ffmpeg/libavcodec/x86/dsputil_yasm.asm

1051 lines
28 KiB
NASM

;******************************************************************************
;* MMX optimized DSP utils
;* Copyright (c) 2008 Loren Merritt
;*
;* This file is part of Libav.
;*
;* Libav is free software; you can redistribute it and/or
;* modify it under the terms of the GNU Lesser General Public
;* License as published by the Free Software Foundation; either
;* version 2.1 of the License, or (at your option) any later version.
;*
;* Libav is distributed in the hope that it will be useful,
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;* Lesser General Public License for more details.
;*
;* You should have received a copy of the GNU Lesser General Public
;* License along with Libav; if not, write to the Free Software
;* 51, Inc., Foundation Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;******************************************************************************
%include "x86inc.asm"
SECTION_RODATA
pb_f: times 16 db 15
pb_zzzzzzzz77777777: times 8 db -1
pb_7: times 8 db 7
pb_zzzz3333zzzzbbbb: db -1,-1,-1,-1,3,3,3,3,-1,-1,-1,-1,11,11,11,11
pb_zz11zz55zz99zzdd: db -1,-1,1,1,-1,-1,5,5,-1,-1,9,9,-1,-1,13,13
pb_revwords: db 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1
pd_16384: times 4 dd 16384
section .text align=16
%macro SCALARPRODUCT 1
; int scalarproduct_int16(int16_t *v1, int16_t *v2, int order, int shift)
cglobal scalarproduct_int16_%1, 3,3,4, v1, v2, order, shift
shl orderq, 1
add v1q, orderq
add v2q, orderq
neg orderq
movd m3, shiftm
pxor m2, m2
.loop:
movu m0, [v1q + orderq]
movu m1, [v1q + orderq + mmsize]
pmaddwd m0, [v2q + orderq]
pmaddwd m1, [v2q + orderq + mmsize]
paddd m2, m0
paddd m2, m1
add orderq, mmsize*2
jl .loop
%if mmsize == 16
movhlps m0, m2
paddd m2, m0
psrad m2, m3
pshuflw m0, m2, 0x4e
%else
psrad m2, m3
pshufw m0, m2, 0x4e
%endif
paddd m2, m0
movd eax, m2
RET
; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul)
cglobal scalarproduct_and_madd_int16_%1, 4,4,8, v1, v2, v3, order, mul
shl orderq, 1
movd m7, mulm
%if mmsize == 16
pshuflw m7, m7, 0
punpcklqdq m7, m7
%else
pshufw m7, m7, 0
%endif
pxor m6, m6
add v1q, orderq
add v2q, orderq
add v3q, orderq
neg orderq
.loop:
movu m0, [v2q + orderq]
movu m1, [v2q + orderq + mmsize]
mova m4, [v1q + orderq]
mova m5, [v1q + orderq + mmsize]
movu m2, [v3q + orderq]
movu m3, [v3q + orderq + mmsize]
pmaddwd m0, m4
pmaddwd m1, m5
pmullw m2, m7
pmullw m3, m7
paddd m6, m0
paddd m6, m1
paddw m2, m4
paddw m3, m5
mova [v1q + orderq], m2
mova [v1q + orderq + mmsize], m3
add orderq, mmsize*2
jl .loop
%if mmsize == 16
movhlps m0, m6
paddd m6, m0
pshuflw m0, m6, 0x4e
%else
pshufw m0, m6, 0x4e
%endif
paddd m6, m0
movd eax, m6
RET
%endmacro
INIT_MMX
SCALARPRODUCT mmx2
INIT_XMM
SCALARPRODUCT sse2
%macro SCALARPRODUCT_LOOP 1
align 16
.loop%1:
sub orderq, mmsize*2
%if %1
mova m1, m4
mova m4, [v2q + orderq]
mova m0, [v2q + orderq + mmsize]
palignr m1, m0, %1
palignr m0, m4, %1
mova m3, m5
mova m5, [v3q + orderq]
mova m2, [v3q + orderq + mmsize]
palignr m3, m2, %1
palignr m2, m5, %1
%else
mova m0, [v2q + orderq]
mova m1, [v2q + orderq + mmsize]
mova m2, [v3q + orderq]
mova m3, [v3q + orderq + mmsize]
%endif
