ffmpeg/libavcodec/vp9.c

1928 lines
75 KiB
C

/*
* VP9 compatible video decoder
*
* Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
* Copyright (C) 2013 Clément Bœsch <u pkh me>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config_components.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "decode.h"
#include "get_bits.h"
#include "hwconfig.h"
#include "profiles.h"
#include "thread.h"
#include "threadframe.h"
#include "pthread_internal.h"
#include "videodsp.h"
#include "vp89_rac.h"
#include "vp9.h"
#include "vp9data.h"
#include "vp9dec.h"
#include "vpx_rac.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "libavutil/video_enc_params.h"
#define VP9_SYNCCODE 0x498342
#if HAVE_THREADS
DEFINE_OFFSET_ARRAY(VP9Context, vp9_context, pthread_init_cnt,
(offsetof(VP9Context, progress_mutex)),
(offsetof(VP9Context, progress_cond)));
static int vp9_alloc_entries(AVCodecContext *avctx, int n) {
VP9Context *s = avctx->priv_data;
int i;
if (avctx->active_thread_type & FF_THREAD_SLICE) {
if (s->entries)
av_freep(&s->entries);
s->entries = av_malloc_array(n, sizeof(atomic_int));
if (!s->entries)
return AVERROR(ENOMEM);
for (i = 0; i < n; i++)
atomic_init(&s->entries[i], 0);
}
return 0;
}
static void vp9_report_tile_progress(VP9Context *s, int field, int n) {
pthread_mutex_lock(&s->progress_mutex);
atomic_fetch_add_explicit(&s->entries[field], n, memory_order_release);
pthread_cond_signal(&s->progress_cond);
pthread_mutex_unlock(&s->progress_mutex);
}
static void vp9_await_tile_progress(VP9Context *s, int field, int n) {
if (atomic_load_explicit(&s->entries[field], memory_order_acquire) >= n)
return;
pthread_mutex_lock(&s->progress_mutex);
while (atomic_load_explicit(&s->entries[field], memory_order_relaxed) != n)
pthread_cond_wait(&s->progress_cond, &s->progress_mutex);
pthread_mutex_unlock(&s->progress_mutex);
}
#else
static int vp9_alloc_entries(AVCodecContext *avctx, int n) { return 0; }
#endif
static void vp9_tile_data_free(VP9TileData *td)
{
av_freep(&td->b_base);
av_freep(&td->block_base);
av_freep(&td->block_structure);
}
static void vp9_frame_unref(AVCodecContext *avctx, VP9Frame *f)
{
ff_thread_release_ext_buffer(avctx, &f->tf);
av_buffer_unref(&f->extradata);
av_buffer_unref(&f->hwaccel_priv_buf);
f->segmentation_map = NULL;
f->hwaccel_picture_private = NULL;
}
static int vp9_frame_alloc(AVCodecContext *avctx, VP9Frame *f)
{
VP9Context *s = avctx->priv_data;
int ret, sz;
ret = ff_thread_get_ext_buffer(avctx, &f->tf, AV_GET_BUFFER_FLAG_REF);
if (ret < 0)
return ret;
sz = 64 * s->sb_cols * s->sb_rows;
if (sz != s->frame_extradata_pool_size) {
av_buffer_pool_uninit(&s->frame_extradata_pool);
s->frame_extradata_pool = av_buffer_pool_init(sz * (1 + sizeof(VP9mvrefPair)), NULL);
if (!s->frame_extradata_pool) {
s->frame_extradata_pool_size = 0;
goto fail;
}
s->frame_extradata_pool_size = sz;
}
f->extradata = av_buffer_pool_get(s->frame_extradata_pool);
if (!f->extradata) {
goto fail;
}
memset(f->extradata->data, 0, f->extradata->size);
f->segmentation_map = f->extradata->data;
f->mv = (VP9mvrefPair *) (f->extradata->data + sz);
if (avctx->hwaccel) {
const AVHWAccel *hwaccel = avctx->hwaccel;
av_assert0(!f->hwaccel_picture_private);
if (hwaccel->frame_priv_data_size) {
f->hwaccel_priv_buf = ff_hwaccel_frame_priv_alloc(avctx, hwaccel);
if (!f->hwaccel_priv_buf)
goto fail;
f->hwaccel_picture_private = f->hwaccel_priv_buf->data;
}
}
return 0;
fail:
vp9_frame_unref(avctx, f);
return AVERROR(ENOMEM);
}
static int vp9_frame_ref(AVCodecContext *avctx, VP9Frame *dst, VP9Frame *src)
{
int ret;
ret = ff_thread_ref_frame(&dst->tf, &src->tf);
if (ret < 0)
return ret;
dst->extradata = av_buffer_ref(src->extradata);
if (!dst->extradata)
goto fail;
dst->segmentation_map = src->segmentation_map;
dst->mv = src->mv;
dst->uses_2pass = src->uses_2pass;
if (src->hwaccel_picture_private) {
dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
if (!dst->hwaccel_priv_buf)
goto fail;
dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
}
return 0;
fail:
vp9_frame_unref(avctx, dst);
return AVERROR(ENOMEM);
}
static int update_size(AVCodecContext *avctx, int w, int h)
{
#define HWACCEL_MAX (CONFIG_VP9_DXVA2_HWACCEL + \
CONFIG_VP9_D3D11VA_HWACCEL * 2 + \
CONFIG_VP9_NVDEC_HWACCEL + \
CONFIG_VP9_VAAPI_HWACCEL + \
CONFIG_VP9_VDPAU_HWACCEL + \
CONFIG_VP9_VIDEOTOOLBOX_HWACCEL)
enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmtp = pix_fmts;
VP9Context *s = avctx->priv_data;
uint8_t *p;
int bytesperpixel = s->bytesperpixel, ret, cols, rows;
int lflvl_len, i;
av_assert0(w > 0 && h > 0);
if (!(s->pix_fmt == s->gf_fmt && w == s->w && h == s->h)) {
if ((ret = ff_set_dimensions(avctx, w, h)) < 0)
return ret;
switch (s->pix_fmt) {
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV420P10:
#if CONFIG_VP9_DXVA2_HWACCEL
*fmtp++ = AV_PIX_FMT_DXVA2_VLD;
#endif
#if CONFIG_VP9_D3D11VA_HWACCEL
*fmtp++ = AV_PIX_FMT_D3D11VA_VLD;
*fmtp++ = AV_PIX_FMT_D3D11;
#endif
#if CONFIG_VP9_NVDEC_HWACCEL
*fmtp++ = AV_PIX_FMT_CUDA;
#endif
#if CONFIG_VP9_VAAPI_HWACCEL
*fmtp++ = AV_PIX_FMT_VAAPI;
#endif
#if CONFIG_VP9_VDPAU_HWACCEL
*fmtp++ = AV_PIX_FMT_VDPAU;
#endif
#if CONFIG_VP9_VIDEOTOOLBOX_HWACCEL
*fmtp++ = AV_PIX_FMT_VIDEOTOOLBOX;
#endif
break;
case AV_PIX_FMT_YUV420P12:
#if CONFIG_VP9_NVDEC_HWACCEL
*fmtp++ = AV_PIX_FMT_CUDA;
#endif
#if CONFIG_VP9_VAAPI_HWACCEL
*fmtp++ = AV_PIX_FMT_VAAPI;
#endif
#if CONFIG_VP9_VDPAU_HWACCEL
*fmtp++ = AV_PIX_FMT_VDPAU;
#endif
break;
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV444P10:
case AV_PIX_FMT_YUV444P12:
#if CONFIG_VP9_VAAPI_HWACCEL
*fmtp++ = AV_PIX_FMT_VAAPI;
#endif
break;
case AV_PIX_FMT_GBRP:
case AV_PIX_FMT_GBRP10:
case AV_PIX_FMT_GBRP12:
#if CONFIG_VP9_VAAPI_HWACCEL
*fmtp++ = AV_PIX_FMT_VAAPI;
#endif
break;
}
*fmtp++ = s->pix_fmt;
*fmtp = AV_PIX_FMT_NONE;
ret = ff_thread_get_format(avctx, pix_fmts);
if (ret < 0)
return ret;
avctx->pix_fmt = ret;
s->gf_fmt = s->pix_fmt;
s->w = w;
s->h = h;
}
cols = (w + 7) >> 3;
rows = (h + 7) >> 3;
if (s->intra_pred_data[0] && cols == s->cols && rows == s->rows && s->pix_fmt == s->last_fmt)
return 0;
s->last_fmt = s->pix_fmt;
s->sb_cols = (w + 63) >> 6;
s->sb_rows = (h + 63) >> 6;
s->cols = (w + 7) >> 3;
s->rows = (h + 7) >> 3;
lflvl_len = avctx->active_thread_type == FF_THREAD_SLICE ? s->sb_rows : 1;
#define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var)
av_freep(&s->intra_pred_data[0]);
// FIXME we slightly over-allocate here for subsampled chroma, but a little
// bit of padding shouldn't affect performance...
