossible to create an absolutely reliable system out of unreliable components. You
can lower the risk of failures to any ε > 0 by investing a lot of resources and of money, but
whatever you do: ε = 0 is impossible. Therefore, be careful with boolean algebra. Prefer
approximation methods / optimizing methods instead. Always do your best, instead of
trying to reach a global optimum which likely does not exist at all (because the ε can only
converge to an optimum, but will never actually reach it). The best effort principle means
the following: if you discover a method for improving your operating state by reduction
of a (potential) damage in a reasonable time and with reasonable effort, then simply do
it. Don’t argue that a particular step is no 100% solution for all of your problems. Any
improvement is valuable. Don’t miss any valuable step having reasonable costs with
respect to your budget. Missing valuable measures which have low costs are certainly a
violation of the best effort principle, because you are not doing your best. Keep that in
mind.
If you have understood this (e.g. deeply think at least one day about it), you will no longer
advocate STONITH methods in general, when there are alternatives. STONITH methods
are only valuable when you know in advance that the final outcome (after reboot) will
most likely be better, and that waiting for reboot will most likely pay off. In general, this
condition is not true if you have a healthy hot standby system. This should be easy to see.
But there exist well-known clustermanager solutions / configurations blatantly ignoring8
this. Only when the former standby system does not work as expected (this means that
all of your redundant systems are not healthy enough for your application), only then9

STONITH is unevitable as a last resort option.
In short: blindly using STONITH without true need during failover is a violation of the
best effort principle. You are simply not doing your best.

• When your budget is limited, carefully select those improvements which make your system
as reliable as possible, given your fixed budget.

7Finite automatons are known to be transformable to deterministic ones, usually by an exponential increase
in the number of states.

8For some special(!) cases of the shared-disk model, there exist some justifications for doing STONITH before
starting the application at the hot standby. Under certain circumstances, it can happen that system A
running amok could destroy the data on your single shared disk (example: a filesystem doubly mounted in
parallel, which will certainly destroy your data, except you are using ocfs2 or suchalike). This argument
is only valid for passive disks which are directly attached to both systems A and B, such that there is no
external means for fencing the disk. In case of iSCSI running over ordinary network equipment such as
routers or switches, the argument “fencing the disk is otherwise not possible” does not apply. You can
interrupt iSCSI connection at the network gear, or you can often do it at cluster A or at the iSCSI target.
Even commercial storage appliances speaking iSCSI can be remotely controlled for forcefully aborting iSCSI
sessions. In modern times, the STONITH method has no longer such a justification. The justification stems
from ancient times when a disk was a purely passive mechanical device, and its disk controller was part of
the server system.

9Notice that STONITH may be needed for (manual or partially automatic) repair in some cases, e.g. when
you know that a system has a kernel crash. Don’t mix up the repair phase with failover or handover phases.
Typically, they are executed at different times. The repair phase is outside the scope of this section.

79

6. Tips and Tricks

• Create statistics on the duration of your actions. Based on this, try to get a balanced
optimum between time and costs.

• Whatever actions you can start in parallel for saving time, do it. Otherwise you are
disregarding the best effort principle, and your solution will be sub-optimal. You will re-
quire deep knowledge of parallel systems, as well as experience with dealing with problems
like (distributed) races. Notice that any distributed system is inherently parallel. Don’t
believe that sequential methods can deliver an optimum solution in such a difficult area.

• If you don’t have the necessary skills for (a) recognizing already existing parallelism, (b)
dealing with parallelism at concept level, (c) programming and/or configuring parallelism
race-free and deadlock-free (or if you even don’t know what a race condition is and where
it may occur in practice), then don’t take responsibility for millions of € or $.

• Avoid hard timeouts wherever possible. Use adaptive timeouts instead. Reason: de-
pending on hardware or workload, the same action A may take a very short time on
cluster 1, but take a very long time on cluster 2. If you need to guard action A from
hanging (which is almost always the case because of Murphy’s law), don’t configure any
fixed timeout for it. When having several hundreds of clusters, you would need to use the
worst case value, which is the longest time occurring somewhere at the very slow clusters
/ slow parts of the network. This wastes a lot of time in case one of the fast clusters is
hanging. Adaptive timeouts work differently: they use a kind of “progress bar” to mon-
itor the progress of an action. They will abort only if there is no progress for a certain
amount of time. Hint: among others, marsadm view-*-rest commands or macros are
your friend.

ITON = Ignore The Other Node This means fencing from application traffic, and can
be used as an alternative to STONITH when done properly.

Traffic

Application

Fencing from

Storage

Fencing from ...

General Fencing Methods

STONITH

Fencing from application traffic is best suited for the shared-nothing model, but can also be
adapted to the shared-disk model with some quirks.
The idea is simple: always route your application network traffic to the current (logically)

active side, whether it is currently A or B. Just don’t route any application requests to the
current (logically) passive side at all.
For failover (and only for that), you should not care about any split brain occurring at the

low-level generic block device:

A

B

common part of history

Although having a split brain at the generic low-level block device, you now define the “logically
active” and “logically passive” side by yourself by logically ignoring the “wrong” side as defined
by yourself:

A

B

common part of history

This is possible because the generic block devices provided by DRBD or MARS are completely
agnostic of the “meaning” of either version A or B. Higher levels such as clustermanagers (or
humans like sysadmins) can assign them a meaning like “relevant” or “not relevant”, or “logically
active” or “logically passive”.

80

6.1. Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication

As a result of fencing from application traffic, the “logically passive” side will logically cease
any actions such as updating user data, even if it is “physically active” during split-brain (when
two primaries exist in DRBD or MARS sense10).
If you already have some load balancing, or BGP, or another mechanism for dynamic rout-

ing, you already have an important part for the ITON method. Additionally, ensure by an
appropriate strategy that your balancer status / BGP announcement etc does always coincide
with the “logically active” side (recall that even during split-brain you must define “logically
active” uniquely11 by yourself).
Example:

Phase1 Check whether the hot standby B is currently usable. If this is violated (which may
happen during certain types of disasters), abort the failover for any affected resources.