%define t0 [v1q + orderq]
%define t1 [v1q + orderq + mmsize]
%ifdef ARCH_X86_64
mova m8, t0
mova m9, t1
%define t0 m8
%define t1 m9
%endif
pmaddwd m0, t0
pmaddwd m1, t1
pmullw m2, m7
pmullw m3, m7
paddw m2, t0
paddw m3, t1
paddd m6, m0
paddd m6, m1
mova [v1q + orderq], m2
mova [v1q + orderq + mmsize], m3
jg .loop%1
%if %1
jmp .end
%endif
%endmacro
; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul)
cglobal scalarproduct_and_madd_int16_ssse3, 4,5,10, v1, v2, v3, order, mul
shl orderq, 1
movd m7, mulm
pshuflw m7, m7, 0
punpcklqdq m7, m7
pxor m6, m6
mov r4d, v2d
and r4d, 15
and v2q, ~15
and v3q, ~15
mova m4, [v2q + orderq]
mova m5, [v3q + orderq]
; linear is faster than branch tree or jump table, because the branches taken are cyclic (i.e. predictable)
cmp r4d, 0
je .loop0
cmp r4d, 2
je .loop2
cmp r4d, 4
je .loop4
cmp r4d, 6
je .loop6
cmp r4d, 8
je .loop8
cmp r4d, 10
je .loop10
cmp r4d, 12
je .loop12
SCALARPRODUCT_LOOP 14
SCALARPRODUCT_LOOP 12
SCALARPRODUCT_LOOP 10
SCALARPRODUCT_LOOP 8
SCALARPRODUCT_LOOP 6
SCALARPRODUCT_LOOP 4
SCALARPRODUCT_LOOP 2
SCALARPRODUCT_LOOP 0
.end:
movhlps m0, m6
paddd m6, m0
pshuflw m0, m6, 0x4e
paddd m6, m0
movd eax, m6
RET
;-----------------------------------------------------------------------------
; void ff_apply_window_int16(int16_t *output, const int16_t *input,
; const int16_t *window, unsigned int len)
;-----------------------------------------------------------------------------
%macro REVERSE_WORDS_MMXEXT 1-2
pshufw %1, %1, 0x1B
%endmacro
%macro REVERSE_WORDS_SSE2 1-2
pshuflw %1, %1, 0x1B
pshufhw %1, %1, 0x1B
pshufd %1, %1, 0x4E
%endmacro
%macro REVERSE_WORDS_SSSE3 2
pshufb %1, %2
%endmacro
; dst = (dst * src) >> 15
; pmulhw cuts off the bottom bit, so we have to lshift by 1 and add it back
; in from the pmullw result.
%macro MUL16FIXED_MMXEXT 3 ; dst, src, temp
mova %3, %1
pmulhw %1, %2
pmullw %3, %2
psrlw %3, 15
psllw %1, 1
por %1, %3
%endmacro
; dst = ((dst * src) + (1<<14)) >> 15
%macro MUL16FIXED_SSSE3 3 ; dst, src, unused
pmulhrsw %1, %2
%endmacro
%macro APPLY_WINDOW_INT16 3 ; %1=instruction set, %2=mmxext/sse2 bit exact version, %3=has_ssse3
cglobal apply_window_int16_%1, 4,5,6, output, input, window, offset, offset2
lea offset2q, [offsetq-mmsize]
%if %2
mova m5, [pd_16384]
%elifidn %1, ssse3
mova m5, [pb_revwords]
ALIGN 16
%endif
.loop:
%if %2
; This version expands 16-bit to 32-bit, multiplies by the window,
; adds 16384 for rounding, right shifts 15, then repacks back to words to
; save to the output. The window is reversed for the second half.
mova m3, [windowq+offset2q]
mova m4, [ inputq+offset2q]
pxor m0, m0
punpcklwd m0, m3
punpcklwd m1, m4
pmaddwd m0, m1
paddd m0, m5
psrad m0, 15
pxor m2, m2
punpckhwd m2, m3
punpckhwd m1, m4
pmaddwd m2, m1
paddd m2, m5
psrad m2, 15
packssdw m0, m2
mova [outputq+offset2q], m0
REVERSE_WORDS m3
mova m4, [ inputq+offsetq]
pxor m0, m0
punpcklwd m0, m3
punpcklwd m1, m4
pmaddwd m0, m1
paddd m0, m5
psrad m0, 15
pxor m2, m2
punpckhwd m2, m3
punpckhwd m1, m4
pmaddwd m2, m1
paddd m2, m5
psrad m2, 15
packssdw m0, m2
mova [outputq+offsetq], m0
%elif %3
; This version does the 16x16->16 multiplication in-place without expanding
; to 32-bit. The ssse3 version is bit-identical.
