ffmpeg/libavcodec/magicyuvenc.c

664 lines
22 KiB
C

/*
* MagicYUV encoder
* Copyright (c) 2017 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <string.h>
#include "libavutil/cpu.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/qsort.h"
#include "avcodec.h"
#include "bytestream.h"
#include "codec_internal.h"
#include "encode.h"
#include "put_bits.h"
#include "thread.h"
#include "lossless_videoencdsp.h"
#define MAGICYUV_EXTRADATA_SIZE 32
typedef enum Prediction {
LEFT = 1,
GRADIENT,
MEDIAN,
} Prediction;
typedef struct HuffEntry {
uint8_t len;
uint32_t code;
} HuffEntry;
typedef struct PTable {
int value; ///< input value
int64_t prob; ///< number of occurences of this value in input
} PTable;
typedef struct MagicYUVContext {
const AVClass *class;
int frame_pred;
PutBitContext pb;
int planes;
uint8_t format;
int slice_height;
int nb_slices;
int correlate;
int hshift[4];
int vshift[4];
uint8_t **slices;
uint8_t **bitslices;
unsigned bitslice_size;
unsigned *slice_pos;
unsigned *slice_size;
unsigned tables_size;
PTable *counts;
uint8_t *decorrelate_buf[2];
HuffEntry he[4][256];
LLVidEncDSPContext llvidencdsp;
void (*predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst,
ptrdiff_t stride, int width, int height);
} MagicYUVContext;
static void left_predict(MagicYUVContext *s,
const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
int width, int height)
{
uint8_t prev = 0;
int i, j;
for (i = 0; i < width; i++) {
dst[i] = src[i] - prev;
prev = src[i];
}
dst += width;
src += stride;
for (j = 1; j < height; j++) {
prev = src[-stride];
for (i = 0; i < width; i++) {
dst[i] = src[i] - prev;
prev = src[i];
}
dst += width;
src += stride;
}
}
static void gradient_predict(MagicYUVContext *s,
const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
int width, int height)
{
int left = 0, top, lefttop;
int i, j;
for (i = 0; i < width; i++) {
dst[i] = src[i] - left;
left = src[i];
}
dst += width;
src += stride;
for (j = 1; j < height; j++) {
top = src[-stride];
left = src[0] - top;
dst[0] = left;
for (i = 1; i < width; i++) {
top = src[i - stride];
lefttop = src[i - (stride + 1)];
left = src[i-1];
dst[i] = (src[i] - top) - left + lefttop;
}
dst += width;
src += stride;
}
}
static void median_predict(MagicYUVContext *s,
const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
int width, int height)
{
int left = 0, lefttop;
int i, j;
for (i = 0; i < width; i++) {
dst[i] = src[i] - left;
left = src[i];
}
dst += width;
src += stride;
for (j = 1; j < height; j++) {
left = lefttop = src[-stride];
s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop);
dst += width;
src += stride;
}
}
static av_cold int magy_encode_init(AVCodecContext *avctx)
{
MagicYUVContext *s = avctx->priv_data;
PutByteContext pb;
switch (avctx->pix_fmt) {
case AV_PIX_FMT_GBRP:
avctx->codec_tag = MKTAG('M', '8', 'R', 'G');
s->correlate = 1;
s->format = 0x65;
break;
case AV_PIX_FMT_GBRAP:
avctx->codec_tag = MKTAG('M', '8', 'R', 'A');
s->correlate = 1;
s->format = 0x66;
break;
case AV_PIX_FMT_YUV420P:
avctx->codec_tag = MKTAG('M', '8', 'Y', '0');
s->hshift[1] =
s->vshift[1] =
s->hshift[2] =
s->vshift[2] = 1;
s->format = 0x69;
break;
case AV_PIX_FMT_YUV422P:
avctx->codec_tag = MKTAG('M', '8', 'Y', '2');
s->hshift[1] =
s->hshift[2] = 1;
