ffmpeg/libavcodec/ppc/fft_altivec.c

248 lines
6.7 KiB
C

/*
* FFT/IFFT transforms
* AltiVec-enabled
* Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
* Based on code Copyright (c) 2002 Fabrice Bellard.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "../dsputil.h"
#include "gcc_fixes.h"
#include "dsputil_altivec.h"
/*
those three macros are from libavcodec/fft.c
and are required for the reference C code
*/
/* butter fly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
{\
FFTSample ax, ay, bx, by;\
bx=pre1;\
by=pim1;\
ax=qre1;\
ay=qim1;\
pre = (bx + ax);\
pim = (by + ay);\
qre = (bx - ax);\
qim = (by - ay);\
}
#define MUL16(a,b) ((a) * (b))
#define CMUL(pre, pim, are, aim, bre, bim) \
{\
pre = (MUL16(are, bre) - MUL16(aim, bim));\
pim = (MUL16(are, bim) + MUL16(bre, aim));\
}
/**
* Do a complex FFT with the parameters defined in ff_fft_init(). The
* input data must be permuted before with s->revtab table. No
* 1.0/sqrt(n) normalization is done.
* AltiVec-enabled
* This code assumes that the 'z' pointer is 16 bytes-aligned
* It also assumes all FFTComplex are 8 bytes-aligned pair of float
* The code is exactly the same as the SSE version, except
* that successive MUL + ADD/SUB have been merged into
* fused multiply-add ('vec_madd' in altivec)
*/
void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z)
{
POWERPC_PERF_DECLARE(altivec_fft_num, s->nbits >= 6);
#ifdef ALTIVEC_USE_REFERENCE_C_CODE
int ln = s->nbits;
int j, np, np2;
int nblocks, nloops;
register FFTComplex *p, *q;
FFTComplex *exptab = s->exptab;
int l;
FFTSample tmp_re, tmp_im;
POWERPC_PERF_START_COUNT(altivec_fft_num, s->nbits >= 6);
np = 1 << ln;
/* pass 0 */
p=&z[0];
j=(np >> 1);
do {
BF(p[0].re, p[0].im, p[1].re, p[1].im,
p[0].re, p[0].im, p[1].re, p[1].im);
p+=2;
} while (--j != 0);
/* pass 1 */
p=&z[0];
j=np >> 2;
if (s->inverse) {
do {
BF(p[0].re, p[0].im, p[2].re, p[2].im,
p[0].re, p[0].im, p[2].re, p[2].im);
BF(p[1].re, p[1].im, p[3].re, p[3].im,
p[1].re, p[1].im, -p[3].im, p[3].re);
p+=4;
} while (--j != 0);
} else {
do {
BF(p[0].re, p[0].im, p[2].re, p[2].im,
p[0].re, p[0].im, p[2].re, p[2].im);
BF(p[1].re, p[1].im, p[3].re, p[3].im,
p[1].re, p[1].im, p[3].im, -p[3].re);
p+=4;
} while (--j != 0);
}
/* pass 2 .. ln-1 */
nblocks = np >> 3;
nloops = 1 << 2;
np2 = np >> 1;
do {
p = z;
q = z + nloops;
for (j = 0; j < nblocks; ++j) {
BF(p->re, p->im, q->re, q->im,
p->re, p->im, q->re, q->im);
p++;
q++;
for(l = nblocks; l < np2; l += nblocks) {
CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
BF(p->re, p->im, q->re, q->im,
p->re, p->im, tmp_re, tmp_im);
p++;
q++;
}
p += nloops;
q += nloops;
}
nblocks = nblocks >> 1;
nloops = nloops << 1;
} while (nblocks != 0);
POWERPC_PERF_STOP_COUNT(altivec_fft_num, s->nbits >= 6);
#else /* ALTIVEC_USE_REFERENCE_C_CODE */
#ifdef CONFIG_DARWIN
register const vector float vczero = (const vector float)(0.);
#else
register const vector float vczero = (const vector float){0.,0.,0.,0.};
#endif
int ln = s->nbits;
int j, np, np2;
int nblocks, nloops;
register FFTComplex *p, *q;
FFTComplex *cptr, *cptr1;
int k;
POWERPC_PERF_START_COUNT(altivec_fft_num, s->nbits >= 6);
np = 1 << ln;
{
vector float *r, a, b, a1, c1, c2;
r = (vector float *)&z[0];
c1 = vcii(p,p,n,n);
if (s->inverse)
{
c2 = vcii(p,p,n,p);
}
else
{
c2 = vcii(p,p,p,n);
}
j = (np >> 2);
do {
a = vec_ld(0, r);
a1 = vec_ld(sizeof(vector float), r);
b = vec_perm(a,a,vcprmle(1,0,3,2));
a = vec_madd(a,c1,b);
/* do the pass 0 butterfly */
b = vec_perm(a1,a1,vcprmle(1,0,3,2));
b = vec_madd(a1,c1,b);
/* do the pass 0 butterfly */
/* multiply third by -i */
b = vec_perm(b,b,vcprmle(2,3,1,0));
/* do the pass 1 butterfly */
vec_st(vec_madd(b,c2,a), 0, r);
vec_st(vec_nmsub(b,c2,a), sizeof(vector float), r);
r += 2;
} while (--j != 0);
}
/* pass 2 .. ln-1 */
nblocks = np >> 3;
nloops = 1 << 2;
np2 = np >> 1;
cptr1 = s->exptab1;
do {
p = z;
q = z + nloops;
j = nblocks;
do {
cptr = cptr1;
k = nloops >> 1;
do {
vector float a,b,c,t1;
a = vec_ld(0, (float*)p);
b = vec_ld(0, (float*)q);
/* complex mul */
c = vec_ld(0, (float*)cptr);
/* cre*re cim*re */
t1 = vec_madd(c, vec_perm(b,b,vcprmle(2,2,0,0)),vczero);
c = vec_ld(sizeof(vector float), (float*)cptr);
/* -cim*im cre*im */
b = vec_madd(c, vec_perm(b,b,vcprmle(3,3,1,1)),t1);
/* butterfly */
vec_st(vec_add(a,b), 0, (float*)p);
vec_st(vec_sub(a,b), 0, (float*)q);
p += 2;
q += 2;
cptr += 4;
} while (--k);
p += nloops;
q += nloops;
} while (--j);
cptr1 += nloops * 2;
nblocks = nblocks >> 1;
nloops = nloops << 1;
} while (nblocks != 0);
POWERPC_PERF_STOP_COUNT(altivec_fft_num, s->nbits >= 6);
#endif /* ALTIVEC_USE_REFERENCE_C_CODE */
}