ffmpeg/libswscale/swscale_internal.h

752 lines
34 KiB
C

/*
* Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef SWSCALE_SWSCALE_INTERNAL_H
#define SWSCALE_SWSCALE_INTERNAL_H
#include "config.h"
#if HAVE_ALTIVEC_H
#include <altivec.h>
#endif
#include "libavutil/avassert.h"
#include "libavutil/avutil.h"
#include "libavutil/common.h"
#include "libavutil/log.h"
#include "libavutil/pixfmt.h"
#include "libavutil/pixdesc.h"
#define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
#define FAST_BGR2YV12 // use 7-bit instead of 15-bit coefficients
#define MAX_FILTER_SIZE 256
#if HAVE_BIGENDIAN
#define ALT32_CORR (-1)
#else
#define ALT32_CORR 1
#endif
#if ARCH_X86_64
# define APCK_PTR2 8
# define APCK_COEF 16
# define APCK_SIZE 24
#else
# define APCK_PTR2 4
# define APCK_COEF 8
# define APCK_SIZE 16
#endif
struct SwsContext;
typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
int srcStride[], int srcSliceY, int srcSliceH,
uint8_t *dst[], int dstStride[]);
/**
* Write one line of horizontally scaled data to planar output
* without any additional vertical scaling (or point-scaling).
*
* @param src scaled source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the output plane. For >8bit
* output, this is in uint16_t
* @param dstW width of destination in pixels
* @param dither ordered dither array of type int16_t and size 8
* @param offset Dither offset
*/
typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
const uint8_t *dither, int offset);
/**
* Write one line of horizontally scaled data to planar output
* with multi-point vertical scaling between input pixels.
*
* @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
* @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param filterSize number of vertical input lines to scale
* @param dest pointer to output plane. For >8bit
* output, this is in uint16_t
* @param dstW width of destination pixels
* @param offset Dither offset
*/
typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
const int16_t **src, uint8_t *dest, int dstW,
const uint8_t *dither, int offset);
/**
* Write one line of horizontally scaled chroma to interleaved output
* with multi-point vertical scaling between input pixels.
*
* @param c SWS scaling context
* @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrFilterSize number of vertical chroma input lines to scale
* @param dest pointer to the output plane. For >8bit
* output, this is in uint16_t
* @param dstW width of chroma planes
*/
typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
const int16_t *chrFilter,
int chrFilterSize,
const int16_t **chrUSrc,
const int16_t **chrVSrc,
uint8_t *dest, int dstW);
/**
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
* output without any additional vertical scaling (or point-scaling). Note
* that this function may do chroma scaling, see the "uvalpha" argument.
*
* @param c SWS scaling context
* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the output plane. For 16bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param uvalpha chroma scaling coefficient for the second line of chroma
* pixels, either 2048 or 0. If 0, one chroma input is used
* for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
* is set, it generates 1 output pixel). If 2048, two chroma
* input pixels should be averaged for 2 output pixels (this
* only happens if SWS_FLAG_FULL_CHR_INT is not set)
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* for some output formats.
*/
typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
const int16_t *chrUSrc[2],
const int16_t *chrVSrc[2],
const int16_t *alpSrc, uint8_t *dest,
int dstW, int uvalpha, int y);
/**
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
* output by doing bilinear scaling between two input lines.
*
* @param c SWS scaling context
* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the output plane. For 16bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param yalpha luma/alpha scaling coefficients for the second input line.
* The first line's coefficients can be calculated by using
* 4096 - yalpha
* @param uvalpha chroma scaling coefficient for the second input line. The
* first line's coefficients can be calculated by using
* 4096 - uvalpha
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* for some output formats.
*/
typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
const int16_t *chrUSrc[2],
const int16_t *chrVSrc[2],
const int16_t *alpSrc[2],
uint8_t *dest,
int dstW, int yalpha, int uvalpha, int y);
/**
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
* output by doing multi-point vertical scaling between input pixels.
*
* @param c SWS scaling context
* @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param lumFilterSize number of vertical luma/alpha input lines to scale
* @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrFilterSize number of vertical chroma input lines to scale
* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the output plane. For 16bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* or some output formats.