s->format = 0x68;
break;
case AV_PIX_FMT_YUV444P:
avctx->codec_tag = MKTAG('M', '8', 'Y', '4');
s->format = 0x67;
break;
case AV_PIX_FMT_YUVA444P:
avctx->codec_tag = MKTAG('M', '8', 'Y', 'A');
s->format = 0x6a;
break;
case AV_PIX_FMT_GRAY8:
avctx->codec_tag = MKTAG('M', '8', 'G', '0');
s->format = 0x6b;
break;
}
if (s->correlate) {
s->decorrelate_buf[0] = av_calloc(2U * avctx->height, FFALIGN(avctx->width, 16));
if (!s->decorrelate_buf[0])
return AVERROR(ENOMEM);
s->decorrelate_buf[1] = s->decorrelate_buf[0] + avctx->height * FFALIGN(avctx->width, 16);
}
ff_llvidencdsp_init(&s->llvidencdsp);
s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
s->nb_slices = (avctx->slices <= 0) ? av_cpu_count() : avctx->slices;
s->nb_slices = FFMIN(s->nb_slices, avctx->height >> s->vshift[1]);
s->nb_slices = FFMAX(1, s->nb_slices);
s->slice_height = FFALIGN((avctx->height + s->nb_slices - 1) / s->nb_slices, 1 << s->vshift[1]);
s->slice_pos = av_calloc(s->nb_slices * s->planes, sizeof(*s->slice_pos));
s->slice_size = av_calloc(s->nb_slices * s->planes, sizeof(*s->slice_size));
s->slices = av_calloc(s->nb_slices * s->planes, sizeof(*s->slices));
s->bitslices = av_calloc(s->nb_slices * s->planes, sizeof(*s->bitslices));
s->counts = av_calloc(s->nb_slices * s->planes * 256, sizeof(*s->counts));
if (!s->slices || !s->slice_pos || !s->counts || !s->slice_size)
return AVERROR(ENOMEM);
s->bitslice_size = avctx->width * (s->slice_height + 2) + AV_INPUT_BUFFER_PADDING_SIZE;
for (int n = 0; n < s->nb_slices; n++) {
for (int i = 0; i < s->planes; i++) {
s->bitslices[n * s->planes + i] = av_malloc(s->bitslice_size);
s->slices[n * s->planes + i] = av_malloc(avctx->width * (s->slice_height + 2) +
AV_INPUT_BUFFER_PADDING_SIZE);
if (!s->slices[n * s->planes + i] || !s->bitslices[n * s->planes + i]) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n");
return AVERROR(ENOMEM);
}
}
}
switch (s->frame_pred) {
case LEFT: s->predict = left_predict; break;
case GRADIENT: s->predict = gradient_predict; break;
case MEDIAN: s->predict = median_predict; break;
}
avctx->extradata_size = MAGICYUV_EXTRADATA_SIZE;
avctx->extradata = av_mallocz(avctx->extradata_size +
AV_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata) {
av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
return AVERROR(ENOMEM);
}
bytestream2_init_writer(&pb, avctx->extradata, MAGICYUV_EXTRADATA_SIZE);
bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
bytestream2_put_le32(&pb, 32);
bytestream2_put_byte(&pb, 7);
bytestream2_put_byte(&pb, s->format);
bytestream2_put_byte(&pb, 12);
bytestream2_put_byte(&pb, 0);
bytestream2_put_byte(&pb, 0);
bytestream2_put_byte(&pb, 0);
bytestream2_put_byte(&pb, 32);
bytestream2_put_byte(&pb, 0);
bytestream2_put_le32(&pb, avctx->width);
bytestream2_put_le32(&pb, avctx->height);
bytestream2_put_le32(&pb, avctx->width);
bytestream2_put_le32(&pb, avctx->height);
return 0;
}
static void calculate_codes(HuffEntry *he, uint16_t codes_count[33])
{
for (unsigned i = 32, nb_codes = 0; i > 0; i--) {
uint16_t curr = codes_count[i]; // # of leafs of length i
codes_count[i] = nb_codes / 2; // # of non-leaf nodes on level i
nb_codes = codes_count[i] + curr; // # of nodes on level i
}
for (unsigned i = 0; i < 256; i++) {
he[i].code = codes_count[he[i].len];