p = av_malloc(s->sb_cols * (128 + 192 * bytesperpixel +
lflvl_len * sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
if (!p)
return AVERROR(ENOMEM);
assign(s->intra_pred_data[0], uint8_t *, 64 * bytesperpixel);
assign(s->intra_pred_data[1], uint8_t *, 64 * bytesperpixel);
assign(s->intra_pred_data[2], uint8_t *, 64 * bytesperpixel);
assign(s->above_y_nnz_ctx, uint8_t *, 16);
assign(s->above_mode_ctx, uint8_t *, 16);
assign(s->above_mv_ctx, VP9mv(*)[2], 16);
assign(s->above_uv_nnz_ctx[0], uint8_t *, 16);
assign(s->above_uv_nnz_ctx[1], uint8_t *, 16);
assign(s->above_partition_ctx, uint8_t *, 8);
assign(s->above_skip_ctx, uint8_t *, 8);
assign(s->above_txfm_ctx, uint8_t *, 8);
assign(s->above_segpred_ctx, uint8_t *, 8);
assign(s->above_intra_ctx, uint8_t *, 8);
assign(s->above_comp_ctx, uint8_t *, 8);
assign(s->above_ref_ctx, uint8_t *, 8);
assign(s->above_filter_ctx, uint8_t *, 8);
assign(s->lflvl, VP9Filter *, lflvl_len);
#undef assign
if (s->td) {
for (i = 0; i < s->active_tile_cols; i++)
vp9_tile_data_free(&s->td[i]);
}
if (s->s.h.bpp != s->last_bpp) {
ff_vp9dsp_init(&s->dsp, s->s.h.bpp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
ff_videodsp_init(&s->vdsp, s->s.h.bpp);
s->last_bpp = s->s.h.bpp;
}
return 0;
}
static int update_block_buffers(AVCodecContext *avctx)
{
int i;
VP9Context *s = avctx->priv_data;
int chroma_blocks, chroma_eobs, bytesperpixel = s->bytesperpixel;
VP9TileData *td = &s->td[0];
if (td->b_base && td->block_base && s->block_alloc_using_2pass == s->s.frames[CUR_FRAME].uses_2pass)
return 0;
vp9_tile_data_free(td);
chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v);
chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v);
if (s->s.frames[CUR_FRAME].uses_2pass) {
int sbs = s->sb_cols * s->sb_rows;
td->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block));
td->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
16 * 16 + 2 * chroma_eobs) * sbs);
if (!td->b_base || !td->block_base)
return AVERROR(ENOMEM);
td->uvblock_base[0] = td->block_base + sbs * 64 * 64 * bytesperpixel;
td->uvblock_base[1] = td->uvblock_base[0] + sbs * chroma_blocks * bytesperpixel;
td->eob_base = (uint8_t *) (td->uvblock_base[1] + sbs * chroma_blocks * bytesperpixel);
td->uveob_base[0] = td->eob_base + 16 * 16 * sbs;
td->uveob_base[1] = td->uveob_base[0] + chroma_eobs * sbs;
if (avctx->export_side_data & AV_CODEC_EXPORT_DATA_VIDEO_ENC_PARAMS) {
td->block_structure = av_malloc_array(s->cols * s->rows, sizeof(*td->block_structure));
if (!td->block_structure)
return AVERROR(ENOMEM);
}
} else {
for (i = 1; i < s->active_tile_cols; i++)
vp9_tile_data_free(&s->td[i]);
for (i = 0; i < s->active_tile_cols; i++) {
s->td[i].b_base = av_malloc(sizeof(VP9Block));
s->td[i].block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
16 * 16 + 2 * chroma_eobs);
if (!s->td[i].b_base || !s->td[i].block_base)
return AVERROR(ENOMEM);
s->td[i].uvblock_base[0] = s->td[i].block_base + 64 * 64 * bytesperpixel;
s->td[i].uvblock_base[1] = s->td[i].uvblock_base[0] + chroma_blocks * bytesperpixel;
s->td[i].eob_base = (uint8_t *) (s->td[i].uvblock_base[1] + chroma_blocks * bytesperpixel);
s->td[i].uveob_base[0] = s->td[i].eob_base + 16 * 16;
s->td[i].uveob_base[1] = s->td[i].uveob_base[0] + chroma_eobs;
if (avctx->export_side_data & AV_CODEC_EXPORT_DATA_VIDEO_ENC_PARAMS) {
s->td[i].block_structure = av_malloc_array(s->cols * s->rows, sizeof(*td->block_structure));
if (!s->td[i].block_structure)
return AVERROR(ENOMEM);
}
}
}
s->block_alloc_using_2pass = s->s.frames[CUR_FRAME].uses_2pass;
return 0;
}
// The sign bit is at the end, not the start, of a bit sequence
static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
{
int v = get_bits(gb, n);
return get_bits1(gb) ? -v : v;
}
static av_always_inline int inv_recenter_nonneg(int v, int m)
{
if (v > 2 * m)
return v;
if (v & 1)
return m - ((v + 1) >> 1);
return m + (v >> 1);
}
// differential forward probability updates
static int update_prob(VPXRangeCoder *c, int p)
{
static const uint8_t inv_map_table[255] = {
7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
252, 253, 253,
};
int d;
/* This code is trying to do a differential probability update. For a
* current probability A in the range [1, 255], the difference to a new
* probability of any value can be expressed differentially as 1-A, 255-A
* where some part of this (absolute range) exists both in positive as
* well as the negative part, whereas another part only exists in one
* half. We're trying to code this shared part differentially, i.e.
