ffmpeg/libavfilter/dnn_backend_native.c

383 lines
13 KiB
C

/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include "dnn_backend_native.h"
#include "dnn_srcnn.h"
#include "libavformat/avio.h"
typedef enum {INPUT, CONV} LayerType;
typedef struct Layer{
LayerType type;
float* output;
void* params;
} Layer;
typedef struct ConvolutionalParams{
int32_t input_num, output_num, kernel_size;
float* kernel;
float* biases;
} ConvolutionalParams;
typedef struct InputParams{
int height, width, channels;
} InputParams;
// Represents simple feed-forward convolutional network.
typedef struct ConvolutionalNetwork{
Layer* layers;
int32_t layers_num;
} ConvolutionalNetwork;
static DNNReturnType set_input_output_native(void* model, const DNNData* input, const DNNData* output)
{
ConvolutionalNetwork* network = (ConvolutionalNetwork*)model;
InputParams* input_params;
ConvolutionalParams* conv_params;
int cur_width, cur_height, cur_channels;
int32_t layer;
if (network->layers_num <= 0 || network->layers[0].type != INPUT){
return DNN_ERROR;
}
else{
network->layers[0].output = input->data;
input_params = (InputParams*)network->layers[0].params;
input_params->width = cur_width = input->width;
input_params->height = cur_height = input->height;
input_params->channels = cur_channels = input->channels;
}
for (layer = 1; layer < network->layers_num; ++layer){
switch (network->layers[layer].type){
case CONV:
conv_params = (ConvolutionalParams*)network->layers[layer].params;
if (conv_params->input_num != cur_channels){
return DNN_ERROR;
}
cur_channels = conv_params->output_num;
if (layer < network->layers_num - 1){
if (!network->layers[layer].output){
av_freep(&network->layers[layer].output);
}
network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
if (!network->layers[layer].output){
return DNN_ERROR;
}
}
else{
network->layers[layer].output = output->data;
if (output->width != cur_width || output->height != cur_height || output->channels != cur_channels){
return DNN_ERROR;
}
}
break;
default:
return DNN_ERROR;
}
}
return DNN_SUCCESS;
}
// Loads model and its parameters that are stored in a binary file with following structure:
// layers_num,conv_input_num,conv_output_num,conv_kernel_size,conv_kernel,conv_biases,conv_input_num...
DNNModel* ff_dnn_load_model_native(const char* model_filename)
{
DNNModel* model = NULL;
ConvolutionalNetwork* network = NULL;
AVIOContext* model_file_context;
int file_size, dnn_size, kernel_size, i;
int32_t layer;
ConvolutionalParams* conv_params;
model = av_malloc(sizeof(DNNModel));
if (!model){
return NULL;
}
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
av_freep(&model);
return NULL;
}
file_size = avio_size(model_file_context);
network = av_malloc(sizeof(ConvolutionalNetwork));
if (!network){
avio_closep(&model_file_context);
av_freep(&model);
return NULL;
}
model->model = (void*)network;
network->layers_num = 1 + (int32_t)avio_rl32(model_file_context);
dnn_size = 4;
network->layers = av_malloc(network->layers_num * sizeof(Layer));
if (!network->layers){
av_freep(&network);
avio_closep(&model_file_context);
av_freep(&model);
return NULL;
}
for (layer = 0; layer < network->layers_num; ++layer){
network->layers[layer].output = NULL;
network->layers[layer].params = NULL;
}
network->layers[0].type = INPUT;
network->layers[0].params = av_malloc(sizeof(InputParams));
if (!network->layers[0].params){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
for (layer = 1; layer < network->layers_num; ++layer){
conv_params = av_malloc(sizeof(ConvolutionalParams));
if (!conv_params){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
conv_params->input_num = (int32_t)avio_rl32(model_file_context);
conv_params->output_num = (int32_t)avio_rl32(model_file_context);
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
kernel_size = conv_params->input_num * conv_params->output_num *
conv_params->kernel_size * conv_params->kernel_size;
dnn_size += 12 + (kernel_size + conv_params->output_num << 2);
if (dnn_size > file_size || conv_params->input_num <= 0 ||
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
conv_params->kernel = av_malloc(kernel_size * sizeof(float));
conv_params->biases = av_malloc(conv_params->output_num * sizeof(float));
if (!conv_params->kernel || !conv_params->biases){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
for (i = 0; i < kernel_size; ++i){
conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
}
for (i = 0; i < conv_params->output_num; ++i){
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
}
network->layers[layer].type = CONV;
network->layers[layer].params = conv_params;
}
avio_closep(&model_file_context);
if (dnn_size != file_size){
ff_dnn_free_model_native(&model);
return NULL;
}
model->set_input_output = &set_input_output_native;