*/
typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter,
const int16_t **chrUSrc,
const int16_t **chrVSrc, int chrFilterSize,
const int16_t **alpSrc, uint8_t *dest,
int dstW, int y);
/**
* Write one line of horizontally scaled Y/U/V/A to YUV/RGB
* output by doing multi-point vertical scaling between input pixels.
*
* @param c SWS scaling context
* @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param lumFilterSize number of vertical luma/alpha input lines to scale
* @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrFilterSize number of vertical chroma input lines to scale
* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the output planes. For 16bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* or some output formats.
*/
typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter,
const int16_t **chrUSrc,
const int16_t **chrVSrc, int chrFilterSize,
const int16_t **alpSrc, uint8_t **dest,
int dstW, int y);
/* This struct should be aligned on at least a 32-byte boundary. */
typedef struct SwsContext {
/**
* info on struct for av_log
*/
const AVClass *av_class;
/**
* Note that src, dst, srcStride, dstStride will be copied in the
* sws_scale() wrapper so they can be freely modified here.
*/
SwsFunc swScale;
int srcW; ///< Width of source luma/alpha planes.
int srcH; ///< Height of source luma/alpha planes.
int dstH; ///< Height of destination luma/alpha planes.
int chrSrcW; ///< Width of source chroma planes.
int chrSrcH; ///< Height of source chroma planes.
int chrDstW; ///< Width of destination chroma planes.
int chrDstH; ///< Height of destination chroma planes.
int lumXInc, chrXInc;
int lumYInc, chrYInc;
enum AVPixelFormat dstFormat; ///< Destination pixel format.
enum AVPixelFormat srcFormat; ///< Source pixel format.
int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
int dstBpc, srcBpc;
int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
double param[2]; ///< Input parameters for scaling algorithms that need them.
uint32_t pal_yuv[256];
uint32_t pal_rgb[256];
/**
* @name Scaled horizontal lines ring buffer.
* The horizontal scaler keeps just enough scaled lines in a ring buffer
* so they may be passed to the vertical scaler. The pointers to the
* allocated buffers for each line are duplicated in sequence in the ring
* buffer to simplify indexing and avoid wrapping around between lines
* inside the vertical scaler code. The wrapping is done before the
* vertical scaler is called.
*/
//@{
int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
//@}
uint8_t *formatConvBuffer;
/**
* @name Horizontal and vertical filters.
* To better understand the following fields, here is a pseudo-code of
* their usage in filtering a horizontal line:
* @code
* for (i = 0; i < width; i++) {
* dst[i] = 0;
* for (j = 0; j < filterSize; j++)
* dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
* dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
* }
* @endcode
*/
//@{
int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
int vChrFilterSize; ///< Vertical filter size for chroma pixels.
//@}
int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
int canMMXEXTBeUsed;
int dstY; ///< Last destination vertical line output from last slice.
int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
uint8_t *table_rV[256];
uint8_t *table_gU[256];
int table_gV[256];
uint8_t *table_bU[256];
//Colorspace stuff
int contrast, brightness, saturation; // for sws_getColorspaceDetails
int srcColorspaceTable[4];
int dstColorspaceTable[4];
int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
int yuv2rgb_y_offset;
int yuv2rgb_y_coeff;
int yuv2rgb_v2r_coeff;
int yuv2rgb_v2g_coeff;
int yuv2rgb_u2g_coeff;
int yuv2rgb_u2b_coeff;
#define RED_DITHER "0*8"
#define GREEN_DITHER "1*8"
#define BLUE_DITHER "2*8"
#define Y_COEFF "3*8"
#define VR_COEFF "4*8"
#define UB_COEFF "5*8"
#define VG_COEFF "6*8"
#define UG_COEFF "7*8"
#define Y_OFFSET "8*8"
#define U_OFFSET "9*8"
#define V_OFFSET "10*8"
#define LUM_MMX_FILTER_OFFSET "11*8"
#define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
#define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
#define ESP_OFFSET "11*8+4*4*256*2+8"
#define VROUNDER_OFFSET "11*8+4*4*256*2+16"
#define U_TEMP "11*8+4*4*256*2+24"
#define V_TEMP "11*8+4*4*256*2+32"
#define Y_TEMP "11*8+4*4*256*2+40"
#define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
#define UV_OFF_PX "11*8+4*4*256*3+48"
#define UV_OFF_BYTE "11*8+4*4*256*3+56"
#define DITHER16 "11*8+4*4*256*3+64"
#define DITHER32 "11*8+4*4*256*3+80"
DECLARE_ALIGNED(8, uint64_t, redDither);
DECLARE_ALIGNED(8, uint64_t, greenDither);
DECLARE_ALIGNED(8, uint64_t, blueDither);
DECLARE_ALIGNED(8, uint64_t, yCoeff);
DECLARE_ALIGNED(8, uint64_t, vrCoeff);
DECLARE_ALIGNED(8, uint64_t, ubCoeff);
DECLARE_ALIGNED(8, uint64_t, vgCoeff);
DECLARE_ALIGNED(8, uint64_t, ugCoeff);
DECLARE_ALIGNED(8, uint64_t, yOffset);
DECLARE_ALIGNED(8, uint64_t, uOffset);
DECLARE_ALIGNED(8, uint64_t, vOffset);
int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
int dstW; ///< Width of destination luma/alpha planes.