* times two where the value of the lowest bit specifies the sign, and
* the single part is then coded on top of this. This absolute difference
* then again has a value of [0, 254], but a bigger value in this range
* indicates that we're further away from the original value A, so we
* can code this as a VLC code, since higher values are increasingly
* unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
* updates vs. the 'fine, exact' updates further down the range, which
* adds one extra dimension to this differential update model. */
if (!vp89_rac_get(c)) {
d = vp89_rac_get_uint(c, 4) + 0;
} else if (!vp89_rac_get(c)) {
d = vp89_rac_get_uint(c, 4) + 16;
} else if (!vp89_rac_get(c)) {
d = vp89_rac_get_uint(c, 5) + 32;
} else {
d = vp89_rac_get_uint(c, 7);
if (d >= 65)
d = (d << 1) - 65 + vp89_rac_get(c);
d += 64;
av_assert2(d < FF_ARRAY_ELEMS(inv_map_table));
}
return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
}
static int read_colorspace_details(AVCodecContext *avctx)
{
static const enum AVColorSpace colorspaces[8] = {
AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M,
AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB,
};
VP9Context *s = avctx->priv_data;
int bits = avctx->profile <= 1 ? 0 : 1 + get_bits1(&s->gb); // 0:8, 1:10, 2:12
s->bpp_index = bits;
s->s.h.bpp = 8 + bits * 2;
s->bytesperpixel = (7 + s->s.h.bpp) >> 3;
avctx->colorspace = colorspaces[get_bits(&s->gb, 3)];
if (avctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1
static const enum AVPixelFormat pix_fmt_rgb[3] = {
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12
};
s->ss_h = s->ss_v = 0;
avctx->color_range = AVCOL_RANGE_JPEG;
s->pix_fmt = pix_fmt_rgb[bits];
if (avctx->profile & 1) {
if (get_bits1(&s->gb)) {
av_log(avctx, AV_LOG_ERROR, "Reserved bit set in RGB\n");
return AVERROR_INVALIDDATA;
}
} else {
av_log(avctx, AV_LOG_ERROR, "RGB not supported in profile %d\n",
avctx->profile);
return AVERROR_INVALIDDATA;
}
} else {
static const enum AVPixelFormat pix_fmt_for_ss[3][2 /* v */][2 /* h */] = {
{ { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P },
{ AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P } },
{ { AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10 },
{ AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV420P10 } },
{ { AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12 },
{ AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P12 } }
};
avctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
if (avctx->profile & 1) {
s->ss_h = get_bits1(&s->gb);
s->ss_v = get_bits1(&s->gb);
s->pix_fmt = pix_fmt_for_ss[bits][s->ss_v][s->ss_h];
if (s->pix_fmt == AV_PIX_FMT_YUV420P) {
av_log(avctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile %d\n",
avctx->profile);
return AVERROR_INVALIDDATA;
} else if (get_bits1(&s->gb)) {
av_log(avctx, AV_LOG_ERROR, "Profile %d color details reserved bit set\n",
avctx->profile);
return AVERROR_INVALIDDATA;
}
} else {
s->ss_h = s->ss_v = 1;
s->pix_fmt = pix_fmt_for_ss[bits][1][1];
}
}
return 0;
}
static int decode_frame_header(AVCodecContext *avctx,
const uint8_t *data, int size, int *ref)
{
VP9Context *s = avctx->priv_data;
int c, i, j, k, l, m, n, w, h, max, size2, ret, sharp;
int last_invisible;
const uint8_t *data2;
/* general header */
if ((ret = init_get_bits8(&s->gb, data, size)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
return ret;
}
if (get_bits(&s->gb, 2) != 0x2) { // frame marker
av_log(avctx, AV_LOG_ERROR, "Invalid frame marker\n");
return AVERROR_INVALIDDATA;
}
avctx->profile = get_bits1(&s->gb);
avctx->profile |= get_bits1(&s->gb) << 1;
if (avctx->profile == 3) avctx->profile += get_bits1(&s->gb);
if (avctx->profile > 3) {
av_log(avctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", avctx->profile);
return AVERROR_INVALIDDATA;
}
s->s.h.profile = avctx->profile;
if (get_bits1(&s->gb)) {
*ref = get_bits(&s->gb, 3);
return 0;
}
s->last_keyframe = s->s.h.keyframe;
s->s.h.keyframe = !get_bits1(&s->gb);
last_invisible = s->s.h.invisible;
s->s.h.invisible = !get_bits1(&s->gb);
s->s.h.errorres = get_bits1(&s->gb);
s->s.h.use_last_frame_mvs = !s->s.h.errorres && !last_invisible;
if (s->s.h.keyframe) {
if (get_bits(&s->gb, 24) != VP9_SYNCCODE) { // synccode
av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n");
return AVERROR_INVALIDDATA;
}
if ((ret = read_colorspace_details(avctx)) < 0)
return ret;
// for profile 1, here follows the subsampling bits
s->s.h.refreshrefmask = 0xff;
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
} else {
s->s.h.intraonly = s->s.h.invisible ? get_bits1(&s->gb) : 0;
s->s.h.resetctx = s->s.h.errorres ? 0 : get_bits(&s->gb, 2);
if (s->s.h.intraonly) {
if (get_bits(&s->gb, 24) != VP9_SYNCCODE) { // synccode
av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n");
return AVERROR_INVALIDDATA;
}
if (avctx->profile >= 1) {
if ((ret = read_colorspace_details(avctx)) < 0)
return ret;
} else {
s->ss_h = s->ss_v = 1;
s->s.h.bpp = 8;
s->bpp_index = 0;
s->bytesperpixel = 1;
s->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->colorspace = AVCOL_SPC_BT470BG;
avctx->color_range = AVCOL_RANGE_MPEG;
}
s->s.h.refreshrefmask = get_bits(&s->gb, 8);
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
} else {
s->s.h.refreshrefmask = get_bits(&s->gb, 8);
s->s.h.refidx[0] = get_bits(&s->gb, 3);
s->s.h.signbias[0] = get_bits1(&s->gb) && !s->s.h.errorres;
s->s.h.refidx[1] = get_bits(&s->gb, 3);
s->s.h.signbias[1] = get_bits1(&s->gb) && !s->s.h.errorres;
s->s.h.refidx[2] = get_bits(&s->gb, 3);
s->s.h.signbias[2] = get_bits1(&s->gb) && !s->s.h.errorres;
if (!s->s.refs[s->s.h.refidx[0]].f->buf[0] ||
!s->s.refs[s->s.h.refidx[1]].f->buf[0] ||
!s->s.refs[s->s.h.refidx[2]].f->buf[0]) {
av_log(avctx, AV_LOG_ERROR, "Not all references are available\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(&s->gb)) {
w = s->s.refs[s->s.h.refidx[0]].f->width;
h = s->s.refs[s->s.h.refidx[0]].f->height;
} else if (get_bits1(&s->gb)) {
w = s->s.refs[s->s.h.refidx[1]].f->width;
h = s->s.refs[s->s.h.refidx[1]].f->height;
} else if (get_bits1(&s->gb)) {
w = s->s.refs[s->s.h.refidx[2]].f->width;
h = s->s.refs[s->s.h.refidx[2]].f->height;
} else {
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
}
// Note that in this code, "CUR_FRAME" is actually before we
// have formally allocated a frame, and thus actually represents
// the _last_ frame
s->s.h.use_last_frame_mvs &= s->s.frames[CUR_FRAME].tf.f->width == w &&
s->s.frames[CUR_FRAME].tf.f->height == h;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
s->s.h.highprecisionmvs = get_bits1(&s->gb);
s->s.h.filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
get_bits(&s->gb, 2);
s->s.h.allowcompinter = s->s.h.signbias[0] != s->s.h.signbias[1] ||
s->s.h.signbias[0] != s->s.h.signbias[2];
if (s->s.h.allowcompinter) {
if (s->s.h.signbias[0] == s->s.h.signbias[1]) {
s->s.h.fixcompref = 2;
s->s.h.varcompref[0] = 0;
s->s.h.varcompref[1] = 1;
} else if (s->s.h.signbias[0] == s->s.h.signbias[2]) {
s->s.h.fixcompref = 1;
s->s.h.varcompref[0] = 0;
s->s.h.varcompref[1] = 2;
} else {
s->s.h.fixcompref = 0;
s->s.h.varcompref[0] = 1;
s->s.h.varcompref[1] = 2;
}
}
}
}
s->s.h.refreshctx = s->s.h.errorres ? 0 : get_bits1(&s->gb);
s->s.h.parallelmode = s->s.h.errorres ? 1 : get_bits1(&s->gb);
s->s.h.framectxid = c = get_bits(&s->gb, 2);
if (s->s.h.keyframe || s->s.h.intraonly)
s->s.h.framectxid = 0; // BUG: libvpx ignores this field in keyframes
/* loopfilter header data */
if (s->s.h.keyframe || s->s.h.errorres || s->s.h.intraonly) {
// reset loopfilter defaults
s->s.h.lf_delta.ref[0] = 1;
s->s.h.lf_delta.ref[1] = 0;
s->s.h.lf_delta.ref[2] = -1;
s->s.h.lf_delta.ref[3] = -1;
s->s.h.lf_delta.mode[0] = 0;
s->s.h.lf_delta.mode[1] = 0;
memset(s->s.h.segmentation.feat, 0, sizeof(s->s.h.segmentation.feat));
}
s->s.h.filter.level = get_bits(&s->gb, 6);
sharp = get_bits(&s->gb, 3);
// if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
// the old cache values since they are still valid
if (s->s.h.filter.sharpness != sharp) {
for (i = 1; i <= 63; i++) {
int limit = i;
if (sharp > 0) {
limit >>= (sharp + 3) >> 2;
limit = FFMIN(limit, 9 - sharp);
}
limit = FFMAX(limit, 1);
s->filter_lut.lim_lut[i] = limit;
s->filter_lut.mblim_lut[i] = 2 * (i + 2) + limit;
}
}
s->s.h.filter.sharpness = sharp;
if ((s->s.h.lf_delta.enabled = get_bits1(&s->gb))) {
if ((s->s.h.lf_delta.updated = get_bits1(&s->gb))) {
for (i = 0; i < 4; i++)
if (get_bits1(&s->gb))
s->s.h.lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
for (i = 0; i < 2; i++)
if (get_bits1(&s->gb))
s->s.h.lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
}
}
/* quantization header data */
s->s.h.yac_qi = get_bits(&s->gb, 8);
s->s.h.ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
s->s.h.uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
s->s.h.uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
s->s.h.lossless = s->s.h.yac_qi == 0 && s->s.h.ydc_qdelta == 0 &&
s->s.h.uvdc_qdelta == 0 && s->s.h.uvac_qdelta == 0;
if (s->s.h.lossless)
avctx->properties |= FF_CODEC_PROPERTY_LOSSLESS;
/* segmentation header info */
if ((s->s.h.segmentation.enabled = get_bits1(&s->gb))) {
if ((s->s.h.segmentation.update_map = get_bits1(&s->gb))) {
for (i = 0; i < 7; i++)
s->s.h.segmentation.prob[i] = get_bits1(&s->gb) ?
