ffmpeg/libavcodec/hevcpred_template.c

552 lines
22 KiB
C

/*
* HEVC video decoder
*
* Copyright (C) 2012 - 2013 Guillaume Martres
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/pixdesc.h"
#include "bit_depth_template.c"
#include "hevcpred.h"
#define POS(x, y) src[(x) + stride * (y)]
static av_always_inline void FUNC(intra_pred)(HEVCContext *s, int x0, int y0,
int log2_size, int c_idx)
{
#define PU(x) \
((x) >> s->sps->log2_min_pu_size)
#define MVF(x, y) \
(s->ref->tab_mvf[(x) + (y) * min_pu_width])
#define MVF_PU(x, y) \
MVF(PU(x0 + ((x) << hshift)), PU(y0 + ((y) << vshift)))
#define IS_INTRA(x, y) \
(MVF_PU(x, y).pred_flag == PF_INTRA)
#define MIN_TB_ADDR_ZS(x, y) \
s->pps->min_tb_addr_zs[(y) * (s->sps->tb_mask+2) + (x)]
#define EXTEND(ptr, val, len) \
do { \
pixel4 pix = PIXEL_SPLAT_X4(val); \
for (i = 0; i < (len); i += 4) \
AV_WN4P(ptr + i, pix); \
} while (0)
#define EXTEND_RIGHT_CIP(ptr, start, length) \
for (i = start; i < (start) + (length); i += 4) \
if (!IS_INTRA(i, -1)) \
AV_WN4P(&ptr[i], a); \
else \
a = PIXEL_SPLAT_X4(ptr[i+3])
#define EXTEND_LEFT_CIP(ptr, start, length) \
for (i = start; i > (start) - (length); i--) \
if (!IS_INTRA(i - 1, -1)) \
ptr[i - 1] = ptr[i]
#define EXTEND_UP_CIP(ptr, start, length) \
for (i = (start); i > (start) - (length); i -= 4) \
if (!IS_INTRA(-1, i - 3)) \
AV_WN4P(&ptr[i - 3], a); \
else \
a = PIXEL_SPLAT_X4(ptr[i - 3])
#define EXTEND_DOWN_CIP(ptr, start, length) \
for (i = start; i < (start) + (length); i += 4) \
if (!IS_INTRA(-1, i)) \
AV_WN4P(&ptr[i], a); \
else \
a = PIXEL_SPLAT_X4(ptr[i + 3])
HEVCLocalContext *lc = s->HEVClc;
int i;
int hshift = s->sps->hshift[c_idx];
int vshift = s->sps->vshift[c_idx];
int size = (1 << log2_size);
int size_in_luma_h = size << hshift;
int size_in_tbs_h = size_in_luma_h >> s->sps->log2_min_tb_size;
int size_in_luma_v = size << vshift;
int size_in_tbs_v = size_in_luma_v >> s->sps->log2_min_tb_size;
int x = x0 >> hshift;
int y = y0 >> vshift;
int x_tb = (x0 >> s->sps->log2_min_tb_size) & s->sps->tb_mask;
int y_tb = (y0 >> s->sps->log2_min_tb_size) & s->sps->tb_mask;
int cur_tb_addr = MIN_TB_ADDR_ZS(x_tb, y_tb);
ptrdiff_t stride = s->frame->linesize[c_idx] / sizeof(pixel);
pixel *src = (pixel*)s->frame->data[c_idx] + x + y * stride;
int min_pu_width = s->sps->min_pu_width;
enum IntraPredMode mode = c_idx ? lc->tu.intra_pred_mode_c :
lc->tu.intra_pred_mode;
pixel4 a;
pixel left_array[2 * MAX_TB_SIZE + 1];
pixel filtered_left_array[2 * MAX_TB_SIZE + 1];
pixel top_array[2 * MAX_TB_SIZE + 1];
pixel filtered_top_array[2 * MAX_TB_SIZE + 1];
pixel *left = left_array + 1;
pixel *top = top_array + 1;
pixel *filtered_left = filtered_left_array + 1;
pixel *filtered_top = filtered_top_array + 1;
int cand_bottom_left = lc->na.cand_bottom_left && cur_tb_addr > MIN_TB_ADDR_ZS( x_tb - 1, (y_tb + size_in_tbs_v) & s->sps->tb_mask);
int cand_left = lc->na.cand_left;
int cand_up_left = lc->na.cand_up_left;
int cand_up = lc->na.cand_up;
int cand_up_right = lc->na.cand_up_right && cur_tb_addr > MIN_TB_ADDR_ZS((x_tb + size_in_tbs_h) & s->sps->tb_mask, y_tb - 1);