DECLARE_ALIGNED(8, uint64_t, esp);
DECLARE_ALIGNED(8, uint64_t, vRounder);
DECLARE_ALIGNED(8, uint64_t, u_temp);
DECLARE_ALIGNED(8, uint64_t, v_temp);
DECLARE_ALIGNED(8, uint64_t, y_temp);
int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
// alignment of these values is not necessary, but merely here
// to maintain the same offset across x8632 and x86-64. Once we
// use proper offset macros in the asm, they can be removed.
DECLARE_ALIGNED(8, ptrdiff_t, uv_off_px); ///< offset (in pixels) between u and v planes
DECLARE_ALIGNED(8, ptrdiff_t, uv_off_byte); ///< offset (in bytes) between u and v planes
DECLARE_ALIGNED(8, uint16_t, dither16)[8];
DECLARE_ALIGNED(8, uint32_t, dither32)[8];
const uint8_t *chrDither8, *lumDither8;
#if HAVE_ALTIVEC
vector signed short CY;
vector signed short CRV;
vector signed short CBU;
vector signed short CGU;
vector signed short CGV;
vector signed short OY;
vector unsigned short CSHIFT;
vector signed short *vYCoeffsBank, *vCCoeffsBank;
#endif
#if ARCH_BFIN
DECLARE_ALIGNED(4, uint32_t, oy);
DECLARE_ALIGNED(4, uint32_t, oc);
DECLARE_ALIGNED(4, uint32_t, zero);
DECLARE_ALIGNED(4, uint32_t, cy);
DECLARE_ALIGNED(4, uint32_t, crv);
DECLARE_ALIGNED(4, uint32_t, rmask);
DECLARE_ALIGNED(4, uint32_t, cbu);
DECLARE_ALIGNED(4, uint32_t, bmask);
DECLARE_ALIGNED(4, uint32_t, cgu);
DECLARE_ALIGNED(4, uint32_t, cgv);
DECLARE_ALIGNED(4, uint32_t, gmask);
#endif
#if HAVE_VIS
DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
#endif
/* function pointers for swScale() */
yuv2planar1_fn yuv2plane1;
yuv2planarX_fn yuv2planeX;
yuv2interleavedX_fn yuv2nv12cX;
yuv2packed1_fn yuv2packed1;
yuv2packed2_fn yuv2packed2;
yuv2packedX_fn yuv2packedX;
yuv2anyX_fn yuv2anyX;
/// Unscaled conversion of luma plane to YV12 for horizontal scaler.
void (*lumToYV12)(uint8_t *dst, const uint8_t *src,
int width, uint32_t *pal);
/// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
void (*alpToYV12)(uint8_t *dst, const uint8_t *src,
int width, uint32_t *pal);
/// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
const uint8_t *src1, const uint8_t *src2,
int width, uint32_t *pal);
/**
* Functions to read planar input, such as planar RGB, and convert
* internally to Y/UV.
*/
/** @{ */
void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
int width);
/** @} */
/**
* Scale one horizontal line of input data using a bilinear filter
* to produce one line of output data. Compared to SwsContext->hScale(),
* please take note of the following caveats when using these:
* - Scaling is done using only 7bit instead of 14bit coefficients.