get_bits(&s->gb, 8) : 255;
if ((s->s.h.segmentation.temporal = get_bits1(&s->gb)))
for (i = 0; i < 3; i++)
s->s.h.segmentation.pred_prob[i] = get_bits1(&s->gb) ?
get_bits(&s->gb, 8) : 255;
}
if (get_bits1(&s->gb)) {
s->s.h.segmentation.absolute_vals = get_bits1(&s->gb);
for (i = 0; i < 8; i++) {
if ((s->s.h.segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
s->s.h.segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
if ((s->s.h.segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
s->s.h.segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
if ((s->s.h.segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
s->s.h.segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
s->s.h.segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
}
}
}
// set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
for (i = 0; i < (s->s.h.segmentation.enabled ? 8 : 1); i++) {
int qyac, qydc, quvac, quvdc, lflvl, sh;
if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].q_enabled) {
if (s->s.h.segmentation.absolute_vals)
qyac = av_clip_uintp2(s->s.h.segmentation.feat[i].q_val, 8);
else
qyac = av_clip_uintp2(s->s.h.yac_qi + s->s.h.segmentation.feat[i].q_val, 8);
} else {
qyac = s->s.h.yac_qi;
}
qydc = av_clip_uintp2(qyac + s->s.h.ydc_qdelta, 8);
quvdc = av_clip_uintp2(qyac + s->s.h.uvdc_qdelta, 8);
quvac = av_clip_uintp2(qyac + s->s.h.uvac_qdelta, 8);
qyac = av_clip_uintp2(qyac, 8);
s->s.h.segmentation.feat[i].qmul[0][0] = ff_vp9_dc_qlookup[s->bpp_index][qydc];
s->s.h.segmentation.feat[i].qmul[0][1] = ff_vp9_ac_qlookup[s->bpp_index][qyac];
s->s.h.segmentation.feat[i].qmul[1][0] = ff_vp9_dc_qlookup[s->bpp_index][quvdc];
s->s.h.segmentation.feat[i].qmul[1][1] = ff_vp9_ac_qlookup[s->bpp_index][quvac];
sh = s->s.h.filter.level >= 32;
if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].lf_enabled) {
if (s->s.h.segmentation.absolute_vals)
lflvl = av_clip_uintp2(s->s.h.segmentation.feat[i].lf_val, 6);
else
lflvl = av_clip_uintp2(s->s.h.filter.level + s->s.h.segmentation.feat[i].lf_val, 6);
} else {
lflvl = s->s.h.filter.level;
}
if (s->s.h.lf_delta.enabled) {
s->s.h.segmentation.feat[i].lflvl[0][0] =
s->s.h.segmentation.feat[i].lflvl[0][1] =
av_clip_uintp2(lflvl + (s->s.h.lf_delta.ref[0] * (1 << sh)), 6);
for (j = 1; j < 4; j++) {
s->s.h.segmentation.feat[i].lflvl[j][0] =
av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] +
s->s.h.lf_delta.mode[0]) * (1 << sh)), 6);
s->s.h.segmentation.feat[i].lflvl[j][1] =
av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] +
s->s.h.lf_delta.mode[1]) * (1 << sh)), 6);
}
} else {
memset(s->s.h.segmentation.feat[i].lflvl, lflvl,
sizeof(s->s.h.segmentation.feat[i].lflvl));
}
}
/* tiling info */
if ((ret = update_size(avctx, w, h)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n",
w, h, s->pix_fmt);
return ret;
}
for (s->s.h.tiling.log2_tile_cols = 0;
s->sb_cols > (64 << s->s.h.tiling.log2_tile_cols);
s->s.h.tiling.log2_tile_cols++) ;
for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
max = FFMAX(0, max - 1);
while (max > s->s.h.tiling.log2_tile_cols) {
if (get_bits1(&s->gb))
s->s.h.tiling.log2_tile_cols++;
else
break;
}
s->s.h.tiling.log2_tile_rows = decode012(&s->gb);
s->s.h.tiling.tile_rows = 1 << s->s.h.tiling.log2_tile_rows;
if (s->s.h.tiling.tile_cols != (1 << s->s.h.tiling.log2_tile_cols)) {
int n_range_coders;
VPXRangeCoder *rc;
if (s->td) {
for (i = 0; i < s->active_tile_cols; i++)
vp9_tile_data_free(&s->td[i]);
av_freep(&s->td);
}
s->s.h.tiling.tile_cols = 1 << s->s.h.tiling.log2_tile_cols;
s->active_tile_cols = avctx->active_thread_type == FF_THREAD_SLICE ?
s->s.h.tiling.tile_cols : 1;
vp9_alloc_entries(avctx, s->sb_rows);
if (avctx->active_thread_type == FF_THREAD_SLICE) {
n_range_coders = 4; // max_tile_rows
} else {
n_range_coders = s->s.h.tiling.tile_cols;
}
s->td = av_calloc(s->active_tile_cols, sizeof(VP9TileData) +
n_range_coders * sizeof(VPXRangeCoder));
if (!s->td)
return AVERROR(ENOMEM);
rc = (VPXRangeCoder *) &s->td[s->active_tile_cols];
for (i = 0; i < s->active_tile_cols; i++) {
s->td[i].s = s;
s->td[i].c_b = rc;
rc += n_range_coders;
}
}
/* check reference frames */
if (!s->s.h.keyframe && !s->s.h.intraonly) {
int valid_ref_frame = 0;
for (i = 0; i < 3; i++) {
AVFrame *ref = s->s.refs[s->s.h.refidx[i]].f;
int refw = ref->width, refh = ref->height;
if (ref->format != avctx->pix_fmt) {
av_log(avctx, AV_LOG_ERROR,
"Ref pixfmt (%s) did not match current frame (%s)",
av_get_pix_fmt_name(ref->format),
av_get_pix_fmt_name(avctx->pix_fmt));
return AVERROR_INVALIDDATA;
} else if (refw == w && refh == h) {
s->mvscale[i][0] = s->mvscale[i][1] = 0;
} else {
/* Check to make sure at least one of frames that */
/* this frame references has valid dimensions */
if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) {
av_log(avctx, AV_LOG_WARNING,
"Invalid ref frame dimensions %dx%d for frame size %dx%d\n",
refw, refh, w, h);
s->mvscale[i][0] = s->mvscale[i][1] = REF_INVALID_SCALE;
continue;
}
s->mvscale[i][0] = (refw << 14) / w;
s->mvscale[i][1] = (refh << 14) / h;
s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14;
s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14;
}
valid_ref_frame++;
}
if (!valid_ref_frame) {
av_log(avctx, AV_LOG_ERROR, "No valid reference frame is found, bitstream not supported\n");
return AVERROR_INVALIDDATA;
}
}
if (s->s.h.keyframe || s->s.h.errorres || (s->s.h.intraonly && s->s.h.resetctx == 3)) {
s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
s->prob_ctx[3].p = ff_vp9_default_probs;
memcpy(s->prob_ctx[0].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
memcpy(s->prob_ctx[1].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
memcpy(s->prob_ctx[2].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
memcpy(s->prob_ctx[3].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
} else if (s->s.h.intraonly && s->s.h.resetctx == 2) {
s->prob_ctx[c].p = ff_vp9_default_probs;
memcpy(s->prob_ctx[c].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
}
// next 16 bits is size of the rest of the header (arith-coded)
s->s.h.compressed_header_size = size2 = get_bits(&s->gb, 16);
s->s.h.uncompressed_header_size = (get_bits_count(&s->gb) + 7) / 8;
data2 = align_get_bits(&s->gb);
if (size2 > size - (data2 - data)) {
av_log(avctx, AV_LOG_ERROR, "Invalid compressed header size\n");
return AVERROR_INVALIDDATA;
}
ret = ff_vpx_init_range_decoder(&s->c, data2, size2);
if (ret < 0)
return ret;
if (vpx_rac_get_prob_branchy(&s->c, 128)) { // marker bit
av_log(avctx, AV_LOG_ERROR, "Marker bit was set\n");
return AVERROR_INVALIDDATA;
}
for (i = 0; i < s->active_tile_cols; i++) {
if (s->s.h.keyframe || s->s.h.intraonly) {
memset(s->td[i].counts.coef, 0, sizeof(s->td[0].counts.coef));
memset(s->td[i].counts.eob, 0, sizeof(s->td[0].counts.eob));
} else {
memset(&s->td[i].counts, 0, sizeof(s->td[0].counts));
}
s->td[i].nb_block_structure = 0;
}
/* FIXME is it faster to not copy here, but do it down in the fw updates
* as explicit copies if the fw update is missing (and skip the copy upon
* fw update)? */
s->prob.p = s->prob_ctx[c].p;
// txfm updates
if (s->s.h.lossless) {
s->s.h.txfmmode = TX_4X4;
} else {
s->s.h.txfmmode = vp89_rac_get_uint(&s->c, 2);
if (s->s.h.txfmmode == 3)
s->s.h.txfmmode += vp89_rac_get(&s->c);
if (s->s.h.txfmmode == TX_SWITCHABLE) {
for (i = 0; i < 2; i++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx16p[i][j] =
update_prob(&s->c, s->prob.p.tx16p[i][j]);
for (i = 0; i < 2; i++)