codes_count[he[i].len]++;
}
}
static void count_usage(const uint8_t *src, int width,
int height, PTable *counts)
{
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++)
counts[src[i]].prob++;
src += width;
}
}
typedef struct PackageMergerList {
int nitems; ///< number of items in the list and probability ex. 4
int item_idx[515]; ///< index range for each item in items 0, 2, 5, 9, 13
int probability[514]; ///< probability of each item 3, 8, 18, 46
int items[257 * 16]; ///< chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D, D, E
} PackageMergerList;
static int compare_by_prob(const void *a, const void *b)
{
const PTable *a2 = a;
const PTable *b2 = b;
return a2->prob - b2->prob;
}
static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts,
uint16_t codes_counts[33],
int size, int max_length)
{
PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
int times, i, j, k;
int nbits[257] = {0};
int min;
av_assert0(max_length > 0);
to->nitems = 0;
from->nitems = 0;
to->item_idx[0] = 0;
from->item_idx[0] = 0;
AV_QSORT(prob_table, size, PTable, compare_by_prob);
for (times = 0; times <= max_length; times++) {
to->nitems = 0;
to->item_idx[0] = 0;
j = 0;
k = 0;
if (times < max_length) {
i = 0;
}
while (i < size || j + 1 < from->nitems) {
to->nitems++;
to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
if (i < size &&
(j + 1 >= from->nitems ||
prob_table[i].prob <
from->probability[j] + from->probability[j + 1])) {
to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
to->probability[to->nitems - 1] = prob_table[i].prob;
i++;
} else {
for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
to->items[to->item_idx[to->nitems]++] = from->items[k];
}
to->probability[to->nitems - 1] =
from->probability[j] + from->probability[j + 1];
j += 2;
}
}
temp = to;
to = from;
from = temp;
}
min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
for (i = 0; i < from->item_idx[min]; i++) {
nbits[from->items[i]]++;
}
for (i = 0; i < size; i++) {
distincts[i].len = nbits[i];
codes_counts[nbits[i]]++;
}
}
static int count_plane_slice(AVCodecContext *avctx, int n, int plane)
{
MagicYUVContext *s = avctx->priv_data;
const uint8_t *dst = s->slices[n * s->planes + plane];
PTable *counts = s->counts + 256 * (n * s->planes + plane);
memset(counts, 0, sizeof(*counts) * 256);
count_usage(dst, AV_CEIL_RSHIFT(avctx->width, s->hshift[plane]),
AV_CEIL_RSHIFT(s->slice_height, s->vshift[plane]), counts);
return 0;
}
static int encode_table(AVCodecContext *avctx,
PutBitContext *pb, HuffEntry *he, int plane)
{
MagicYUVContext *s = avctx->priv_data;
PTable counts[256] = { {0} };
uint16_t codes_counts[33] = { 0 };
for (int n = 0; n < s->nb_slices; n++) {
PTable *slice_counts = s->counts + 256 * (n * s->planes + plane);
for (int i = 0; i < 256; i++)
counts[i].prob = slice_counts[i].prob;
}
for (int i = 0; i < 256; i++) {
counts[i].prob++;
counts[i].value = i;
}
magy_huffman_compute_bits(counts, he, codes_counts, 256, 12);
calculate_codes(he, codes_counts);
for (int i = 0; i < 256; i++) {
put_bits(pb, 1, 0);
put_bits(pb, 7, he[i].len);
}
return 0;
}
static int encode_plane_slice(uint8_t *src, uint8_t *dst, int dst_size,
int width, int height, HuffEntry *he, int prediction)
{
PutBitContext pb;
int i, j;
int count;
init_put_bits(&pb, dst, dst_size);