* - You can use no more than 5 input pixels to produce 4 output
* pixels. Therefore, this filter should not be used for downscaling
* by more than ~20% in width (because that equals more than 5/4th
* downscaling and thus more than 5 pixels input per 4 pixels output).
* - In general, bilinear filters create artifacts during downscaling
* (even when <20%), because one output pixel will span more than one
* input pixel, and thus some pixels will need edges of both neighbor
* pixels to interpolate the output pixel. Since you can use at most
* two input pixels per output pixel in bilinear scaling, this is
* impossible and thus downscaling by any size will create artifacts.
* To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
* in SwsContext->flags.
*/
/** @{ */
void (*hyscale_fast)(struct SwsContext *c,
int16_t *dst, int dstWidth,
const uint8_t *src, int srcW, int xInc);
void (*hcscale_fast)(struct SwsContext *c,
int16_t *dst1, int16_t *dst2, int dstWidth,
const uint8_t *src1, const uint8_t *src2,
int srcW, int xInc);
/** @} */
/**
* Scale one horizontal line of input data using a filter over the input
* lines, to produce one (differently sized) line of output data.
*
* @param dst pointer to destination buffer for horizontally scaled
* data. If the number of bits per component of one
* destination pixel (SwsContext->dstBpc) is <= 10, data
* will be 15bpc in 16bits (int16_t) width. Else (i.e.
* SwsContext->dstBpc == 16), data will be 19bpc in
* 32bits (int32_t) width.
* @param dstW width of destination image
* @param src pointer to source data to be scaled. If the number of
* bits per component of a source pixel (SwsContext->srcBpc)
* is 8, this is 8bpc in 8bits (uint8_t) width. Else
* (i.e. SwsContext->dstBpc > 8), this is native depth
* in 16bits (uint16_t) width. In other words, for 9-bit
* YUV input, this is 9bpc, for 10-bit YUV input, this is
* 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
* @param filter filter coefficients to be used per output pixel for
* scaling. This contains 14bpp filtering coefficients.
* Guaranteed to contain dstW * filterSize entries.
* @param filterPos position of the first input pixel to be used for
* each output pixel during scaling. Guaranteed to
* contain dstW entries.
* @param filterSize the number of input coefficients to be used (and
* thus the number of input pixels to be used) for
* creating a single output pixel. Is aligned to 4
* (and input coefficients thus padded with zeroes)
* to simplify creating SIMD code.
*/
/** @{ */
void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize);
void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize);
/** @} */
/// Color range conversion function for luma plane if needed.
void (*lumConvertRange)(int16_t *dst, int width);
/// Color range conversion function for chroma planes if needed.
void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
int needs_hcscale; ///< Set if there are chroma planes to be converted.
} SwsContext;
//FIXME check init (where 0)
SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
int fullRange, int brightness,
int contrast, int saturation);
void ff_yuv2rgb_init_tables_altivec(SwsContext *c, const int inv_table[4],
int brightness, int contrast, int saturation);
void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
int lastInLumBuf, int lastInChrBuf);
SwsFunc ff_yuv2rgb_init_mmx(SwsContext *c);
SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
SwsFunc ff_yuv2rgb_init_altivec(SwsContext *c);
SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
void ff_bfin_get_unscaled_swscale(SwsContext *c);
const char *sws_format_name(enum AVPixelFormat format);
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->comp[0].depth_minus1 == 15;