mova m0, [windowq+offset2q]
mova m1, [ inputq+offset2q]
pmulhrsw m1, m0
REVERSE_WORDS m0, m5
pmulhrsw m0, [ inputq+offsetq ]
mova [outputq+offset2q], m1
mova [outputq+offsetq ], m0
%else
; This version does the 16x16->16 multiplication in-place without expanding
; to 32-bit. The mmxext and sse2 versions do not use rounding, and
; therefore are not bit-identical to the C version.
mova m0, [windowq+offset2q]
mova m1, [ inputq+offset2q]
mova m2, [ inputq+offsetq ]
MUL16FIXED m1, m0, m3
REVERSE_WORDS m0
MUL16FIXED m2, m0, m3
mova [outputq+offset2q], m1
mova [outputq+offsetq ], m2
%endif
add offsetd, mmsize
sub offset2d, mmsize
jae .loop
REP_RET
%endmacro
INIT_MMX
%define REVERSE_WORDS REVERSE_WORDS_MMXEXT
%define MUL16FIXED MUL16FIXED_MMXEXT
APPLY_WINDOW_INT16 mmxext, 0, 0
APPLY_WINDOW_INT16 mmxext_ba, 1, 0
INIT_XMM
%define REVERSE_WORDS REVERSE_WORDS_SSE2
APPLY_WINDOW_INT16 sse2, 0, 0
APPLY_WINDOW_INT16 sse2_ba, 1, 0
APPLY_WINDOW_INT16 ssse3_atom, 0, 1
%define REVERSE_WORDS REVERSE_WORDS_SSSE3
APPLY_WINDOW_INT16 ssse3, 0, 1
; void add_hfyu_median_prediction_mmx2(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top)
cglobal add_hfyu_median_prediction_mmx2, 6,6,0, dst, top, diff, w, left, left_top
movq mm0, [topq]
movq mm2, mm0
movd mm4, [left_topq]
psllq mm2, 8
movq mm1, mm0
por mm4, mm2
movd mm3, [leftq]
psubb mm0, mm4 ; t-tl
add dstq, wq
add topq, wq
add diffq, wq
neg wq
jmp .skip
.loop:
movq mm4, [topq+wq]
movq mm0, mm4
psllq mm4, 8
por mm4, mm1
movq mm1, mm0 ; t
psubb mm0, mm4 ; t-tl
.skip:
movq mm2, [diffq+wq]
%assign i 0
%rep 8
movq mm4, mm0
paddb mm4, mm3 ; t-tl+l
movq mm5, mm3
pmaxub mm3, mm1
pminub mm5, mm1
pminub mm3, mm4
pmaxub mm3, mm5 ; median
paddb mm3, mm2 ; +residual
%if i==0
movq mm7, mm3
psllq mm7, 56
%else
movq mm6, mm3
psrlq mm7, 8
psllq mm6, 56
por mm7, mm6
%endif
%if i<7
psrlq mm0, 8
psrlq mm1, 8
psrlq mm2, 8
%endif
%assign i i+1
%endrep
movq [dstq+wq], mm7
add wq, 8
jl .loop
movzx r2d, byte [dstq-1]
mov [leftq], r2d
movzx r2d, byte [topq-1]
mov [left_topq], r2d
RET
%macro ADD_HFYU_LEFT_LOOP 1 ; %1 = is_aligned
add srcq, wq
add dstq, wq
neg wq
%%.loop:
mova m1, [srcq+wq]
mova m2, m1
psllw m1, 8
paddb m1, m2
mova m2, m1
pshufb m1, m3
paddb m1, m2
pshufb m0, m5
mova m2, m1
pshufb m1, m4
paddb m1, m2
%if mmsize == 16
mova m2, m1
pshufb m1, m6
paddb m1, m2
%endif
paddb m0, m1
%if %1
mova [dstq+wq], m0
%else
movq [dstq+wq], m0
movhps [dstq+wq+8], m0
%endif
add wq, mmsize
jl %%.loop
mov eax, mmsize-1
sub eax, wd
movd m1, eax
pshufb m0, m1
movd eax, m0
RET
%endmacro
; int add_hfyu_left_prediction(uint8_t *dst, const uint8_t *src, int w, int left)
INIT_MMX
cglobal add_hfyu_left_prediction_ssse3, 3,3,7, dst, src, w, left
.skip_prologue:
mova m5, [pb_7]
mova m4, [pb_zzzz3333zzzzbbbb]
mova m3, [pb_zz11zz55zz99zzdd]
movd m0, leftm
psllq m0, 56
ADD_HFYU_LEFT_LOOP 1
INIT_XMM
cglobal add_hfyu_left_prediction_sse4, 3,3,7, dst, src, w, left