put_bits(&pb, 8, 0);
put_bits(&pb, 8, prediction);
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
const int idx = src[i];
put_bits(&pb, he[idx].len, he[idx].code);
}
src += width;
}
count = put_bits_count(&pb) & 0x1F;
if (count)
put_bits(&pb, 32 - count, 0);
flush_put_bits(&pb);
return put_bytes_output(&pb);
}
static int encode_slice(AVCodecContext *avctx, void *tdata,
int n, int threadnr)
{
MagicYUVContext *s = avctx->priv_data;
const int slice_height = s->slice_height;
const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
PutByteContext pb;
for (int i = 0; i < s->planes; i++) {
bytestream2_init_writer(&pb, s->bitslices[n + s->planes + i],
s->bitslice_size);
s->slice_size[n * s->planes + i] =
encode_plane_slice(s->slices[n * s->planes + i],
s->bitslices[n * s->planes + i],
bytestream2_get_bytes_left_p(&pb),
AV_CEIL_RSHIFT(avctx->width, s->hshift[i]),
AV_CEIL_RSHIFT(height, s->vshift[i]),
s->he[i], s->frame_pred);
}
return 0;
}
static int predict_slice(AVCodecContext *avctx, void *tdata,
int n, int threadnr)
{
const int aligned_width = FFALIGN(avctx->width, 16);
MagicYUVContext *s = avctx->priv_data;
const int slice_height = s->slice_height;
const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
const int width = avctx->width;
AVFrame *frame = tdata;
if (s->correlate) {
uint8_t *decorrelated[2] = { s->decorrelate_buf[0] + n * slice_height * aligned_width,
s->decorrelate_buf[1] + n * slice_height * aligned_width };
const int decorrelate_linesize = aligned_width;
const uint8_t *const data[4] = { decorrelated[0], frame->data[0] + n * slice_height * frame->linesize[0],
decorrelated[1], frame->data[3] + n * slice_height * frame->linesize[3] };
const uint8_t *r, *g, *b;
const int linesize[4] = { decorrelate_linesize, frame->linesize[0],
decorrelate_linesize, frame->linesize[3] };
g = frame->data[0] + n * slice_height * frame->linesize[0];
b = frame->data[1] + n * slice_height * frame->linesize[1];
r = frame->data[2] + n * slice_height * frame->linesize[2];
for (int i = 0; i < slice_height; i++) {
s->llvidencdsp.diff_bytes(decorrelated[0], b, g, width);
s->llvidencdsp.diff_bytes(decorrelated[1], r, g, width);
g += frame->linesize[0];
b += frame->linesize[1];
r += frame->linesize[2];
decorrelated[0] += decorrelate_linesize;
decorrelated[1] += decorrelate_linesize;
}
for (int i = 0; i < s->planes; i++) {
s->predict(s, data[i], s->slices[n * s->planes + i], linesize[i],
frame->width, height);
}
} else {
for (int i = 0; i < s->planes; i++) {
s->predict(s, frame->data[i] + n * (slice_height >> s->vshift[i]) * frame->linesize[i],
s->slices[n * s->planes + i],
frame->linesize[i],
AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
AV_CEIL_RSHIFT(height, s->vshift[i]));
}
}
for (int p = 0; p < s->planes; p++)
count_plane_slice(avctx, n, p);
return 0;
}
static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
MagicYUVContext *s = avctx->priv_data;
PutByteContext pb;
const int width = avctx->width, height = avctx->height;
const int slice_height = s->slice_height;
int pos, ret = 0;
ret = ff_alloc_packet(avctx, pkt, (256 + 4 * s->nb_slices + width * height) *
s->planes + 256);
if (ret < 0)
return ret;
bytestream2_init_writer(&pb, pkt->data, pkt->size);
bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