Phase2 Do the following in parallel12:

• Start all affected applications at the hot standby B. This can be done with the same
DRBD or MARS procedure as described on page 77.

• Fence A by fixedly routing all affected application traffic to B.

That’s all which has to be done for a shared-nothing model. Of course, this will likely produce
a split-brain (even when using DRBD in place of MARS), but that will not matter from a user’s
perspective, because the users will no longer “see” the “logically passive” side A through their
network. Only during the relatively small time period where application traffic was going to
the old side A while not replicated to B due to the incident, a very small number of updates
could have gone lost. In fields like webhosting, this is taken into account. Users will usually not
complain when some (smaller amount of) data is lost due to split-brain. They will complain
when the service is unavailable.
This method is the fastest for restoring availability, because it doesn’t try to execute any

(remote) action at side A. Only from a sysadmin’s perspective, there remain some cleanup
tasks to be done during the following repair phase, such as split-brain resolution, which are
outside the scope of this treatment.
By running the application fencing step sequentially (including wait for its partial successful-

ness such that the old side A can no longer be reached by any users) in front of the failover step,
you may minimize the amount of lost data, but at the cost of total duration. Your service will
take longer to be available again, while the amount of lost data is typically somewhat smaller.

A few people might clamour when some data is lost. In long-distance replication
scenarios with high update traffic, there is simply no way at all for guaranteeing that no data
can be lost ever. According to the laws of Einstein and the laws of Distributed Systems like the
famous CAP theorem, this isn’t the fault of DRBD+proxy or MARS, but simply the consequence
of having long distances. If you want to protect against data loss as best as possible, then don’t
use k = 2 replicas. Use k ≥ 4, and spread them over different distances, such as mixed small +
medium + long distances. Future versions of MARS will support adaptive pseudo-synchronous
modes, which will allow individual adaptation to network latencies / distances.
10Hint: some clustermanagers and/or some people seem to define the term “split-brain” differently from DRBD

or MARS. In the context of generic block devices, split brain means that the history of both versions has
been split to a Y-like fork (for whatever reason), such that re-joining them incrementally by ordinary write
operations is no longer guaranteed to be possible. As a slightly simplified definition, you might alternatively
use the definition “two incompatible primaries are existing in parallel”, which means almost the same in
practice. Details of formal semantics are not the scope of this treatment.

11A possible strategy is to use a Lamport clock for route changes: the change with the most recent Lamport
timestamp will always win over previous changes.

12For database applications where no transactions should get lost, you should slightly modify the order of
operations: first fence the old side A, then start the application at standby side B. However, be warned that
even this cannot guarantee that no transaction is lost. When the network between A and B is interrupted
before the incident happens, DRBD will automatically disconnect, and MARS will show a lagbehind. In
order to fully eliminate this possibility, you can either use DRBD and configure it to hang forever during
network outages (such that users will be unable to commit any transactions at all), or you can use the
shared-disk model instead. But in the latter case, you are introducing a SPOF at the single shared disk.
The former case is logically almost equivalent to shared-disk, but avoiding some parts of the physical SPOF.
In a truly distributed system, the famous CAP theorem is limiting your possibilities. Therefore, no general
solution exists fulfilling all requirements at the same time.

81

6. Tips and Tricks

The ITON method can be adapted to shared-disk by additionally fencing the common disk
from the (presumably) failed cluster node A.

6.1.4.2. Handover Methods

Planned handover is conceptually simpler, because both sides must be (almost) healthy as a
precondition. There are simply no pre-existing failures to deal with.
Here is an example using DRBD, some application commands denoted as pseudo code:

1. at side A: applicationmanager stop all

2. at side A: drbdadm secondary all

3. at side B: drbdadm primary all

4. at side B: applicationmanager start all

MARS already has a conceptual distinction between handover and failover. With MARS, it
becomes even simpler, because a generic handover procedure is already built in:

1. at side A: applicationmanager stop all

2. at side B: marsadm primary all

3. at side B: applicationmanager start all

6.1.4.3. Hybrid Methods

In general, a planned handover may fail at any stage. Notice that such a failure is also a
failure, but (partially) caused by the planned handover. You have the following alternatives for
automatically dealing with such cases:

1. In case of a failure, switch back to the old side A.

2. Instead, forcefully switch to the new side A, similar to the methods described in section
6.1.4.1.

Similar options exist for a failed failover (at least in theory), but chances are lower for actually
recovering if you have only k = 2 replicas in total.
Whatever you decide to do in what case in whatever priority order, whether you decide it

in advance or during the course of a failing action: it simply means that according to the best
effort principle, you should never leave your system in a broken state when there exists
a chance to recover availability with any method.
Therefore, you should implement neither handover nor failover in their pure forms. Always

implement hybrid forms following the best effort principle.

6.1.5. Special Requirements for Long Distances
Most contemporary clustermanagers have been constructed for short distance shared-nothing
clusters, or even for local shared-nothing clusters (c.f. DRBD over crossover cables), or even
for shared-disk clusters (originally, when their concepts were developed). Blindly using them
for long-distance replication without modification / adaptation bears some additional risks.

• Notice that long-distance replication always requires a shared-nothing model.

• As a consequence, split brain can appear regularly during failover. There is no way for
preventing it! This is an inherent property of distributed systems, not limited to MARS
(e.g. also ocurring with DRBD if you try to use it over long distances). Therefore, you
must deal with occurences of split-brain as a requirement.

• The probability of network partitions is much higher: although you should have been
required by Murphy’s law to deal with network partitions already in short-distance sce-
narios, it now becomes mandatory.

• Be prepared that in case of certain types of (more or less global) internet partitions, you
may not be able to trigger STONITH actions at all. Therefore, fencing of application
traffic is mandatory.