int bottom_left_size = (FFMIN(y0 + 2 * size_in_luma_v, s->sps->height) -
(y0 + size_in_luma_v)) >> vshift;
int top_right_size = (FFMIN(x0 + 2 * size_in_luma_h, s->sps->width) -
(x0 + size_in_luma_h)) >> hshift;
if (s->pps->constrained_intra_pred_flag == 1) {
int size_in_luma_pu_v = PU(size_in_luma_v);
int size_in_luma_pu_h = PU(size_in_luma_h);
int on_pu_edge_x = !av_mod_uintp2(x0, s->sps->log2_min_pu_size);
int on_pu_edge_y = !av_mod_uintp2(y0, s->sps->log2_min_pu_size);
if (!size_in_luma_pu_h)
size_in_luma_pu_h++;
if (cand_bottom_left == 1 && on_pu_edge_x) {
int x_left_pu = PU(x0 - 1);
int y_bottom_pu = PU(y0 + size_in_luma_v);
int max = FFMIN(size_in_luma_pu_v, s->sps->min_pu_height - y_bottom_pu);
cand_bottom_left = 0;
for (i = 0; i < max; i += 2)
cand_bottom_left |= (MVF(x_left_pu, y_bottom_pu + i).pred_flag == PF_INTRA);
}
if (cand_left == 1 && on_pu_edge_x) {
int x_left_pu = PU(x0 - 1);
int y_left_pu = PU(y0);
int max = FFMIN(size_in_luma_pu_v, s->sps->min_pu_height - y_left_pu);
cand_left = 0;
for (i = 0; i < max; i += 2)
cand_left |= (MVF(x_left_pu, y_left_pu + i).pred_flag == PF_INTRA);
}
if (cand_up_left == 1) {
int x_left_pu = PU(x0 - 1);
int y_top_pu = PU(y0 - 1);
cand_up_left = MVF(x_left_pu, y_top_pu).pred_flag == PF_INTRA;
}
if (cand_up == 1 && on_pu_edge_y) {
int x_top_pu = PU(x0);
int y_top_pu = PU(y0 - 1);
int max = FFMIN(size_in_luma_pu_h, s->sps->min_pu_width - x_top_pu);
cand_up = 0;
for (i = 0; i < max; i += 2)
cand_up |= (MVF(x_top_pu + i, y_top_pu).pred_flag == PF_INTRA);
}
if (cand_up_right == 1 && on_pu_edge_y) {
int y_top_pu = PU(y0 - 1);
int x_right_pu = PU(x0 + size_in_luma_h);
int max = FFMIN(size_in_luma_pu_h, s->sps->min_pu_width - x_right_pu);
cand_up_right = 0;
for (i = 0; i < max; i += 2)
cand_up_right |= (MVF(x_right_pu + i, y_top_pu).pred_flag == PF_INTRA);
}
memset(left, 128, 2 * MAX_TB_SIZE*sizeof(pixel));
memset(top , 128, 2 * MAX_TB_SIZE*sizeof(pixel));
top[-1] = 128;
}
if (cand_up_left) {
left[-1] = POS(-1, -1);
top[-1] = left[-1];
}
if (cand_up)
memcpy(top, src - stride, size * sizeof(pixel));
if (cand_up_right) {
memcpy(top + size, src - stride + size, size * sizeof(pixel));
EXTEND(top + size + top_right_size, POS(size + top_right_size - 1, -1),
size - top_right_size);
}
if (cand_left)
for (i = 0; i < size; i++)
left[i] = POS(-1, i);
if (cand_bottom_left) {
for (i = size; i < size + bottom_left_size; i++)
left[i] = POS(-1, i);
EXTEND(left + size + bottom_left_size, POS(-1, size + bottom_left_size - 1),
size - bottom_left_size);
}
if (s->pps->constrained_intra_pred_flag == 1) {
if (cand_bottom_left || cand_left || cand_up_left || cand_up || cand_up_right) {
int size_max_x = x0 + ((2 * size) << hshift) < s->sps->width ?
2 * size : (s->sps->width - x0) >> hshift;
int size_max_y = y0 + ((2 * size) << vshift) < s->sps->height ?
2 * size : (s->sps->height - y0) >> vshift;
int j = size + (cand_bottom_left? bottom_left_size: 0) -1;
if (!cand_up_right) {
size_max_x = x0 + ((size) << hshift) < s->sps->width ?
size : (s->sps->width - x0) >> hshift;
}
if (!cand_bottom_left) {
size_max_y = y0 + (( size) << vshift) < s->sps->height ?