for (j = 0; j < 3; j++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx32p[i][j] =
update_prob(&s->c, s->prob.p.tx32p[i][j]);
}
}
// coef updates
for (i = 0; i < 4; i++) {
uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
if (vp89_rac_get(&s->c)) {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++) {
uint8_t *p = s->prob.coef[i][j][k][l][m];
uint8_t *r = ref[j][k][l][m];
if (m >= 3 && l == 0) // dc only has 3 pt
break;
for (n = 0; n < 3; n++) {
if (vpx_rac_get_prob_branchy(&s->c, 252))
p[n] = update_prob(&s->c, r[n]);
else
p[n] = r[n];
}
memcpy(&p[3], ff_vp9_model_pareto8[p[2]], 8);
}
} else {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++) {
uint8_t *p = s->prob.coef[i][j][k][l][m];
uint8_t *r = ref[j][k][l][m];
if (m > 3 && l == 0) // dc only has 3 pt
break;
memcpy(p, r, 3);
memcpy(&p[3], ff_vp9_model_pareto8[p[2]], 8);
}
}
if (s->s.h.txfmmode == i)
break;
}
// mode updates
for (i = 0; i < 3; i++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
if (!s->s.h.keyframe && !s->s.h.intraonly) {
for (i = 0; i < 7; i++)
for (j = 0; j < 3; j++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_mode[i][j] =
update_prob(&s->c, s->prob.p.mv_mode[i][j]);
if (s->s.h.filtermode == FILTER_SWITCHABLE)
for (i = 0; i < 4; i++)
for (j = 0; j < 2; j++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.filter[i][j] =
update_prob(&s->c, s->prob.p.filter[i][j]);
for (i = 0; i < 4; i++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
if (s->s.h.allowcompinter) {
s->s.h.comppredmode = vp89_rac_get(&s->c);
if (s->s.h.comppredmode)
s->s.h.comppredmode += vp89_rac_get(&s->c);
if (s->s.h.comppredmode == PRED_SWITCHABLE)
for (i = 0; i < 5; i++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.comp[i] =
update_prob(&s->c, s->prob.p.comp[i]);
} else {
s->s.h.comppredmode = PRED_SINGLEREF;
}
if (s->s.h.comppredmode != PRED_COMPREF) {
for (i = 0; i < 5; i++) {
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.single_ref[i][0] =
update_prob(&s->c, s->prob.p.single_ref[i][0]);
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.single_ref[i][1] =
update_prob(&s->c, s->prob.p.single_ref[i][1]);
}
}
if (s->s.h.comppredmode != PRED_SINGLEREF) {
for (i = 0; i < 5; i++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.comp_ref[i] =
update_prob(&s->c, s->prob.p.comp_ref[i]);
}
for (i = 0; i < 4; i++)
for (j = 0; j < 9; j++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.y_mode[i][j] =
update_prob(&s->c, s->prob.p.y_mode[i][j]);
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 3; k++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.partition[3 - i][j][k] =
update_prob(&s->c,
s->prob.p.partition[3 - i][j][k]);
// mv fields don't use the update_prob subexp model for some reason
for (i = 0; i < 3; i++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_joint[i] = (vp89_rac_get_uint(&s->c, 7) << 1) | 1;
for (i = 0; i < 2; i++) {
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].sign =
(vp89_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 10; j++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].classes[j] =
(vp89_rac_get_uint(&s->c, 7) << 1) | 1;
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0 =
(vp89_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 10; j++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].bits[j] =
(vp89_rac_get_uint(&s->c, 7) << 1) | 1;
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++)
for (k = 0; k < 3; k++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0_fp[j][k] =
(vp89_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 3; j++)
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].fp[j] =
(vp89_rac_get_uint(&s->c, 7) << 1) | 1;
}
if (s->s.h.highprecisionmvs) {
for (i = 0; i < 2; i++) {
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0_hp =
(vp89_rac_get_uint(&s->c, 7) << 1) | 1;
if (vpx_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].hp =
(vp89_rac_get_uint(&s->c, 7) << 1) | 1;
}
}
}
return (data2 - data) + size2;
}
static void decode_sb(VP9TileData *td, int row, int col, VP9Filter *lflvl,
ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
{
const VP9Context *s = td->s;
int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
(((td->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
const uint8_t *p = s->s.h.keyframe || s->s.h.intraonly ? ff_vp9_default_kf_partition_probs[bl][c] :
s->prob.p.partition[bl][c];
enum BlockPartition bp;
ptrdiff_t hbs = 4 >> bl;
AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
int bytesperpixel = s->bytesperpixel;
if (bl == BL_8X8) {
bp = vp89_rac_get_tree(td->c, ff_vp9_partition_tree, p);
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
} else if (col + hbs < s->cols) { // FIXME why not <=?
if (row + hbs < s->rows) { // FIXME why not <=?
bp = vp89_rac_get_tree(td->c, ff_vp9_partition_tree, p);
switch (bp) {
case PARTITION_NONE:
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
break;
case PARTITION_H:
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
ff_vp9_decode_block(td, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
break;
case PARTITION_V:
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
yoff += hbs * 8 * bytesperpixel;
uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
ff_vp9_decode_block(td, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
break;
case PARTITION_SPLIT:
decode_sb(td, row, col, lflvl, yoff, uvoff, bl + 1);
decode_sb(td, row, col + hbs, lflvl,
yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
decode_sb(td, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
decode_sb(td, row + hbs, col + hbs, lflvl,
yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
break;
default:
av_assert0(0);
}
} else if (vpx_rac_get_prob_branchy(td->c, p[1])) {
bp = PARTITION_SPLIT;
decode_sb(td, row, col, lflvl, yoff, uvoff, bl + 1);
decode_sb(td, row, col + hbs, lflvl,
yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
} else {
bp = PARTITION_H;
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
}
} else if (row + hbs < s->rows) { // FIXME why not <=?
if (vpx_rac_get_prob_branchy(td->c, p[2])) {
bp = PARTITION_SPLIT;
decode_sb(td, row, col, lflvl, yoff, uvoff, bl + 1);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
decode_sb(td, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
} else {
bp = PARTITION_V;
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
}
} else {
bp = PARTITION_SPLIT;
decode_sb(td, row, col, lflvl, yoff, uvoff, bl + 1);
}
td->counts.partition[bl][c][bp]++;
}
static void decode_sb_mem(VP9TileData *td, int row, int col, VP9Filter *lflvl,
ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
{
const VP9Context *s = td->s;
VP9Block *b = td->b;
ptrdiff_t hbs = 4 >> bl;
AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
int bytesperpixel = s->bytesperpixel;
if (bl == BL_8X8) {
av_assert2(b->bl == BL_8X8);
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
} else if (td->b->bl == bl) {
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
if (b->bp == PARTITION_H && row + hbs < s->rows) {
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
ff_vp9_decode_block(td, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
} else if (b->bp == PARTITION_V && col + hbs < s->cols) {
yoff += hbs * 8 * bytesperpixel;
uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
ff_vp9_decode_block(td, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
}
} else {
decode_sb_mem(td, row, col, lflvl, yoff, uvoff, bl + 1);
if (col + hbs < s->cols) { // FIXME why not <=?