82

6.2. Creating Backups via Pseudo Snapshots

6.2. Creating Backups via Pseudo Snapshots
When all your secondaries are all homogenously located in a standby datacenter, they will be
almost idle all the time. This is a waste of computing resources.
Since MARS Light is no substitute for a full-fledged backup system, and since backups may

put high system load onto your active side, you may want to utilize your passive hardware
resources in a better way.
MARS Light supports this thanks to its ability to switch the pause-replay independently

from pause-fetch.
The basic idea is simple: just use pause-replay at your secondary site, but leave the repli-

cation of transaction logfiles intact by deliberately not saying pause-fetch. This way, your
secondary replica (block device) will stay frozen for a limited time, without loosing your re-
dundancy: since the transaction logs will continue to replicate in the meantime, you can start
resume-replay at any time, in particular when a primary-side incident should happen unex-
pectedly. The former secondary will just catch up by replaying the outstanding parts of the
transaction logs in order to become recent.
However, some details have to be obeyed. In particular, the current version of MARS Light

needs an additional detach operation, in order to release exclusive access to the underlying
disk /dev/lv/$res. Future versions of MARS Light are planned to support this more directly,
without need for an intermediate detach operation.

Beware: mount -o ro /dev/vg/$res can lead to unnoticed write operations if you
are not careful! Some journalling filesystems like xfs or ext4 may replay their journals onto
the disk, leading to binary differences and thus destroying your consistency later when you
re-enable resume-replay!

Therefore, you may use small LVM snapshots (only in such cases). Typically, xfs
journal replay will require only a few megabytes. Therefore you typically don’t need much
temporary space for this. Here is a more detailed description of steps:

1. marsadm pause-replay $res

2. marsadm detach $res

3. lvcreate --size 100m --snapshot --name ro-$res /dev/vg/$res

4. mount -o ro /dev/vg/ro-$res /mnt/tmp

5. Now draw your backup from /mnt/tmp/

6. umount /mnt/tmp

7. lvremove -f /dev/vg/ro-$res

8. marsadm up $res

Hint: during the backup, the transaction logs will accumulate on /mars/. In order to avoid
overflow of /mars/ (c.f. section 4.4), don’t unnecessarily prolong the backup duration.

83

7. MARS for Developers

This chapter is organized strictly top-down.
If you are a sysadmin and want to inform yourself about internals (useful for debugging), the

relevant information is at the beginning, and you don’t need to dive into all technical details
at the end.
If you are a kernel developer and want to contribute code to the emerging MARS community,

please read it (almost) all. Due to the top-down organization, sometimes you will need to follow
some forward references in order to understand details. Therefore I recommend reading this
chapter twice in two different reading modes: in the first reading pass, you just get a raw
network of principles and structures in your brain (you don’t want to grasp details, therefore
don’t strive for a full understanding). In the second pass, you will exploit your knowlegde from
the first pass for a deeper understanding of the details.
Alternatively, you may first read the sections about general architecture, and then start

a bottom-up scan by first reading the last section about generic objects and aspects, and
working in reverse section order (but read subsections in-order) until you finally reach the
kernel interfaces / symlink trees.

7.1. Motivation / Politics
MARS is not yet upstream in the Linux kernel. This section tries to clear up some potential
doubts. Some people have asked why MARS uses its own internal framework instead of directly1
being based on some already existing Linux kernel infrastructures like the device mapper. Here
is a list of technical reasons:

1. The existing device mapper infrastructure is based on struct bio. In contrast, the
new XIO personality of the generic brick infrastructure is based on the concept of AIO
(Asynchronous IO), which is a true superset of block IO.

2. In particular, struct bio is firmly referencing to struct page (via intermediate struct
bio_vec), using types like sector_t in the field bi_sector. Basic transfer units are
blocks, or sectors, or pages, or the like. In contrast, struct aio_object used by the XIO
personality can address arbitrary granularitymemory with byte resolution even at odd2
positions in (virtual) files / devices, similar to classical Unix file IO, but asynchronously.
Practical experience shows that even non-functional properties like performance of many
datacenter workloads are profiting from that3. The AIO/XIO abstraction contains no
fixed link to kernel abstractions and should be easily portable to other environments.
In summary, the new personality provides a uniform abstraction which abstracts away
from multiple different kernel interfaces; it is designed to be useful even in userspace.

3. Kernel infrastructures for the concept of direct IO are different from those for buffered
IO. The XIO personality used by MARS subsumes both concepts as use case variants.

1Notice that indirect use of pre-existing Linux infrastructure is not only possible, but actually implemented,
by usinig it internally in brick implementations (black-box principle). However, such bricks are not portable
to other environments like userspace.

2Some brick implementations (as opposed to the capabilities of the interface) may be (and, in fact, are) re-
stricted to PAGE_SIZE operations or the like. This is no general problem, because IOP can automatically
insert some translator bricks extending the capabilities to universal granularity (of course at some perfor-
mance costs).

3The current transaction logger uses variable-sized headers at “odd” addresses. Although this increases
memcpy() load due to “misalignment”, the overall performance was provably better than in variants where
sector / page alignment was strictly obeyed, but space was wasted for alignments. Such functionality is only
possible if the XIO infrastructure allows for (but doesn’t force) “mis-aligned” IO operations. In future, many
different transaction logfile formats showing different runtime behaviour (e.g. optimized for high-throughput
SSD loads) may co-exist in parallel. Note that properly aligned XIO operations bear no noticeable overhead
compared to classical block IO, at least in typical datacenter RAID scenarios.

84

7.1. Motivation / Politics

Buffering is an optional internal property of XIO bricks (almost non-functional property
with support for consistency guarantees).

4. The AIO/XIO personality is generically designed for remote operations over networks, at
arbitrary places in the IO stack, with (almost4) no semantic differences to local operations
(built-in network transparency). There are universal provisions for mixed operation
of different versions (rolling software updates in clusters / grids).

5. The generic brick infrastructure (as well as its personalities like XIO or any other future
personality) supports dynamic re-wiring / re-configuration during operation (even
while parallel IO requests are flying, some of them taking different paths in the IO stack
in parallel). This is absolutely needed for MARS Light logfile rotation. In the long
term, this would be useful for many advanced new features and products, not limited to
multipathing.

6. The generic brick infrastructure (and in turn all personalities) provide additional com-
fort to the programmer while enabling increased functionality: by use of a general-
ization of aspect orientation5, the programmer need no longer worry about dynamic
memory allocations for local state in a brick instance. MARS is automating local state
even when dynamically instantiating new bricks (possibly having the same brick type) at
runtime. Specifially, XIO is automating request stacking at the completion path this
way, even while dynamically reconfiguring the IO stack6. A similar automation7 does not
exist in the rest of the Linux kernel.