}
static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->comp[0].depth_minus1 == 8 || desc->comp[0].depth_minus1 == 9;
}
static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->flags & PIX_FMT_BE;
}
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return !(desc->flags & PIX_FMT_RGB) && desc->nb_components >= 2;
}
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return ((desc->flags & PIX_FMT_PLANAR) && isYUV(pix_fmt));
}
static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return (desc->flags & PIX_FMT_RGB);
}
#if 0 // FIXME
#define isGray(x) \
(!(av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL) && \
av_pix_fmt_descriptors[x].nb_components <= 2)
#else
#define isGray(x) \
((x) == AV_PIX_FMT_GRAY8 || \
(x) == AV_PIX_FMT_Y400A || \
(x) == AV_PIX_FMT_GRAY16BE || \
(x) == AV_PIX_FMT_GRAY16LE)
#endif
#define isRGBinInt(x) \
((x) == AV_PIX_FMT_RGB48BE || \
(x) == AV_PIX_FMT_RGB48LE || \
(x) == AV_PIX_FMT_RGB32 || \
(x) == AV_PIX_FMT_RGB32_1 || \
(x) == AV_PIX_FMT_RGB24 || \
(x) == AV_PIX_FMT_RGB565BE || \
(x) == AV_PIX_FMT_RGB565LE || \
(x) == AV_PIX_FMT_RGB555BE || \
(x) == AV_PIX_FMT_RGB555LE || \
(x) == AV_PIX_FMT_RGB444BE || \
(x) == AV_PIX_FMT_RGB444LE || \
(x) == AV_PIX_FMT_RGB8 || \
(x) == AV_PIX_FMT_RGB4 || \
(x) == AV_PIX_FMT_RGB4_BYTE || \
(x) == AV_PIX_FMT_MONOBLACK || \
(x) == AV_PIX_FMT_MONOWHITE)
#define isBGRinInt(x) \
((x) == AV_PIX_FMT_BGR48BE || \
(x) == AV_PIX_FMT_BGR48LE || \
(x) == AV_PIX_FMT_BGR32 || \
(x) == AV_PIX_FMT_BGR32_1 || \
(x) == AV_PIX_FMT_BGR24 || \
(x) == AV_PIX_FMT_BGR565BE || \
(x) == AV_PIX_FMT_BGR565LE || \
(x) == AV_PIX_FMT_BGR555BE || \
(x) == AV_PIX_FMT_BGR555LE || \
(x) == AV_PIX_FMT_BGR444BE || \
(x) == AV_PIX_FMT_BGR444LE || \
(x) == AV_PIX_FMT_BGR8 || \
(x) == AV_PIX_FMT_BGR4 || \
(x) == AV_PIX_FMT_BGR4_BYTE || \
(x) == AV_PIX_FMT_MONOBLACK || \
(x) == AV_PIX_FMT_MONOWHITE)
#define isAnyRGB(x) \
(isRGBinInt(x) || \
isBGRinInt(x))
static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return desc->nb_components == 2 || desc->nb_components == 4;
}
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return ((desc->nb_components >= 2 && !(desc->flags & PIX_FMT_PLANAR)) ||
pix_fmt == AV_PIX_FMT_PAL8);
}
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return (desc->nb_components >= 2 && (desc->flags & PIX_FMT_PLANAR));
}
static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return ((desc->flags & (PIX_FMT_PLANAR | PIX_FMT_RGB)) == PIX_FMT_RGB);
}
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return ((desc->flags & (PIX_FMT_PLANAR | PIX_FMT_RGB)) ==
(PIX_FMT_PLANAR | PIX_FMT_RGB));
}
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return ((desc->flags & PIX_FMT_PAL) || (desc->flags & PIX_FMT_PSEUDOPAL) ||
pix_fmt == AV_PIX_FMT_Y400A);
}
extern const uint64_t ff_dither4[2];
extern const uint64_t ff_dither8[2];
extern const AVClass sws_context_class;
/**
* Set c->swScale to an unscaled converter if one exists for the specific
* source and destination formats, bit depths, flags, etc.
*/
void ff_get_unscaled_swscale(SwsContext *c);
void ff_swscale_get_unscaled_altivec(SwsContext *c);
/**
* Return function pointer to fastest main scaler path function depending
* on architecture and available optimizations.
*/
SwsFunc ff_getSwsFunc(SwsContext *c);
void ff_sws_init_input_funcs(SwsContext *c);
void ff_sws_init_output_funcs(SwsContext *c,
yuv2planar1_fn *yuv2plane1,
yuv2planarX_fn *yuv2planeX,
yuv2interleavedX_fn *yuv2nv12cX,
yuv2packed1_fn *yuv2packed1,
yuv2packed2_fn *yuv2packed2,
yuv2packedX_fn *yuv2packedX,
yuv2anyX_fn *yuv2anyX);
void ff_sws_init_swScale_altivec(SwsContext *c);
void ff_sws_init_swScale_mmx(SwsContext *c);
#endif /* SWSCALE_SWSCALE_INTERNAL_H */