if (row + hbs < s->rows) {
decode_sb_mem(td, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
decode_sb_mem(td, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
decode_sb_mem(td, row + hbs, col + hbs, lflvl,
yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
} else {
yoff += hbs * 8 * bytesperpixel;
uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
decode_sb_mem(td, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
}
} else if (row + hbs < s->rows) {
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
decode_sb_mem(td, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
}
}
}
static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
{
int sb_start = ( idx * n) >> log2_n;
int sb_end = ((idx + 1) * n) >> log2_n;
*start = FFMIN(sb_start, n) << 3;
*end = FFMIN(sb_end, n) << 3;
}
static void free_buffers(VP9Context *s)
{
int i;
av_freep(&s->intra_pred_data[0]);
for (i = 0; i < s->active_tile_cols; i++)
vp9_tile_data_free(&s->td[i]);
}
static av_cold int vp9_decode_free(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
int i;
for (i = 0; i < 3; i++) {
vp9_frame_unref(avctx, &s->s.frames[i]);
av_frame_free(&s->s.frames[i].tf.f);
}
av_buffer_pool_uninit(&s->frame_extradata_pool);
for (i = 0; i < 8; i++) {
ff_thread_release_ext_buffer(avctx, &s->s.refs[i]);
av_frame_free(&s->s.refs[i].f);
ff_thread_release_ext_buffer(avctx, &s->next_refs[i]);
av_frame_free(&s->next_refs[i].f);
}
free_buffers(s);
#if HAVE_THREADS
av_freep(&s->entries);
ff_pthread_free(s, vp9_context_offsets);
#endif
av_freep(&s->td);
return 0;
}
static int decode_tiles(AVCodecContext *avctx,
const uint8_t *data, int size)
{
VP9Context *s = avctx->priv_data;
VP9TileData *td = &s->td[0];
int row, col, tile_row, tile_col, ret;
int bytesperpixel;
int tile_row_start, tile_row_end, tile_col_start, tile_col_end;
AVFrame *f;
ptrdiff_t yoff, uvoff, ls_y, ls_uv;
f = s->s.frames[CUR_FRAME].tf.f;
ls_y = f->linesize[0];
ls_uv =f->linesize[1];
bytesperpixel = s->bytesperpixel;
yoff = uvoff = 0;
for (tile_row = 0; tile_row < s->s.h.tiling.tile_rows; tile_row++) {
set_tile_offset(&tile_row_start, &tile_row_end,
tile_row, s->s.h.tiling.log2_tile_rows, s->sb_rows);
for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
int64_t tile_size;
if (tile_col == s->s.h.tiling.tile_cols - 1 &&
tile_row == s->s.h.tiling.tile_rows - 1) {
tile_size = size;
} else {
tile_size = AV_RB32(data);
data += 4;
size -= 4;
}
if (tile_size > size)
return AVERROR_INVALIDDATA;
ret = ff_vpx_init_range_decoder(&td->c_b[tile_col], data, tile_size);
if (ret < 0)
return ret;
if (vpx_rac_get_prob_branchy(&td->c_b[tile_col], 128)) // marker bit
return AVERROR_INVALIDDATA;
data += tile_size;
size -= tile_size;
}
for (row = tile_row_start; row < tile_row_end;
row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
VP9Filter *lflvl_ptr = s->lflvl;
ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
set_tile_offset(&tile_col_start, &tile_col_end,
tile_col, s->s.h.tiling.log2_tile_cols, s->sb_cols);
td->tile_col_start = tile_col_start;
if (s->pass != 2) {
memset(td->left_partition_ctx, 0, 8);
memset(td->left_skip_ctx, 0, 8);
if (s->s.h.keyframe || s->s.h.intraonly) {
memset(td->left_mode_ctx, DC_PRED, 16);
} else {
memset(td->left_mode_ctx, NEARESTMV, 8);
}
memset(td->left_y_nnz_ctx, 0, 16);
memset(td->left_uv_nnz_ctx, 0, 32);
memset(td->left_segpred_ctx, 0, 8);
td->c = &td->c_b[tile_col];
}
for (col = tile_col_start;
col < tile_col_end;
col += 8, yoff2 += 64 * bytesperpixel,
uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
// FIXME integrate with lf code (i.e. zero after each
// use, similar to invtxfm coefficients, or similar)
if (s->pass != 1) {
memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
}
if (s->pass == 2) {
decode_sb_mem(td, row, col, lflvl_ptr,
yoff2, uvoff2, BL_64X64);
} else {
if (vpx_rac_is_end(td->c)) {
return AVERROR_INVALIDDATA;
}
decode_sb(td, row, col, lflvl_ptr,
yoff2, uvoff2, BL_64X64);
}
}
}
if (s->pass == 1)
continue;
// backup pre-loopfilter reconstruction data for intra
// prediction of next row of sb64s
if (row + 8 < s->rows) {
memcpy(s->intra_pred_data[0],
f->data[0] + yoff + 63 * ls_y,
8 * s->cols * bytesperpixel);
memcpy(s->intra_pred_data[1],
f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
8 * s->cols * bytesperpixel >> s->ss_h);
memcpy(s->intra_pred_data[2],
f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
8 * s->cols * bytesperpixel >> s->ss_h);
}
// loopfilter one row
if (s->s.h.filter.level) {
yoff2 = yoff;
uvoff2 = uvoff;
lflvl_ptr = s->lflvl;
for (col = 0; col < s->cols;
col += 8, yoff2 += 64 * bytesperpixel,
uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
ff_vp9_loopfilter_sb(avctx, lflvl_ptr, row, col,
yoff2, uvoff2);
}
}
// FIXME maybe we can make this more finegrained by running the
// loopfilter per-block instead of after each sbrow
// In fact that would also make intra pred left preparation easier?
ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, row >> 3, 0);
}
}
return 0;
}
#if HAVE_THREADS
static av_always_inline
int decode_tiles_mt(AVCodecContext *avctx, void *tdata, int jobnr,
int threadnr)
{
VP9Context *s = avctx->priv_data;
VP9TileData *td = &s->td[jobnr];
ptrdiff_t uvoff, yoff, ls_y, ls_uv;
int bytesperpixel = s->bytesperpixel, row, col, tile_row;
unsigned tile_cols_len;
int tile_row_start, tile_row_end, tile_col_start, tile_col_end;
VP9Filter *lflvl_ptr_base;
AVFrame *f;
f = s->s.frames[CUR_FRAME].tf.f;
ls_y = f->linesize[0];
ls_uv =f->linesize[1];
set_tile_offset(&tile_col_start, &tile_col_end,
jobnr, s->s.h.tiling.log2_tile_cols, s->sb_cols);
td->tile_col_start = tile_col_start;
uvoff = (64 * bytesperpixel >> s->ss_h)*(tile_col_start >> 3);
yoff = (64 * bytesperpixel)*(tile_col_start >> 3);
lflvl_ptr_base = s->lflvl+(tile_col_start >> 3);
for (tile_row = 0; tile_row < s->s.h.tiling.tile_rows; tile_row++) {
set_tile_offset(&tile_row_start, &tile_row_end,
tile_row, s->s.h.tiling.log2_tile_rows, s->sb_rows);
td->c = &td->c_b[tile_row];
for (row = tile_row_start; row < tile_row_end;
row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
VP9Filter *lflvl_ptr = lflvl_ptr_base+s->sb_cols*(row >> 3);
memset(td->left_partition_ctx, 0, 8);
memset(td->left_skip_ctx, 0, 8);
if (s->s.h.keyframe || s->s.h.intraonly) {
memset(td->left_mode_ctx, DC_PRED, 16);
} else {
memset(td->left_mode_ctx, NEARESTMV, 8);
}
memset(td->left_y_nnz_ctx, 0, 16);
memset(td->left_uv_nnz_ctx, 0, 32);
memset(td->left_segpred_ctx, 0, 8);
for (col = tile_col_start;
col < tile_col_end;
col += 8, yoff2 += 64 * bytesperpixel,
uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