7. The generic brick infrastructure, together with personalities like XIO, enables new long-
term functional and non-functional opportunities by use of concepts from instance-
oriented programming (IOP8). The application area is not limited to device drivers.
For example, a new personality for stackable filesystems could be developed in future.

In summary, anyone who would insist that MARS Light should be directly9 based on pre-
existing kernel structures / frameworks instead of contributing a new framework would cause
a massive regression of functionality.

• On one hand, all code contributed by the MARS project is non-intrusive into the rest
of the Linux kernel. From the viewpoint of other parts of the kernel, the whole addition
behaves like a driver (although its infrastructure is much more than a driver).

• On the other hand, if people are interested, the contributed infrastructure may be used
to add to the power of the Linux kernel. It is designed to be open for contributions.

4By default, automatic network connection re-establishment and infinite network retries are already imple-
mented in the xio_client and xio_server bricks to provide fully transparent semantics. However, this may
be undesirable in case of fatal crashes. Therefore, abort operations are also configurable, as well as network
timeouts which are then mapped to classical IO errors.

5Similar to AOP, insertion of IOP bricks for checking / debugging etc is one of the key advantages of the generic
brick infrastructure. In contrast to AOP where debugging is usually {en,dis}abled statically at compile time,
IOP allows for dynamic (re-)configuration of debugging bricks, automatic repair, and many more features
promoted by organic computing.

6The generic aspect orientation approach leads to better separation of concerns: local state needed by brick
implementations is not visible from outside by default. In other words, local state is also private state.
Accidental hampering of internal operations is impeded.

Example from the kernel: in include/linux/blkdev.h the definition of struct request contains the
following comment: /* the following two fields are internal, NEVER access directly */. It appears
that struct request contains not only fields relevant for the caller, but also internal fields needed only in
some specific callees. For example, rb_node is documented to be used only in IO schedulers.

XIO goes one step further: there need not exist exactly one IO scheduler instance in the IO stack for
a single device. Future xio_scheduler_{deadline,cfq,...} brick types could be each instantiated many
times, and in arbitrary places, even for the same (logical) device. The equivalent of rb_node would then be
automatically instantiated multiple times for the same IO request, by automatically instantiating the right
local aspect instances.

7DM can achieve stacking and dynamic routing by a workaround called request cloning, potentially leading to
mass creation of temporary / intermediate object instances.

8See http://athomux.net/papers/paper_inst2.pdf
9Notice that kernel-specific structures like struct bio are of course used by MARS, but only inside the
blackbox implementation of bricks like mars_bio or mars_if which act as adaptors to/from that structure.
It is possible to write further adaptors, e.g. for direct interfacing to the device mapper infrastructure.

85

http://athomux.net/papers/paper_inst2.pdf

7. MARS for Developers

• A possible (but not the only possible) way to do this is giving the generic brick framework
/ the XIO personality as well as future personalities / the MARS Light application the
status of a subsystem inside the kernel (in the long term), similar to the SCSI subsystem
or the network subsystem. Noone is forced to use it, but anybody may use it if he/she
likes.

• Politically, the author is a FOSS advocate willing to collaborate and to support anyone
interested in contributions. The author’s personal interest is long-term and is open for
both in-tree and out-of-tree extensions of both the framework and MARS by any other
party obeying the GPL and not hazarding FOSS by patents (instead supporting organi-
zations like the Open Invention Network). The author is open to closer relationships with
the Linux Foundation and other parts of the Linux ecosystem.

7.2. Architecture Overview

Framework Architecture for MARS + future projects

MARS LCA2014 Presentation by Thomas Schöbel-Theuer

Generic Brick Layer
IOP = Instance Oriented Programming
+ AOP = Aspect Oriented Programming

Framework Application Layer
MARS Light, MARS Full, etc

Framework Personalities
XIO = eXtended IO ≈ AIO

External Software, Cluster Managers, etc

Userspace Interface marsadm

Generic Bricks

Generic Objects

Generic Aspects
s

XIO
bricks

future

Strategy
bricks

other future
Personalities

and their bricks

MARS
Light

MARS
Full ...

7.3. Some Architectural Details

The following pictures show some “zones of responsibility”, not necessarily a strict hierarchy
(although Dijkstra’s famous layering rules from THE are tried to be respected as much as pos-
sible). The construction principle follows the concept of Instance Oriented Programming
(IOP) described in http://athomux.net/papers/paper_inst2.pdf. Please note that MARS
Light is only instance-based10, while MARS Full is planned to be fully instance-oriented.

7.3.1. MARS Light Architecture

10Similar to OOP, where “object-based” means a weaker form of “object-oriented”, the term “instance-based”
means that the strategy brick layer need not be fully modularized according to the IOP principles, but the
worker brick layer already is.

86

http://athomux.net/papers/paper_inst2.pdf

7.4. Documentation of the Symlink Trees

h
el

p
er

 l
ib

ra
ry

 f
u

n
ct

io
n

s

higher−level tools (cluster managers, HA managers, etc)

XIO personality

generic object infrastructure

XIO bricks: {a,b,s}io,if,trans_logger,...

interface: /mars/ symlink tree

userspace tool marsadm (perl)

interface: marsadm parameters, exit code, stdout (similar to drbdadm)

MARS Light ad−hoc strategy layer

generic aspect infrastructure

generic brick infrastructure

7.3.2. MARS Full Architecture (planned)

h
el

p
er

 l
ib

ra
ry

 f
u

n
ct

io
n

s

XIO brick personality

MARS Full strategy bricks

StrategY brick personality

interface: /mars/full/ symlink tree

userspace tool marsadm (perl)

XIO worker bricks: {a,b,s}io,if,trans_logger,...

higher−level tools (cluster managers, HA managers, etc)

interface: marsadm parameters, exit code, stdout (similar to drbdadm)

generic brick infrastructure

generic aspect infrastructure

generic object infrastructure

7.4. Documentation of the Symlink Trees

The /mars/ symlink tree is serving the following purposes, all at the same time:

1. For communication between cluster nodes, see sections 4.2 and 4.3. This communica-
tion is even the only communication between cluster nodes (apart from the contents of
transaction logfiles and sync data).