mova m5, [pb_f]
mova m6, [pb_zzzzzzzz77777777]
mova m4, [pb_zzzz3333zzzzbbbb]
mova m3, [pb_zz11zz55zz99zzdd]
movd m0, leftm
pslldq m0, 15
test srcq, 15
jnz add_hfyu_left_prediction_ssse3.skip_prologue
test dstq, 15
jnz .unaligned
ADD_HFYU_LEFT_LOOP 1
.unaligned:
ADD_HFYU_LEFT_LOOP 0
; float scalarproduct_float_sse(const float *v1, const float *v2, int len)
cglobal scalarproduct_float_sse, 3,3,2, v1, v2, offset
neg offsetq
shl offsetq, 2
sub v1q, offsetq
sub v2q, offsetq
xorps xmm0, xmm0
.loop:
movaps xmm1, [v1q+offsetq]
mulps xmm1, [v2q+offsetq]
addps xmm0, xmm1
add offsetq, 16
js .loop
movhlps xmm1, xmm0
addps xmm0, xmm1
movss xmm1, xmm0
shufps xmm0, xmm0, 1
addss xmm0, xmm1
%ifndef ARCH_X86_64
movd r0m, xmm0
fld dword r0m
%endif
RET
; extern void ff_emu_edge_core(uint8_t *buf, const uint8_t *src, x86_reg linesize,
; x86_reg start_y, x86_reg end_y, x86_reg block_h,
; x86_reg start_x, x86_reg end_x, x86_reg block_w);
;
; The actual function itself is below. It basically wraps a very simple
; w = end_x - start_x
; if (w) {
; if (w > 22) {
; jump to the slow loop functions
; } else {
; jump to the fast loop functions
; }
; }
;
; ... and then the same for left/right extend also. See below for loop
; function implementations. Fast are fixed-width, slow is variable-width
%macro EMU_EDGE_FUNC 1
%ifdef ARCH_X86_64
%define w_reg r10
cglobal emu_edge_core_%1, 6, 7, 1
mov r11, r5 ; save block_h
%else
%define w_reg r6
cglobal emu_edge_core_%1, 2, 7, 0
mov r4, r4m ; end_y
mov r5, r5m ; block_h
%endif
; start with vertical extend (top/bottom) and body pixel copy
mov w_reg, r7m
sub w_reg, r6m ; w = start_x - end_x
sub r5, r4
%ifdef ARCH_X86_64
sub r4, r3
%else
sub r4, dword r3m
%endif
cmp w_reg, 22
jg .slow_v_extend_loop
%ifdef ARCH_X86_32
mov r2, r2m ; linesize
%endif
sal w_reg, 7 ; w * 128
%ifdef PIC
lea rax, [.emuedge_v_extend_1 - (.emuedge_v_extend_2 - .emuedge_v_extend_1)]
add w_reg, rax
%else
lea w_reg, [.emuedge_v_extend_1 - (.emuedge_v_extend_2 - .emuedge_v_extend_1)+w_reg]
%endif
call w_reg ; fast top extend, body copy and bottom extend
.v_extend_end:
; horizontal extend (left/right)
mov w_reg, r6m ; start_x
sub r0, w_reg
%ifdef ARCH_X86_64
mov r3, r0 ; backup of buf+block_h*linesize
mov r5, r11
%else
mov r0m, r0 ; backup of buf+block_h*linesize
mov r5, r5m
%endif
test w_reg, w_reg
jz .right_extend
cmp w_reg, 22
jg .slow_left_extend_loop
mov r1, w_reg
dec w_reg
; FIXME we can do a if size == 1 here if that makes any speed difference, test me
sar w_reg, 1
sal w_reg, 6
; r0=buf+block_h*linesize,r10(64)/r6(32)=start_x offset for funcs
; r6(rax)/r3(ebx)=val,r2=linesize,r1=start_x,r5=block_h
%ifdef PIC
lea rax, [.emuedge_extend_left_2]
add w_reg, rax
%else
lea w_reg, [.emuedge_extend_left_2+w_reg]
%endif
call w_reg
; now r3(64)/r0(32)=buf,r2=linesize,r11/r5=block_h,r6/r3=val, r10/r6=end_x, r1=block_w
.right_extend:
%ifdef ARCH_X86_32
mov r0, r0m
mov r5, r5m
%endif