// FIXME integrate with lf code (i.e. zero after each
// use, similar to invtxfm coefficients, or similar)
memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
decode_sb(td, row, col, lflvl_ptr,
yoff2, uvoff2, BL_64X64);
}
// backup pre-loopfilter reconstruction data for intra
// prediction of next row of sb64s
tile_cols_len = tile_col_end - tile_col_start;
if (row + 8 < s->rows) {
memcpy(s->intra_pred_data[0] + (tile_col_start * 8 * bytesperpixel),
f->data[0] + yoff + 63 * ls_y,
8 * tile_cols_len * bytesperpixel);
memcpy(s->intra_pred_data[1] + (tile_col_start * 8 * bytesperpixel >> s->ss_h),
f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
8 * tile_cols_len * bytesperpixel >> s->ss_h);
memcpy(s->intra_pred_data[2] + (tile_col_start * 8 * bytesperpixel >> s->ss_h),
f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
8 * tile_cols_len * bytesperpixel >> s->ss_h);
}
vp9_report_tile_progress(s, row >> 3, 1);
}
}
return 0;
}
static av_always_inline
int loopfilter_proc(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
ptrdiff_t uvoff, yoff, ls_y, ls_uv;
VP9Filter *lflvl_ptr;
int bytesperpixel = s->bytesperpixel, col, i;
AVFrame *f;
f = s->s.frames[CUR_FRAME].tf.f;
ls_y = f->linesize[0];
ls_uv =f->linesize[1];
for (i = 0; i < s->sb_rows; i++) {
vp9_await_tile_progress(s, i, s->s.h.tiling.tile_cols);
if (s->s.h.filter.level) {
yoff = (ls_y * 64)*i;
uvoff = (ls_uv * 64 >> s->ss_v)*i;
lflvl_ptr = s->lflvl+s->sb_cols*i;
for (col = 0; col < s->cols;
col += 8, yoff += 64 * bytesperpixel,
uvoff += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
ff_vp9_loopfilter_sb(avctx, lflvl_ptr, i << 3, col,
yoff, uvoff);
}
}
}
return 0;
}
#endif
static int vp9_export_enc_params(VP9Context *s, VP9Frame *frame)
{
AVVideoEncParams *par;
unsigned int tile, nb_blocks = 0;
if (s->s.h.segmentation.enabled) {
for (tile = 0; tile < s->active_tile_cols; tile++)
nb_blocks += s->td[tile].nb_block_structure;
}
par = av_video_enc_params_create_side_data(frame->tf.f,
AV_VIDEO_ENC_PARAMS_VP9, nb_blocks);
if (!par)
return AVERROR(ENOMEM);
par->qp = s->s.h.yac_qi;
par->delta_qp[0][0] = s->s.h.ydc_qdelta;
par->delta_qp[1][0] = s->s.h.uvdc_qdelta;
par->delta_qp[2][0] = s->s.h.uvdc_qdelta;
par->delta_qp[1][1] = s->s.h.uvac_qdelta;
par->delta_qp[2][1] = s->s.h.uvac_qdelta;
if (nb_blocks) {
unsigned int block = 0;
unsigned int tile, block_tile;
for (tile = 0; tile < s->active_tile_cols; tile++) {
VP9TileData *td = &s->td[tile];
for (block_tile = 0; block_tile < td->nb_block_structure; block_tile++) {
AVVideoBlockParams *b = av_video_enc_params_block(par, block++);
unsigned int row = td->block_structure[block_tile].row;
unsigned int col = td->block_structure[block_tile].col;
uint8_t seg_id = frame->segmentation_map[row * 8 * s->sb_cols + col];
b->src_x = col * 8;
b->src_y = row * 8;
b->w = 1 << (3 + td->block_structure[block_tile].block_size_idx_x);
b->h = 1 << (3 + td->block_structure[block_tile].block_size_idx_y);
if (s->s.h.segmentation.feat[seg_id].q_enabled) {
b->delta_qp = s->s.h.segmentation.feat[seg_id].q_val;
if (s->s.h.segmentation.absolute_vals)
b->delta_qp -= par->qp;
}
}
}
}
return 0;
}
static int vp9_decode_frame(AVCodecContext *avctx, AVFrame *frame,
int *got_frame, AVPacket *pkt)
{
const uint8_t *data = pkt->data;
int size = pkt->size;
VP9Context *s = avctx->priv_data;
int ret, i, j, ref;
int retain_segmap_ref = s->s.frames[REF_FRAME_SEGMAP].segmentation_map &&
(!s->s.h.segmentation.enabled || !s->s.h.segmentation.update_map);
AVFrame *f;
if ((ret = decode_frame_header(avctx, data, size, &ref)) < 0) {
return ret;
} else if (ret == 0) {
if (!s->s.refs[ref].f->buf[0]) {
av_log(avctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
return AVERROR_INVALIDDATA;
}
if ((ret = av_frame_ref(frame, s->s.refs[ref].f)) < 0)
return ret;
frame->pts = pkt->pts;
frame->pkt_dts = pkt->dts;
for (i = 0; i < 8; i++) {
if (s->next_refs[i].f->buf[0])
ff_thread_release_ext_buffer(avctx, &s->next_refs[i]);
if (s->s.refs[i].f->buf[0] &&
(ret = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i])) < 0)
return ret;
}
*got_frame = 1;
return pkt->size;
}
data += ret;
size -= ret;
if (!retain_segmap_ref || s->s.h.keyframe || s->s.h.intraonly) {
if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0])
vp9_frame_unref(avctx, &s->s.frames[REF_FRAME_SEGMAP]);
if (!s->s.h.keyframe && !s->s.h.intraonly && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] &&
(ret = vp9_frame_ref(avctx, &s->s.frames[REF_FRAME_SEGMAP], &s->s.frames[CUR_FRAME])) < 0)
return ret;
}
if (s->s.frames[REF_FRAME_MVPAIR].tf.f->buf[0])
vp9_frame_unref(avctx, &s->s.frames[REF_FRAME_MVPAIR]);
if (!s->s.h.intraonly && !s->s.h.keyframe && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] &&
(ret = vp9_frame_ref(avctx, &s->s.frames[REF_FRAME_MVPAIR], &s->s.frames[CUR_FRAME])) < 0)
return ret;
if (s->s.frames[CUR_FRAME].tf.f->buf[0])
vp9_frame_unref(avctx, &s->s.frames[CUR_FRAME]);
if ((ret = vp9_frame_alloc(avctx, &s->s.frames[CUR_FRAME])) < 0)
return ret;
f = s->s.frames[CUR_FRAME].tf.f;
if (s->s.h.keyframe)
f->flags |= AV_FRAME_FLAG_KEY;
else
f->flags &= ~AV_FRAME_FLAG_KEY;
f->pict_type = (s->s.h.keyframe || s->s.h.intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0] &&
(s->s.frames[REF_FRAME_MVPAIR].tf.f->width != s->s.frames[CUR_FRAME].tf.f->width ||
s->s.frames[REF_FRAME_MVPAIR].tf.f->height != s->s.frames[CUR_FRAME].tf.f->height)) {
vp9_frame_unref(avctx, &s->s.frames[REF_FRAME_SEGMAP]);
}
// ref frame setup
for (i = 0; i < 8; i++) {
if (s->next_refs[i].f->buf[0])
ff_thread_release_ext_buffer(avctx, &s->next_refs[i]);
if (s->s.h.refreshrefmask & (1 << i)) {
ret = ff_thread_ref_frame(&s->next_refs[i], &s->s.frames[CUR_FRAME].tf);
} else if (s->s.refs[i].f->buf[0]) {
ret = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i]);
}
if (ret < 0)
return ret;
}
if (avctx->hwaccel) {
ret = avctx->hwaccel->start_frame(avctx, NULL, 0);
if (ret < 0)
return ret;
ret = avctx->hwaccel->decode_slice(avctx, pkt->data, pkt->size);
if (ret < 0)
return ret;
ret = avctx->hwaccel->end_frame(avctx);
if (ret < 0)
return ret;
goto finish;
}
// main tile decode loop
memset(s->above_partition_ctx, 0, s->cols);
memset(s->above_skip_ctx, 0, s->cols);
if (s->s.h.keyframe || s->s.h.intraonly) {
memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
} else {
memset(s->above_mode_ctx, NEARESTMV, s->cols);
}
memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h);
memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h);
memset(s->above_segpred_ctx, 0, s->cols);
s->pass = s->s.frames[CUR_FRAME].uses_2pass =
avctx->active_thread_type == FF_THREAD_FRAME && s->s.h.refreshctx && !s->s.h.parallelmode;