2. Internal interface between the kernel module and the userspace tool marsadm.

3. Internal persistent repository which keeps state information between reboots (also
in case of node crashes). It is even the only place where state information is kept. There
is no other place like /etc/drbd.conf.

Because of its internal character, its representation and semantics may change at any
time without notice (e.g. via an internal upgrade procedure between major releases). It is not
an external interface to the outer world. Don’t build anything on it.
However, knowledge of the symlink tree is useful for advanced sysadmins, for human in-

spection and for debugging. And, of course, for developers.
As an “official” interface from outside, only the marsadm command should be used.

87

7. MARS for Developers

7.4.1. Documentation of the MARS Light Symlink Tree

7.5. XIO Worker Bricks

7.6. StrategY Worker Bricks
NYI

7.7. The XIO Brick Personality

7.8. The Generic Brick Infrastructure Layer

7.9. The Generic Object and Aspect Infrastructure

88

A. Technical Data MARS Light

MARS Light has some built-in limitations which should be overcome1 by the future MARS
Full. Please don’t exceed the following limits:

• maximum 10 nodes per cluster

• maximum 10 resources per cluster

• maximum 100 logfiles per resource

1Some internal algorithms are quadratic. The reason is that MARS Light evolved from a lab prototype which
wasn’t originally intended for enterprise grade usage, but should have been succeeded by the fully instance-
oriented MARS Full much earlier.

89

B. Handout for Midnight Problem
Solving

Here are generic instructions for the generic marsadm and commandline level. Other levels (e.g.
different types of cluster managers, PaceMaker, control scripts / rc scripts / upstart scripts,
etc should be described elsewhere.

B.1. Inspecting the State of MARS
For manual inspection, please prefer the new marsadm view all over the old marsadm view-1and1
all. It shows more appropriate / detailed information.
Hint: this might change in future when somebody will program better marcros for the

view-1and1 variant, or create even better other macros.

watch marsadm view a l l

Checking the low-level network connections at runtime:

watch " ne t s t a t −−tcp | grep 777"

Meaning of the port numbers (as currently configured into the kernel module, may change in
future):

• 7777 = metadata / symlink propagation

• 7778 = transfer of transaction logfiles

• 7779 = transfer of sync traffic

7777 must be always active on a healthy cluster. 7778 and 7779 will appear only on demand,
when some data is transferred.
Hint: when one of the columns Send-Q or Recv-Q are constantly at high values, you might

have a network bottleneck.

B.2. Replication is Stuck
Indications for a stuck:

• One of the flags shown by marsadm view all or marsadm view-flags all contain a
symbol "-" (dash). This means that some switch is currently switched off (deliberately).
Please check whether there is a valid reason why somebody else switched it off. If the
switch-off is just by accident, use the following command to fix the stuck:

marsadm up a l l

(or replace all by a particular resource name if you want to start only a specific one).
Note: up is equivalent to the sequence attach; resume-fetch; resume-replay; resume-sync.
Instead of switching each individual knob, use up as a shortcut for switching on anything
which is currently off.

• netstat --tcp | grep 7777 does not show anything. Please check the following:

90

B.3. Resolution of Emergency Mode

– Is the kernel module loaded? Check lsmod | grep mars. When necessary, run
modprobe mars.

– Is the network interface down? Check ifconfig, and/or ethtool and friends, and
fix it when necessary.

– Is a ping <partner-host> possible? If not, fix the network / routing / firewall /
etc. When fixed, the MARS connections should automatically appear after about 1
minute.

– When ping is possible, but a MARS connection to port 7777 does not appear after a
few minutes, try to connect to remote port 7777 by hand via telnet. But don’t type
anything, just abort the connection immediately when it works! Typing anything
will almost certainly throw a harsh error message at the other server, which could
unnecessarily alarm other people.

• Check whether marsadm view all shows some progress bars somewhere. Example:

i s t o r e−t e s t−bap1:~# marsadm view a l l
−−−−−−−−− r e s ou r c e lv−0
lv−0 OutDated [F] PausedReplay dCAS−R Secondary i s t o r e−t e s t−bs1

r ep l ay ing : [>] 1.21% (12/1020)MiB l og s : [2 . . 3]
> f e t ch : 1008.198 MiB ra t e : 0 B/ sec remaining : −−:−−:−− hrs
> rep lay : 0 B ra t e : 0 B/ sec remaining : 00 : 00 : 00 hrs

At least one of the rate: values should be greater than 0. When none of the rate:
values indicate any progress for a longer time, try marsadm up all again. If it doesn’t
help, check and repair the network. If even this does not help, check the hardware for
any IO hangups, or kernel hangups. First, check the RAID controllers. Often (but
not certainly), a stuck kernel can be recognized when many processes are permanently
in state "D", for a long time: ps ax | grep " D" | grep -v grep or similar. Please
check whether there is just an overload, or really a true kernel problem. Discrimination
is not easy, and requires experience (as with any other system; not limited to MARS). A
truly stuck kernel can only be resurrected by rebooting. The same holds for any hardware
problems.

• Check whether marsadm view all reports any lines like WARNING: SPLIT BRAIN at ”
detected. In such a case, check that there is really a split brain, before obeying the in-
structions in section B.4. Notice that network outages or missing marsadm log-delete-all
all may continue to report an old split brain which has gone in the meantime.

• Check whether /mars/ is too full. For a rough impression, df /mars/ may be used. For
getting authoritative values as internally used by the MARS emergency-mode computa-
tions, use marsadm view-rest-space (the unit is GiB). In practice, the differences are
only marginal, at least on bigger /mars/ partitions. When there is only few rest space
(or none at all), please obey the instructions in section B.3.