mov w_reg, r7m ; end_x
mov r1, r8m ; block_w
mov r4, r1
sub r1, w_reg
jz .h_extend_end ; if (end_x == block_w) goto h_extend_end
cmp r1, 22
jg .slow_right_extend_loop
dec r1
; FIXME we can do a if size == 1 here if that makes any speed difference, test me
sar r1, 1
sal r1, 6
%ifdef PIC
lea rax, [.emuedge_extend_right_2]
add r1, rax
%else
lea r1, [.emuedge_extend_right_2+r1]
%endif
call r1
.h_extend_end:
RET
%ifdef ARCH_X86_64
%define vall al
%define valh ah
%define valw ax
%define valw2 r10w
%define valw3 r3w
%ifdef WIN64
%define valw4 r4w
%else ; unix64
%define valw4 r3w
%endif
%define vald eax
%else
%define vall bl
%define valh bh
%define valw bx
%define valw2 r6w
%define valw3 valw2
%define valw4 valw3
%define vald ebx
%define stack_offset 0x14
%endif
%endmacro
; macro to read/write a horizontal number of pixels (%2) to/from registers
; on x86-64, - fills xmm0-15 for consecutive sets of 16 pixels
; - if (%2 & 15 == 8) fills the last 8 bytes into rax
; - else if (%2 & 8) fills 8 bytes into mm0
; - if (%2 & 7 == 4) fills the last 4 bytes into rax
; - else if (%2 & 4) fills 4 bytes into mm0-1
; - if (%2 & 3 == 3) fills 2 bytes into r10/r3, and 1 into eax
; (note that we're using r3 for body/bottom because it's a shorter
; opcode, and then the loop fits in 128 bytes)
; - else fills remaining bytes into rax
; on x86-32, - fills mm0-7 for consecutive sets of 8 pixels
; - if (%2 & 7 == 4) fills 4 bytes into ebx
; - else if (%2 & 4) fills 4 bytes into mm0-7
; - if (%2 & 3 == 3) fills 2 bytes into r6, and 1 into ebx
; - else fills remaining bytes into ebx
; writing data out is in the same way
%macro READ_NUM_BYTES 3
%assign %%src_off 0 ; offset in source buffer
%assign %%smidx 0 ; mmx register idx
%assign %%sxidx 0 ; xmm register idx
%ifnidn %3, mmx
%rep %2/16
movdqu xmm %+ %%sxidx, [r1+%%src_off]
%assign %%src_off %%src_off+16
%assign %%sxidx %%sxidx+1
%endrep ; %2/16
%endif ; !mmx
%ifdef ARCH_X86_64
%if (%2-%%src_off) == 8
mov rax, [r1+%%src_off]
%assign %%src_off %%src_off+8
%endif ; (%2-%%src_off) == 8
%endif ; x86-64
%rep (%2-%%src_off)/8
movq mm %+ %%smidx, [r1+%%src_off]
%assign %%src_off %%src_off+8
%assign %%smidx %%smidx+1
%endrep ; (%2-%%dst_off)/8
%if (%2-%%src_off) == 4
mov vald, [r1+%%src_off]
%elif (%2-%%src_off) & 4
movd mm %+ %%smidx, [r1+%%src_off]
%assign %%src_off %%src_off+4
%endif ; (%2-%%src_off) ==/& 4
%if (%2-%%src_off) == 1
mov vall, [r1+%%src_off]
%elif (%2-%%src_off) == 2
mov valw, [r1+%%src_off]
%elif (%2-%%src_off) == 3
%ifidn %1, top
mov valw2, [r1+%%src_off]
%elifidn %1, body
mov valw3, [r1+%%src_off]
%elifidn %1, bottom
mov valw4, [r1+%%src_off]
%endif ; %1 ==/!= top
mov vall, [r1+%%src_off+2]
%endif ; (%2-%%src_off) == 1/2/3
%endmacro ; READ_NUM_BYTES
%macro WRITE_NUM_BYTES 3
%assign %%dst_off 0 ; offset in destination buffer
%assign %%dmidx 0 ; mmx register idx
%assign %%dxidx 0 ; xmm register idx
%ifnidn %3, mmx
%rep %2/16