return model;
}
static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, int32_t input_num, int32_t output_num, int32_t size)
{
ConvolutionalParams* conv_params;
int kernel_size;
conv_params = av_malloc(sizeof(ConvolutionalParams));
if (!conv_params){
return DNN_ERROR;
}
conv_params->input_num = input_num;
conv_params->output_num = output_num;
conv_params->kernel_size = size;
kernel_size = input_num * output_num * size * size;
conv_params->kernel = av_malloc(kernel_size * sizeof(float));
conv_params->biases = av_malloc(conv_params->output_num * sizeof(float));
if (!conv_params->kernel || !conv_params->biases){
av_freep(&conv_params->kernel);
av_freep(&conv_params->biases);
av_freep(&conv_params);
return DNN_ERROR;
}
memcpy(conv_params->kernel, kernel, kernel_size * sizeof(float));
memcpy(conv_params->biases, biases, output_num * sizeof(float));
layer->type = CONV;
layer->params = conv_params;
return DNN_SUCCESS;
}
DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type)
{
DNNModel* model = NULL;
ConvolutionalNetwork* network = NULL;
int32_t layer;
model = av_malloc(sizeof(DNNModel));
if (!model){
return NULL;
}
network = av_malloc(sizeof(ConvolutionalNetwork));
if (!network){
av_freep(&model);
return NULL;
}
model->model = (void*)network;
switch (model_type){
case DNN_SRCNN:
network->layers_num = 4;
network->layers = av_malloc(network->layers_num * sizeof(Layer));
if (!network->layers){
av_freep(&network);
av_freep(&model);
return NULL;
}
for (layer = 0; layer < network->layers_num; ++layer){
network->layers[layer].output = NULL;
network->layers[layer].params = NULL;
}
network->layers[0].type = INPUT;
network->layers[0].params = av_malloc(sizeof(InputParams));
if (!network->layers[0].params){
ff_dnn_free_model_native(&model);
return NULL;
}
if (set_up_conv_layer(network->layers + 1, conv1_kernel, conv1_biases, 1, 64, 9) != DNN_SUCCESS ||
set_up_conv_layer(network->layers + 2, conv2_kernel, conv2_biases, 64, 32, 1) != DNN_SUCCESS ||
set_up_conv_layer(network->layers + 3, conv3_kernel, conv3_biases, 32, 1, 5) != DNN_SUCCESS){
ff_dnn_free_model_native(&model);
return NULL;
}
model->set_input_output = &set_input_output_native;
return model;
default:
av_freep(&network);
av_freep(&model);
return NULL;
}
}
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int32_t width, int32_t height)
{
int y, x, n_filter, ch, kernel_y, kernel_x;
int radius = conv_params->kernel_size >> 1;
int src_linesize = width * conv_params->input_num;
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
int filter_size = conv_params->kernel_size * filter_linesize;
for (y = 0; y < height; ++y){
for (x = 0; x < width; ++x){
for (n_filter = 0; n_filter < conv_params->output_num; ++n_filter){
output[n_filter] = conv_params->biases[n_filter];
for (ch = 0; ch < conv_params->input_num; ++ch){
for (kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y){
for (kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x){
output[n_filter] += input[CLAMP_TO_EDGE(y + kernel_y - radius, height) * src_linesize +
CLAMP_TO_EDGE(x + kernel_x - radius, width) * conv_params->input_num + ch] *
conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
kernel_x * conv_params->input_num + ch];
}
}
}
output[n_filter] = FFMAX(output[n_filter], 0.0);
}
output += conv_params->output_num;
}
}
}
DNNReturnType ff_dnn_execute_model_native(const DNNModel* model)
{
ConvolutionalNetwork* network = (ConvolutionalNetwork*)model->model;
InputParams* input_params;
int cur_width, cur_height;
int32_t layer;
if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){
return DNN_ERROR;
}
else{
input_params = (InputParams*)network->layers[0].params;
cur_width = input_params->width;
cur_height = input_params->height;
}
for (layer = 1; layer < network->layers_num; ++layer){
if (!network->layers[layer].output){
return DNN_ERROR;
}
switch (network->layers[layer].type){
case CONV:
convolve(network->layers[layer - 1].output, network->layers[layer].output, (ConvolutionalParams*)network->layers[layer].params, cur_width, cur_height);
break;
case INPUT:
return DNN_ERROR;
}
}
return DNN_SUCCESS;
}
void ff_dnn_free_model_native(DNNModel** model)
{
ConvolutionalNetwork* network;
ConvolutionalParams* conv_params;
int32_t layer;
if (*model)
{
network = (ConvolutionalNetwork*)(*model)->model;
for (layer = 0; layer < network->layers_num; ++layer){
switch (network->layers[layer].type){
case CONV:
if (layer < network->layers_num - 1){
av_freep(&network->layers[layer].output);
}
conv_params = (ConvolutionalParams*)network->layers[layer].params;
av_freep(&conv_params->kernel);
av_freep(&conv_params->biases);
av_freep(&conv_params);
break;
case INPUT:
av_freep(&network->layers[layer].params);
}
}
av_freep(network);
av_freep(model);
}
}