B.3. Resolution of Emergency Mode
Emergency mode occurs when /mars/ runs out of space, such that no new logfile data can be
written anymore.
In emergency mode, the primary will write any write requests directly to the underlying disk,

as if MARS were not present at all. Thus, your application will continue to run. Only the
replication as such is stopped.
Notice: emergency mode means that your secondary nodes are usually in a consistent, but

outdated state (exception: when a sync was running in parallel to the emergency mode, then
the sync will be automatically started over again). You can check consistency via marsadm
view-flags all. Only when a local disk shows a lower-case letter "d" instead of an uppercase
"D", it is known to be inconsistent (e.g. during a sync). When there is a dash instead, it
usually means that the disk is detatched or misconfigured or the kernel module is not started.
Please fix these problems first before believing that your local disk is unusable. Even if it is
really inconsistent (which is very unlikely, typically occurring only as a consequence of hardware

91

B. Handout for Midnight Problem Solving

failures, or of the above-mentioned exception), you have a big chance to recover most of the
data via fsck and friends.
A currently existing Emergency mode can be detected by

primary:~# marsadm view−i s−emergency a l l
secondary :~# marsadm view−i s−emergency a l l

Notice: this delivers the current state, telling nothing about the past.
Currently, emergency mode will also show something like WARNING: SPLIT BRAIN at ” detected.

This ambiguity will be resolved in a future MARS release. It is however not crucial: the res-
olution methods for both cases are very similar. If in doubt, start emergency resolution first,
and only proceed to split brain resoultion if it did not help.
Preconditions:

• Only current version of MARS: the space at the primary side should have been already
released, and the emergency mode should have been already left. Otherwise, you might
need the split-brain resolution method from section B.4.

• The networkmust be working. Check that the following gives an entry for each secondary:

primary:~# ne t s t a t −−tcp | grep 7777

When necessary, fix the network first (see instructions above).

Emergency mode should now be resolved via the following instructions:

primary:~# marsadm view−i s−emergency a l l
primary:~# du −s /mars/ resource−∗ | s o r t −n

Remember the affected resources. Best practice is to do the following, starting with the biggest
resource as shown by the du | sort output in reverse order, but starting the following only
with the affected resources in the first place:

secondary1 :~# marsadm inv a l i d a t e <res1>
secondary1 :~# marsadm log−de l e t e−a l l a l l
. . . d i t o with a l l r e s ou r c e s showing emergency mode
. . . d i t o on a l l other s e c onda r i e s
primary:~# marsadm log−de l e t e−a l l a l l

Hint: during the resolution process, some other resources might have gone into emergency
mode concurrently. In addition, it is possible that some secondaries are stuck at particular
resources while the corresponding primary has not yet entered emergency mode. Please repeat
the steps in such a case, and look for emergency modes at secondaries additionally. When
necessary, extend your list of affected resources.
Hint: be patient. Deleting large bulks of logfile data may take a long time, at least on highly

loaded systems. You should give the cleanup processes at least 5 minutes before concluding
that an invalidate followed by log-delete-all had no effect! Don’t forget to give the
log-delete-all at all cluster nodes, even when seemingly unaffected.
In very complex scenarios, when the primary roles of different resources are spread over diffent

hosts (aka mixed operation), you may need to repeat the whole cycle iteratively for a few cycles
until the jam is resolved.
If it does not go away, you have another chance by the following split-brain resolution process,

which will also cleanup emergency mode as a side effect.

B.4. Resolution of Split Brain and of Emergency Mode
Hint: in many cases (but not guaranteed), the previous receipe for resolution of emergency
mode will also cleanup split brain. Good chances are in case of k = 2 total replicas. Please
collect your own experiences which method works better for you!
Precondition: the network must be working. Check that the following gives an entry for each

secondary:

primary:~# ne t s t a t −−tcp | grep 7777

92

B.5. Handover of Primary Role

When necessary, fix the network first (see instructions above).
Inspect the split brain situation:

primary:~# marsadm view a l l
primary:~# du −s /mars/ resource−∗ | s o r t −n

Remember those resources where a message like WARNING: SPLIT BRAIN at ” detected ap-
pears. Do the following only for affected resources, starting with the biggest one (before pro-
ceeding to the next one).
Do the following with only one resource at a time (before proceeding to the next one), and

repeat the actions on that resource at every secondary (if there are multiple secondaries):

secondary1 :~# marsadm leave−r e s ou r c e $re s1
secondary1 :~# marsadm log−de l e t e−a l l a l l

Check whether the split brain has vanished everywhere. Startover with other resources at their
secondaries when necessary.
Finally, when no split brain is reported at any (former) secondary, do the following on the

primary:

primary:~# marsadm log−de l e t e−a l l a l l
primary:~# s l e ep 30
primary:~# marsadm view a l l

Now, the split brain should be gone even at the primary. If not, repeat this step.
In case even this should fail on some $res (which is very unlikely), read the PDF manual

before using marsadm log-purge-all $res.
Finally, when the split brain is gone everywhere, rebuild the redundancy at every secondary

via

secondary1 :~# marsadm jo in−r e s ou r c e $re s1 /dev/<lv−x>/$re s1

If even this method does not help, setup the whole cluster afresh by rmmod mars everywhere,
and creating a fresh /mars/ filesystem everywhere, followed by the same procedure as installing
MARS for the first time (which is outside the scope of this handout).

B.5. Handover of Primary Role

When there exists a method for primary handover in higher layers such as cluster managers,
please prefer that method (e.g. cm3 or other tools).
If suchalike doesn’t work, or if you need to handover some resource $res1 by hand, do the

following:

• Stop the load / application corresponding to $res1 on the old primary side.

• umount /dev/mars/$res1, or otherwise close any openers such as iSCSI.

• At the new primary: marsadm primary $res1

• Restart the application at the new site (in reverse order to above). In case you want to
switch all resources which are not yet at the new side, you may use marsadm primary
all.

B.6. Emergency Switching of Primary Role

Emergency switching is necessary when your primary is no longer reachable over the network
for a longer time, or when the hardware is defective.
Emergency switching will very often lead to a split brain, which requires lots of manual

actions to resolve (see above). Therefore, try to avoid emergency switching when possible!
Hint: MARS can automatically recover after a primary crash / reboot, as well as after

secondary crashes, just by executing modprobe mars after /mars/ had been mounted. Please
consider to wait until your system comes up again, instead of risking a split brain.