if ((ret = update_block_buffers(avctx)) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Failed to allocate block buffers\n");
return ret;
}
if (s->s.h.refreshctx && s->s.h.parallelmode) {
int j, k, l, m;
for (i = 0; i < 4; i++) {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++)
memcpy(s->prob_ctx[s->s.h.framectxid].coef[i][j][k][l][m],
s->prob.coef[i][j][k][l][m], 3);
if (s->s.h.txfmmode == i)
break;
}
s->prob_ctx[s->s.h.framectxid].p = s->prob.p;
ff_thread_finish_setup(avctx);
} else if (!s->s.h.refreshctx) {
ff_thread_finish_setup(avctx);
}
#if HAVE_THREADS
if (avctx->active_thread_type & FF_THREAD_SLICE) {
for (i = 0; i < s->sb_rows; i++)
atomic_store(&s->entries[i], 0);
}
#endif
do {
for (i = 0; i < s->active_tile_cols; i++) {
s->td[i].b = s->td[i].b_base;
s->td[i].block = s->td[i].block_base;
s->td[i].uvblock[0] = s->td[i].uvblock_base[0];
s->td[i].uvblock[1] = s->td[i].uvblock_base[1];
s->td[i].eob = s->td[i].eob_base;
s->td[i].uveob[0] = s->td[i].uveob_base[0];
s->td[i].uveob[1] = s->td[i].uveob_base[1];
s->td[i].error_info = 0;
}
#if HAVE_THREADS
if (avctx->active_thread_type == FF_THREAD_SLICE) {
int tile_row, tile_col;
av_assert1(!s->pass);
for (tile_row = 0; tile_row < s->s.h.tiling.tile_rows; tile_row++) {
for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
int64_t tile_size;
if (tile_col == s->s.h.tiling.tile_cols - 1 &&
tile_row == s->s.h.tiling.tile_rows - 1) {
tile_size = size;
} else {
tile_size = AV_RB32(data);
data += 4;
size -= 4;
}
if (tile_size > size)
return AVERROR_INVALIDDATA;
ret = ff_vpx_init_range_decoder(&s->td[tile_col].c_b[tile_row], data, tile_size);
if (ret < 0)
return ret;
if (vpx_rac_get_prob_branchy(&s->td[tile_col].c_b[tile_row], 128)) // marker bit
return AVERROR_INVALIDDATA;
data += tile_size;
size -= tile_size;
}
}
ff_slice_thread_execute_with_mainfunc(avctx, decode_tiles_mt, loopfilter_proc, s->td, NULL, s->s.h.tiling.tile_cols);
} else
#endif
{
ret = decode_tiles(avctx, data, size);
if (ret < 0) {
ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
return ret;
}
}
// Sum all counts fields into td[0].counts for tile threading
if (avctx->active_thread_type == FF_THREAD_SLICE)
for (i = 1; i < s->s.h.tiling.tile_cols; i++)
for (j = 0; j < sizeof(s->td[i].counts) / sizeof(unsigned); j++)
((unsigned *)&s->td[0].counts)[j] += ((unsigned *)&s->td[i].counts)[j];
if (s->pass < 2 && s->s.h.refreshctx && !s->s.h.parallelmode) {
ff_vp9_adapt_probs(s);
ff_thread_finish_setup(avctx);
}
} while (s->pass++ == 1);
ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
if (s->td->error_info < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to decode tile data\n");
s->td->error_info = 0;
return AVERROR_INVALIDDATA;
}
if (avctx->export_side_data & AV_CODEC_EXPORT_DATA_VIDEO_ENC_PARAMS) {
ret = vp9_export_enc_params(s, &s->s.frames[CUR_FRAME]);
if (ret < 0)
return ret;
}
finish:
// ref frame setup
for (i = 0; i < 8; i++) {
if (s->s.refs[i].f->buf[0])
ff_thread_release_ext_buffer(avctx, &s->s.refs[i]);
if (s->next_refs[i].f->buf[0] &&
(ret = ff_thread_ref_frame(&s->s.refs[i], &s->next_refs[i])) < 0)
return ret;
}
if (!s->s.h.invisible) {
if ((ret = av_frame_ref(frame, s->s.frames[CUR_FRAME].tf.f)) < 0)
return ret;
*got_frame = 1;
}
return pkt->size;
}
static void vp9_decode_flush(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
int i;
for (i = 0; i < 3; i++)
vp9_frame_unref(avctx, &s->s.frames[i]);
for (i = 0; i < 8; i++)
ff_thread_release_ext_buffer(avctx, &s->s.refs[i]);
if (avctx->hwaccel && avctx->hwaccel->flush)
avctx->hwaccel->flush(avctx);
}
static av_cold int vp9_decode_init(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
int ret;
s->last_bpp = 0;
s->s.h.filter.sharpness = -1;
#if HAVE_THREADS
if (avctx->active_thread_type & FF_THREAD_SLICE) {
ret = ff_pthread_init(s, vp9_context_offsets);
if (ret < 0)
return ret;
}
#endif
for (int i = 0; i < 3; i++) {
s->s.frames[i].tf.f = av_frame_alloc();
if (!s->s.frames[i].tf.f)
return AVERROR(ENOMEM);
}
for (int i = 0; i < 8; i++) {
s->s.refs[i].f = av_frame_alloc();
s->next_refs[i].f = av_frame_alloc();
if (!s->s.refs[i].f || !s->next_refs[i].f)
return AVERROR(ENOMEM);
}
return 0;
}
#if HAVE_THREADS
static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
int i, ret;
VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
for (i = 0; i < 3; i++) {
if (s->s.frames[i].tf.f->buf[0])
vp9_frame_unref(dst, &s->s.frames[i]);
if (ssrc->s.frames[i].tf.f->buf[0]) {
if ((ret = vp9_frame_ref(dst, &s->s.frames[i], &ssrc->s.frames[i])) < 0)
return ret;
}
}
for (i = 0; i < 8; i++) {
if (s->s.refs[i].f->buf[0])
ff_thread_release_ext_buffer(dst, &s->s.refs[i]);
if (ssrc->next_refs[i].f->buf[0]) {
if ((ret = ff_thread_ref_frame(&s->s.refs[i], &ssrc->next_refs[i])) < 0)
return ret;
}
}
s->s.h.invisible = ssrc->s.h.invisible;
s->s.h.keyframe = ssrc->s.h.keyframe;
s->s.h.intraonly = ssrc->s.h.intraonly;
s->ss_v = ssrc->ss_v;
s->ss_h = ssrc->ss_h;
s->s.h.segmentation.enabled = ssrc->s.h.segmentation.enabled;
s->s.h.segmentation.update_map = ssrc->s.h.segmentation.update_map;
s->s.h.segmentation.absolute_vals = ssrc->s.h.segmentation.absolute_vals;
s->bytesperpixel = ssrc->bytesperpixel;
s->gf_fmt = ssrc->gf_fmt;
s->w = ssrc->w;
s->h = ssrc->h;
s->s.h.bpp = ssrc->s.h.bpp;
s->bpp_index = ssrc->bpp_index;
s->pix_fmt = ssrc->pix_fmt;
memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
memcpy(&s->s.h.lf_delta, &ssrc->s.h.lf_delta, sizeof(s->s.h.lf_delta));
memcpy(&s->s.h.segmentation.feat, &ssrc->s.h.segmentation.feat,
sizeof(s->s.h.segmentation.feat));
return 0;
}
#endif
const FFCodec ff_vp9_decoder = {
.p.name = "vp9",
CODEC_LONG_NAME("Google VP9"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_VP9,
.priv_data_size = sizeof(VP9Context),
.init = vp9_decode_init,
.close = vp9_decode_free,
FF_CODEC_DECODE_CB(vp9_decode_frame),
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP |
FF_CODEC_CAP_SLICE_THREAD_HAS_MF |
FF_CODEC_CAP_ALLOCATE_PROGRESS,
.flush = vp9_decode_flush,
UPDATE_THREAD_CONTEXT(vp9_decode_update_thread_context),
.p.profiles = NULL_IF_CONFIG_SMALL(ff_vp9_profiles),
.bsfs = "vp9_superframe_split",
.hw_configs = (const AVCodecHWConfigInternal *const []) {
#if CONFIG_VP9_DXVA2_HWACCEL
HWACCEL_DXVA2(vp9),
#endif
#if CONFIG_VP9_D3D11VA_HWACCEL
HWACCEL_D3D11VA(vp9),
#endif
#if CONFIG_VP9_D3D11VA2_HWACCEL
HWACCEL_D3D11VA2(vp9),
#endif
#if CONFIG_VP9_NVDEC_HWACCEL
HWACCEL_NVDEC(vp9),
#endif
#if CONFIG_VP9_VAAPI_HWACCEL
HWACCEL_VAAPI(vp9),
#endif
#if CONFIG_VP9_VDPAU_HWACCEL
HWACCEL_VDPAU(vp9),
#endif
#if CONFIG_VP9_VIDEOTOOLBOX_HWACCEL
HWACCEL_VIDEOTOOLBOX(vp9),
#endif
NULL
},
};