movdqu [r0+%%dst_off], xmm %+ %%dxidx
%assign %%dst_off %%dst_off+16
%assign %%dxidx %%dxidx+1
%endrep ; %2/16
%endif
%ifdef ARCH_X86_64
%if (%2-%%dst_off) == 8
mov [r0+%%dst_off], rax
%assign %%dst_off %%dst_off+8
%endif ; (%2-%%dst_off) == 8
%endif ; x86-64
%rep (%2-%%dst_off)/8
movq [r0+%%dst_off], mm %+ %%dmidx
%assign %%dst_off %%dst_off+8
%assign %%dmidx %%dmidx+1
%endrep ; (%2-%%dst_off)/8
%if (%2-%%dst_off) == 4
mov [r0+%%dst_off], vald
%elif (%2-%%dst_off) & 4
movd [r0+%%dst_off], mm %+ %%dmidx
%assign %%dst_off %%dst_off+4
%endif ; (%2-%%dst_off) ==/& 4
%if (%2-%%dst_off) == 1
mov [r0+%%dst_off], vall
%elif (%2-%%dst_off) == 2
mov [r0+%%dst_off], valw
%elif (%2-%%dst_off) == 3
%ifidn %1, top
mov [r0+%%dst_off], valw2
%elifidn %1, body
mov [r0+%%dst_off], valw3
%elifidn %1, bottom
mov [r0+%%dst_off], valw4
%endif ; %1 ==/!= top
mov [r0+%%dst_off+2], vall
%endif ; (%2-%%dst_off) == 1/2/3
%endmacro ; WRITE_NUM_BYTES
; vertical top/bottom extend and body copy fast loops
; these are function pointers to set-width line copy functions, i.e.
; they read a fixed number of pixels into set registers, and write
; those out into the destination buffer
; r0=buf,r1=src,r2=linesize,r3(64)/r3m(32)=start_x,r4=end_y,r5=block_h
; r6(eax/64)/r3(ebx/32)=val_reg
%macro VERTICAL_EXTEND 1
%assign %%n 1
%rep 22
ALIGN 128
.emuedge_v_extend_ %+ %%n:
; extend pixels above body
%ifdef ARCH_X86_64
test r3 , r3 ; if (!start_y)
jz .emuedge_copy_body_ %+ %%n %+ _loop ; goto body
%else ; ARCH_X86_32
cmp dword r3m, 0
je .emuedge_copy_body_ %+ %%n %+ _loop
%endif ; ARCH_X86_64/32
READ_NUM_BYTES top, %%n, %1 ; read bytes
.emuedge_extend_top_ %+ %%n %+ _loop: ; do {
WRITE_NUM_BYTES top, %%n, %1 ; write bytes
add r0 , r2 ; dst += linesize
%ifdef ARCH_X86_64
dec r3d
%else ; ARCH_X86_32
dec dword r3m
%endif ; ARCH_X86_64/32
jnz .emuedge_extend_top_ %+ %%n %+ _loop ; } while (--start_y)
; copy body pixels
.emuedge_copy_body_ %+ %%n %+ _loop: ; do {
READ_NUM_BYTES body, %%n, %1 ; read bytes
WRITE_NUM_BYTES body, %%n, %1 ; write bytes
add r0 , r2 ; dst += linesize
add r1 , r2 ; src += linesize
dec r4d
jnz .emuedge_copy_body_ %+ %%n %+ _loop ; } while (--end_y)
; copy bottom pixels
test r5 , r5 ; if (!block_h)
jz .emuedge_v_extend_end_ %+ %%n ; goto end
sub r1 , r2 ; src -= linesize
READ_NUM_BYTES bottom, %%n, %1 ; read bytes
.emuedge_extend_bottom_ %+ %%n %+ _loop: ; do {
WRITE_NUM_BYTES bottom, %%n, %1 ; write bytes
add r0 , r2 ; dst += linesize
dec r5d
jnz .emuedge_extend_bottom_ %+ %%n %+ _loop ; } while (--block_h)
.emuedge_v_extend_end_ %+ %%n:
%ifdef ARCH_X86_64
ret
%else ; ARCH_X86_32
rep ret
%endif ; ARCH_X86_64/32
%assign %%n %%n+1
%endrep
%endmacro VERTICAL_EXTEND
; left/right (horizontal) fast extend functions
; these are essentially identical to the vertical extend ones above,
; just left/right separated because number of pixels to extend is
; obviously not the same on both sides.