93

B. Handout for Midnight Problem Solving

The decision between emergency switching and continuing operation at the same primary
side is an operational one. MARS can support your decision by the following information at
the potentially new primary side (which was in secondary mode before):

i s t o r e−t e s t−bap1:~# marsadm view a l l
−−−−−−−−− r e s ou r c e lv−0
lv−0 InCons i s t ent Syncing dcAsFr Secondary i s t o r e−t e s t−bs1
sync ing : [==== >] 27.84% (567/2048)MiB ra t e : 72583.00 KiB/ sec remaining : 00 : 00 : 20 hrs
> sync : 567.293/2048 MiB ra t e : 72583 KiB/ sec remaining : 00 : 00 : 20 hrs
r ep l ay ing : [> : : : : : : : : : : : : : : : : : : :] 0.00% (0/12902)KiB l o g s : [1 . . 1]
> f e t ch : 0 B ra t e : 38 KiB/ s remaining : 00 : 00 : 00
> rep lay : 12902.047 KiB ra t e : 0 B/ s remaining : −−:−−:−−

When your target is syncing (like in this example), you cannot switch to it (same as with
DRBD). When you had an emergency mode before, you should first resolve that (whenever
possible). When a split brain is reported, try to resolve it first (same as with DRBD). Only
in case you know that the primary is really damaged, or it is really impossible to the run the
application there for some reason, emergency switching is desirable.
Hint: in case the secondary is inconsistent for some reason, e.g. because of an incremental

fast full-sync, you have a last chance to recover most data after forceful switching by using a
filesystem check or suchalike. This might be even faster than restoring data from the backup.
But use it only if you are really desperate!
The amount of data which is known to be missing at your secondary is shown after the >

fetch: in human-readable form. However, in cases of networking problems this information
may be outdated. You always need to consider further facts which cannot be known by MARS.
When there exists a method for emergency switching of the primary in higher layers such as

cluster managers, please prefer that method in front of the following one.
If suchalike doesn’t work, or when a handover attempt has failed several times, or if you

really need forceful switching of some resource $res1 by hand, you can do the following:

• When possible, stop the load / application corresponding to $res1 on the old primary
side.

• When possible, umount /dev/mars/$res1, or otherwise close any openers such as iSCSI.

• When possible (if you have some time), wait until as much data has been propagated to
the new primary as possible (watch the fetch: indicator).

• At the new primary: marsadm disconnect $res1; marsadm primary --force $res1

• Restart the application at the new site (in reverse order to above).

• After the application is known to run reliably, check for split brains and cleanup them
when necessary.

94

C. GNU Free Documentation License

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation , Inc.
<http :// fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document , but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual , textbook , or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it , either commercially or noncommercially.
Secondarily , this License preserves for the author and publisher a way
to get credit for their work , while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License , which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software , because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work , regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work , in any medium , that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world -wide , royalty -free license , unlimited in duration , to use that
work under the conditions stated herein. The "Document", below ,
refers to any such manual or work. Any member of the public is a
licensee , and is addressed as "you". You accept the license if you
copy , modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim , or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front -matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document ’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus , if the Document is in
part a textbook of mathematics , a Secondary Section may not explain
any mathematics .) The relationship could be a matter of historical
connection with the subject or with related matters , or of legal ,
commercial , philosophical , ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated , as being those of Invariant Sections , in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not

95

C. GNU Free Documentation License

allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed ,
as Front -Cover Texts or Back -Cover Texts , in the notice that says that
the Document is released under this License. A Front -Cover Text may
be at most 5 words , and a Back -Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine -readable copy ,
represented in a format whose specification is available to the
general public , that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor , and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup , or absence of markup , has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque ".

Examples of suitable formats for Transparent copies include plain
ASCII without markup , Texinfo input format , LaTeX input format , SGML
or XML using a publicly available DTD , and standard -conforming simple
HTML , PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG , XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors , SGML or XML for which the DTD and/or
processing tools are not generally available , and the
machine -generated HTML , PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means , for a printed book , the title page itself ,
plus such following pages as are needed to hold , legibly , the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such , "Title Page" means
the text near the most prominent appearance of the work ’s title ,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below , such as "Acknowledgements",
"Dedications", "Endorsements", or "History ".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License , but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium , either
commercially or noncommercially , provided that this License , the
copyright notices , and the license notice saying this License applies
to the Document are reproduced in all copies , and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However , you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies , under the same conditions stated above , and
you may publicly display copies.

96

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document , numbering more than 100, and the
Document ’s license notice requires Cover Texts , you must enclose the
copies in covers that carry , clearly and legibly , all these Cover
Texts: Front -Cover Texts on the front cover , and Back -Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers , as long as they preserve
the title of the Document and satisfy these conditions , can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly , you should put the first ones listed (as many as fit
reasonably) on the actual cover , and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine -readable Transparent
copy along with each Opaque copy , or state in or with each Opaque copy
a computer -network location from which the general network -using
public has access to download using public -standard network protocols
a complete Transparent copy of the Document , free of added material.
If you use the latter option , you must take reasonably prudent steps ,
when you begin distribution of Opaque copies in quantity , to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested , but not required , that you contact the authors of the
Document well before redistributing any large number of copies , to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above , provided that you release
the Modified Version under precisely this License , with the Modified
Version filling the role of the Document , thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition , you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers , if any) a title distinct
from that of the Document , and from those of previous versions
(which should , if there were any , be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page , as authors , one or more persons or entities
responsible for authorship of the modifications in the Modified
Version , together with at least five of the principal authors of the
Document (all of its principal authors , if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version , as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include , immediately after the copyright notices , a license notice

giving the public permission to use the Modified Version under the
terms of this License , in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document ’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title , and add

to it an item stating at least the title , year , new authors , and
publisher of the Modified Version as given on the Title Page. If