bytestream2_put_le32(&pb, 32); // header size
bytestream2_put_byte(&pb, 7); // version
bytestream2_put_byte(&pb, s->format);
bytestream2_put_byte(&pb, 12); // max huffman length
bytestream2_put_byte(&pb, 0);
bytestream2_put_byte(&pb, 0);
bytestream2_put_byte(&pb, 0);
bytestream2_put_byte(&pb, 32); // coder type
bytestream2_put_byte(&pb, 0);
bytestream2_put_le32(&pb, avctx->width);
bytestream2_put_le32(&pb, avctx->height);
bytestream2_put_le32(&pb, avctx->width);
bytestream2_put_le32(&pb, slice_height);
bytestream2_put_le32(&pb, 0);
for (int i = 0; i < s->planes; i++) {
bytestream2_put_le32(&pb, 0);
for (int j = 1; j < s->nb_slices; j++)
bytestream2_put_le32(&pb, 0);
}
bytestream2_put_byte(&pb, s->planes);
for (int i = 0; i < s->planes; i++) {
for (int n = 0; n < s->nb_slices; n++)
bytestream2_put_byte(&pb, n * s->planes + i);
}
avctx->execute2(avctx, predict_slice, (void *)frame, NULL, s->nb_slices);
init_put_bits(&s->pb, pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb));
for (int i = 0; i < s->planes; i++)
encode_table(avctx, &s->pb, s->he[i], i);
s->tables_size = put_bytes_count(&s->pb, 1);
bytestream2_skip_p(&pb, s->tables_size);
avctx->execute2(avctx, encode_slice, NULL, NULL, s->nb_slices);
for (int n = 0; n < s->nb_slices; n++) {
for (int i = 0; i < s->planes; i++) {
s->slice_pos[n * s->planes + i] = bytestream2_tell_p(&pb);
bytestream2_put_buffer(&pb, s->bitslices[n * s->planes + i],
s->slice_size[n * s->planes + i]);
}
}
pos = bytestream2_tell_p(&pb);
bytestream2_seek_p(&pb, 32, SEEK_SET);
bytestream2_put_le32(&pb, s->slice_pos[0] - 32);
for (int i = 0; i < s->planes; i++) {
for (int n = 0; n < s->nb_slices; n++)
bytestream2_put_le32(&pb, s->slice_pos[n * s->planes + i] - 32);
}
bytestream2_seek_p(&pb, pos, SEEK_SET);
pkt->size = bytestream2_tell_p(&pb);
*got_packet = 1;
return 0;
}
static av_cold int magy_encode_close(AVCodecContext *avctx)
{
MagicYUVContext *s = avctx->priv_data;
av_freep(&s->slice_pos);
av_freep(&s->slice_size);
for (int i = 0; i < s->planes * s->nb_slices && s->slices; i++)
av_freep(&s->slices[i]);
for (int i = 0; i < s->planes * s->nb_slices && s->bitslices; i++)
av_freep(&s->bitslices[i]);
av_freep(&s->counts);
av_freep(&s->slices);
av_freep(&s->bitslices);
av_freep(&s->decorrelate_buf);
return 0;
}
#define OFFSET(x) offsetof(MagicYUVContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, "pred" },
{ "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, 0, 0, VE, "pred" },
{ "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, "pred" },
{ "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, 0, 0, VE, "pred" },
{ NULL},
};
static const AVClass magicyuv_class = {
.class_name = "magicyuv",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_magicyuv_encoder = {
.p.name = "magicyuv",
CODEC_LONG_NAME("MagicYUV video"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_MAGICYUV,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS |
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
.priv_data_size = sizeof(MagicYUVContext),
.p.priv_class = &magicyuv_class,
.init = magy_encode_init,
.close = magy_encode_close,
FF_CODEC_ENCODE_CB(magy_encode_frame),
.p.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
},
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};