; for reading, pixels are placed in eax (x86-64) or ebx (x86-64) in the
; lowest two bytes of the register (so val*0x0101), and are splatted
; into each byte of mm0 as well if n_pixels >= 8
%macro READ_V_PIXEL 3
mov vall, %2
mov valh, vall
%if %1 >= 8
movd mm0, vald
%ifidn %3, mmx
punpcklwd mm0, mm0
punpckldq mm0, mm0
%else ; !mmx
pshufw mm0, mm0, 0
%endif ; mmx
%endif ; %1 >= 8
%endmacro
%macro WRITE_V_PIXEL 2
%assign %%dst_off 0
%rep %1/8
movq [%2+%%dst_off], mm0
%assign %%dst_off %%dst_off+8
%endrep
%if %1 & 4
%if %1 >= 8
movd [%2+%%dst_off], mm0
%else ; %1 < 8
mov [%2+%%dst_off] , valw
mov [%2+%%dst_off+2], valw
%endif ; %1 >=/< 8
%assign %%dst_off %%dst_off+4
%endif ; %1 & 4
%if %1&2
mov [%2+%%dst_off], valw
%endif ; %1 & 2
%endmacro
; r0=buf+block_h*linesize, r1=start_x, r2=linesize, r5=block_h, r6/r3=val
%macro LEFT_EXTEND 1
%assign %%n 2
%rep 11
ALIGN 64
.emuedge_extend_left_ %+ %%n: ; do {
sub r0, r2 ; dst -= linesize
READ_V_PIXEL %%n, [r0+r1], %1 ; read pixels
WRITE_V_PIXEL %%n, r0 ; write pixels
dec r5
jnz .emuedge_extend_left_ %+ %%n ; } while (--block_h)
%ifdef ARCH_X86_64
ret
%else ; ARCH_X86_32
rep ret
%endif ; ARCH_X86_64/32
%assign %%n %%n+2
%endrep
%endmacro ; LEFT_EXTEND
; r3/r0=buf+block_h*linesize, r2=linesize, r11/r5=block_h, r0/r6=end_x, r6/r3=val
%macro RIGHT_EXTEND 1
%assign %%n 2
%rep 11
ALIGN 64
.emuedge_extend_right_ %+ %%n: ; do {
%ifdef ARCH_X86_64
sub r3, r2 ; dst -= linesize
READ_V_PIXEL %%n, [r3+w_reg-1], %1 ; read pixels
WRITE_V_PIXEL %%n, r3+r4-%%n ; write pixels
dec r11
%else ; ARCH_X86_32
sub r0, r2 ; dst -= linesize
READ_V_PIXEL %%n, [r0+w_reg-1], %1 ; read pixels
WRITE_V_PIXEL %%n, r0+r4-%%n ; write pixels
dec r5
%endif ; ARCH_X86_64/32
jnz .emuedge_extend_right_ %+ %%n ; } while (--block_h)
%ifdef ARCH_X86_64
ret
%else ; ARCH_X86_32
rep ret
%endif ; ARCH_X86_64/32
%assign %%n %%n+2
%endrep
%ifdef ARCH_X86_32
%define stack_offset 0x10
%endif
%endmacro ; RIGHT_EXTEND
; below follow the "slow" copy/extend functions, these act on a non-fixed
; width specified in a register, and run a loop to copy the full amount
; of bytes. They are optimized for copying of large amounts of pixels per
; line, so they unconditionally splat data into mm registers to copy 8
; bytes per loop iteration. It could be considered to use xmm for x86-64
; also, but I haven't optimized this as much (i.e. FIXME)
%macro V_COPY_NPX 4-5
%if %0 == 4
test w_reg, %4
jz .%1_skip_%4_px
%else ; %0 == 5
.%1_%4_px_loop:
%endif
%3 %2, [r1+cnt_reg]
%3 [r0+cnt_reg], %2
add cnt_reg, %4
%if %0 == 5
sub w_reg, %4
test w_reg, %5
jnz .%1_%4_px_loop
%endif
.%1_skip_%4_px:
%endmacro
%macro V_COPY_ROW 3
%ifidn %1, bottom
sub r1, linesize
%endif
.%1_copy_loop:
xor cnt_reg, cnt_reg
%ifidn %3, mmx
%define linesize r2m