97

C. GNU Free Documentation License

there is no section Entitled "History" in the Document , create one
stating the title , year , authors , and publisher of the Document as
given on its Title Page , then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location , if any , given in the Document for
public access to a Transparent copy of the Document , and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself , or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section , and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document ,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements ". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front -matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document , you may at your option designate some or all
of these sections as invariant. To do this , add their titles to the
list of Invariant Sections in the Modified Version ’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties --for example , statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front -Cover Text , and a
passage of up to 25 words as a Back -Cover Text , to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front -Cover Text and one of Back -Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover , previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one , on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License , under the terms defined in section 4 above for modified
versions , provided that you include in the combination all of the
Invariant Sections of all of the original documents , unmodified , and
list them all as Invariant Sections of your combined work in its
license notice , and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License , and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents , make the title of each such section unique by
adding at the end of it, in parentheses , the name of the original
author or publisher of that section if known , or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination , you must combine any sections Entitled "History"
in the various original documents , forming one section Entitled
"History "; likewise combine any sections Entitled "Acknowledgements",

98

and any sections Entitled "Dedications ". You must delete all sections
Entitled "Endorsements ".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License , and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection , provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection , and
distribute it individually under this License , provided you insert a
copy of this License into the extracted document , and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works , in or on a volume of a storage or
distribution medium , is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation ’s users beyond what the individual works permit.
When the Document is included in an aggregate , this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document , then if the Document is less than one half of
the entire aggregate , the Document ’s Cover Texts may be placed on
covers that bracket the Document within the aggregate , or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification , so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders , but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License , and all the license notices in the
Document , and any Warranty Disclaimers , provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer , the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy , modify , sublicense , or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy , modify , sublicense , or distribute it is void , and
will automatically terminate your rights under this License.

However , if you cease all violation of this License , then your license
from a particular copyright holder is reinstated (a) provisionally ,
unless and until the copyright holder explicitly and finally
terminates your license , and (b) permanently , if the copyright holder
fails to notify you of the violation by some reasonable means prior to

99

C. GNU Free Documentation License

60 days after the cessation.

Moreover , your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means , this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder , and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new , revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version , but may differ in
detail to address new problems or concerns. See
http ://www.gnu.org/copyleft /.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it , you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License , you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used , that proxy ’s public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC -BY-SA" means the Creative Commons Attribution -Share Alike 3.0
license published by Creative Commons Corporation , a not -for -profit
corporation with a principal place of business in San Francisco ,
California , as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document , in whole or in
part , as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License , and if all works that were first published under this License
somewhere other than this MMC , and subsequently incorporated in whole or
in part into the MMC , (1) had no cover texts or invariant sections , and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC -BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written , include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

100

Permission is granted to copy , distribute and/or modify this document
under the terms of the GNU Free Documentation License , Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections , no Front -Cover Texts , and no Back -Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License ".

If you have Invariant Sections , Front -Cover Texts and Back -Cover Texts ,
replace the "with ... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES , with the
Front -Cover Texts being LIST , and with the Back -Cover Texts being LIST.

If you have Invariant Sections without Cover Texts , or some other
combination of the three , merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code , we
recommend releasing these examples in parallel under your choice of
free software license , such as the GNU General Public License ,
to permit their use in free software.

101

	Why You should Replicate Big Data at Block Layer
	Use Cases for MARS vs DRBD
	Network Bottlenecks
	Behaviour of DRBD
	Behaviour of MARS

	Long Distances / High Latencies
	Higher Consistency Guarantees vs Actuality

	Quick Start Guide
	Preparation: What you Need
	Setup Primary and Secondary Cluster Nodes
	Kernel and MARS Module
	Setup your Cluster Nodes

	Creating and Maintaining Resources
	Keeping Resources Operational
	Logfile Rotation / Deletion
	Switch Primary / Secondary Roles
	Intended Switching / Planned Handover
	Forced Switching

	Split Brain Resolution
	Final Destruction of a Damaged Node
	Cleanup in case of Complicated Cascading Failures
	Experts only: Special Trick Switching and Rebuild
	Online Resizing during Operation

	The State of MARS
	Inspecting the State of MARS
	Predefined Macros
	Predefined Complex and High-Level Macros
	Predefined Primitive Macros

	Creating your own Macros
	General Macro Syntax
	Builtin / Primitive Macros

	Scripting HOWTO

	Basic Working Principle
	The Transaction Logger
	The Lamport Clock
	The Symlink Tree
	Defending Overflow of /mars/
	Countermeasures
	Dimensioning of /mars/
	Monitoring
	Throttling

	Emergency Mode

	The Sysadmin Interface (marsadm and /proc/sys/mars/)
	Cluster Operations
	Resource Operations
	Resource Creation / Deletion / Modification
	Operation of the Resource
	Logfile Operations
	Consistency Operations

	Further Operations
	Inspection Commands
	Setting Parameters
	Per-Resource Parameters
	Global Parameters

	Waiting
	Low-Level Helpers
	Senseless Commands (from DRBD)
	Forbidden Commands (from DRBD)

	The /proc/sys/mars/ and other Expert Tweaks
	Syslogging
	Logging to Files
	Logging to Syslog
	Tuning Verbosity of Logging

	Tuning the Sync

	Tips and Tricks
	Avoiding Inappropriate Clustermanager Types for Medium and Long-Distance Replication
	General Cluster Models
	Handover / Failover Reasons and Scenarios
	Granularity and Layering Hierarchy for Long Distances
	Methods and their Appropriateness
	Failover Methods
	Handover Methods
	Hybrid Methods

	Special Requirements for Long Distances

	Creating Backups via Pseudo Snapshots

	MARS for Developers
	Motivation / Politics
	Architecture Overview
	Some Architectural Details
	MARS Light Architecture
	MARS Full Architecture (planned)

	Documentation of the Symlink Trees
	Documentation of the MARS Light Symlink Tree

	XIO Worker Bricks
	StrategY Worker Bricks
	The XIO Brick Personality
	The Generic Brick Infrastructure Layer
	The Generic Object and Aspect Infrastructure

	Technical Data MARS Light
	Handout for Midnight Problem Solving
	Inspecting the State of MARS
	Replication is Stuck
	Resolution of Emergency Mode
	Resolution of Split Brain and of Emergency Mode
	Handover of Primary Role
	Emergency Switching of Primary Role

	GNU Free Documentation License