V_COPY_NPX %1, mm0, movq, 8, 0xFFFFFFF8
%else ; !mmx
V_COPY_NPX %1, xmm0, movdqu, 16, 0xFFFFFFF0
%ifdef ARCH_X86_64
%define linesize r2
V_COPY_NPX %1, rax , mov, 8
%else ; ARCH_X86_32
%define linesize r2m
V_COPY_NPX %1, mm0, movq, 8
%endif ; ARCH_X86_64/32
%endif ; mmx
V_COPY_NPX %1, vald, mov, 4
V_COPY_NPX %1, valw, mov, 2
V_COPY_NPX %1, vall, mov, 1
mov w_reg, cnt_reg
%ifidn %1, body
add r1, linesize
%endif
add r0, linesize
dec %2
jnz .%1_copy_loop
%endmacro
%macro SLOW_V_EXTEND 1
.slow_v_extend_loop:
; r0=buf,r1=src,r2(64)/r2m(32)=linesize,r3(64)/r3m(32)=start_x,r4=end_y,r5=block_h
; r11(64)/r3(later-64)/r2(32)=cnt_reg,r6(64)/r3(32)=val_reg,r10(64)/r6(32)=w=end_x-start_x
%ifdef ARCH_X86_64
push r11 ; save old value of block_h
test r3, r3
%define cnt_reg r11
jz .do_body_copy ; if (!start_y) goto do_body_copy
V_COPY_ROW top, r3, %1
%else
cmp dword r3m, 0
%define cnt_reg r2
je .do_body_copy ; if (!start_y) goto do_body_copy
V_COPY_ROW top, dword r3m, %1
%endif
.do_body_copy:
V_COPY_ROW body, r4, %1
%ifdef ARCH_X86_64
pop r11 ; restore old value of block_h
%define cnt_reg r3
%endif
test r5, r5
%ifdef ARCH_X86_64
jz .v_extend_end
%else
jz .skip_bottom_extend
%endif
V_COPY_ROW bottom, r5, %1
%ifdef ARCH_X86_32
.skip_bottom_extend:
mov r2, r2m
%endif
jmp .v_extend_end
%endmacro
%macro SLOW_LEFT_EXTEND 1
.slow_left_extend_loop:
; r0=buf+block_h*linesize,r2=linesize,r6(64)/r3(32)=val,r5=block_h,r4=cntr,r10/r6=start_x
mov r4, 8
sub r0, linesize
READ_V_PIXEL 8, [r0+w_reg], %1
.left_extend_8px_loop:
movq [r0+r4-8], mm0
add r4, 8
cmp r4, w_reg
jle .left_extend_8px_loop
sub r4, 8
cmp r4, w_reg
jge .left_extend_loop_end
.left_extend_2px_loop:
mov [r0+r4], valw
add r4, 2
cmp r4, w_reg
jl .left_extend_2px_loop
.left_extend_loop_end:
dec r5
jnz .slow_left_extend_loop
%ifdef ARCH_X86_32
mov r2, r2m
%endif
jmp .right_extend
%endmacro
%macro SLOW_RIGHT_EXTEND 1
.slow_right_extend_loop:
; r3(64)/r0(32)=buf+block_h*linesize,r2=linesize,r4=block_w,r11(64)/r5(32)=block_h,
; r10(64)/r6(32)=end_x,r6/r3=val,r1=cntr
%ifdef ARCH_X86_64
%define buf_reg r3
%define bh_reg r11
%else
%define buf_reg r0
%define bh_reg r5
%endif
lea r1, [r4-8]
sub buf_reg, linesize
READ_V_PIXEL 8, [buf_reg+w_reg-1], %1
.right_extend_8px_loop:
movq [buf_reg+r1], mm0
sub r1, 8
cmp r1, w_reg
jge .right_extend_8px_loop
add r1, 8
cmp r1, w_reg
je .right_extend_loop_end
.right_extend_2px_loop:
sub r1, 2
mov [buf_reg+r1], valw
cmp r1, w_reg
jg .right_extend_2px_loop
.right_extend_loop_end:
dec bh_reg
jnz .slow_right_extend_loop
jmp .h_extend_end
%endmacro
%macro emu_edge 1
EMU_EDGE_FUNC %1
VERTICAL_EXTEND %1
LEFT_EXTEND %1
RIGHT_EXTEND %1
SLOW_V_EXTEND %1
SLOW_LEFT_EXTEND %1
SLOW_RIGHT_EXTEND %1
%endmacro
emu_edge sse
%ifdef ARCH_X86_32
emu_edge mmx
%endif