size : (s->sps->height - y0) >> vshift;
}
if (cand_bottom_left || cand_left || cand_up_left) {
while (j > -1 && !IS_INTRA(-1, j))
j--;
if (!IS_INTRA(-1, j)) {
j = 0;
while (j < size_max_x && !IS_INTRA(j, -1))
j++;
EXTEND_LEFT_CIP(top, j, j + 1);
left[-1] = top[-1];
}
} else {
j = 0;
while (j < size_max_x && !IS_INTRA(j, -1))
j++;
if (j > 0)
if (x0 > 0) {
EXTEND_LEFT_CIP(top, j, j + 1);
} else {
EXTEND_LEFT_CIP(top, j, j);
top[-1] = top[0];
}
left[-1] = top[-1];
}
left[-1] = top[-1];
if (cand_bottom_left || cand_left) {
a = PIXEL_SPLAT_X4(left[-1]);
EXTEND_DOWN_CIP(left, 0, size_max_y);
}
if (!cand_left)
EXTEND(left, left[-1], size);
if (!cand_bottom_left)
EXTEND(left + size, left[size - 1], size);
if (x0 != 0 && y0 != 0) {
a = PIXEL_SPLAT_X4(left[size_max_y - 1]);
EXTEND_UP_CIP(left, size_max_y - 1, size_max_y);
if (!IS_INTRA(-1, - 1))
left[-1] = left[0];
} else if (x0 == 0) {
EXTEND(left, 0, size_max_y);
} else {
a = PIXEL_SPLAT_X4(left[size_max_y - 1]);
EXTEND_UP_CIP(left, size_max_y - 1, size_max_y);
}
top[-1] = left[-1];
if (y0 != 0) {
a = PIXEL_SPLAT_X4(left[-1]);
EXTEND_RIGHT_CIP(top, 0, size_max_x);
}
}
}
// Infer the unavailable samples
if (!cand_bottom_left) {
if (cand_left) {
EXTEND(left + size, left[size - 1], size);
} else if (cand_up_left) {
EXTEND(left, left[-1], 2 * size);
cand_left = 1;
} else if (cand_up) {
left[-1] = top[0];
EXTEND(left, left[-1], 2 * size);
cand_up_left = 1;
cand_left = 1;
} else if (cand_up_right) {
EXTEND(top, top[size], size);
left[-1] = top[size];
EXTEND(left, left[-1], 2 * size);
cand_up = 1;
cand_up_left = 1;
cand_left = 1;
} else { // No samples available
left[-1] = (1 << (BIT_DEPTH - 1));
EXTEND(top, left[-1], 2 * size);
EXTEND(left, left[-1], 2 * size);
}
}
if (!cand_left)
EXTEND(left, left[size], size);
if (!cand_up_left) {
left[-1] = left[0];
}
if (!cand_up)
EXTEND(top, left[-1], size);
if (!cand_up_right)
EXTEND(top + size, top[size - 1], size);
top[-1] = left[-1];
// Filtering process
if (!s->sps->intra_smoothing_disabled_flag && (c_idx == 0 || s->sps->chroma_format_idc == 3)) {
if (mode != INTRA_DC && size != 4){
int intra_hor_ver_dist_thresh[] = { 7, 1, 0 };
int min_dist_vert_hor = FFMIN(FFABS((int)(mode - 26U)),
FFABS((int)(mode - 10U)));
if (min_dist_vert_hor > intra_hor_ver_dist_thresh[log2_size - 3]) {
int threshold = 1 << (BIT_DEPTH - 5);
if (s->sps->sps_strong_intra_smoothing_enable_flag && c_idx == 0 &&
log2_size == 5 &&
FFABS(top[-1] + top[63] - 2 * top[31]) < threshold &&
FFABS(left[-1] + left[63] - 2 * left[31]) < threshold) {
// We can't just overwrite values in top because it could be
// a pointer into src
filtered_top[-1] = top[-1];
filtered_top[63] = top[63];
for (i = 0; i < 63; i++)
filtered_top[i] = ((64 - (i + 1)) * top[-1] +
(i + 1) * top[63] + 32) >> 6;
for (i = 0; i < 63; i++)
left[i] = ((64 - (i + 1)) * left[-1] +
(i + 1) * left[63] + 32) >> 6;
top = filtered_top;
} else {
filtered_left[2 * size - 1] = left[2 * size - 1];
filtered_top[2 * size - 1] = top[2 * size - 1];
for (i = 2 * size - 2; i >= 0; i--)
filtered_left[i] = (left[i + 1] + 2 * left[i] +
left[i - 1] + 2) >> 2;
filtered_top[-1] =
filtered_left[-1] = (left[0] + 2 * left[-1] + top[0] + 2) >> 2;
for (i = 2 * size - 2; i >= 0; i--)
filtered_top[i] = (top[i + 1] + 2 * top[i] +
top[i - 1] + 2) >> 2;
left = filtered_left;
top = filtered_top;
}
}
}
}
switch (mode) {
case INTRA_PLANAR:
s->hpc.pred_planar[log2_size - 2]((uint8_t *)src, (uint8_t *)top,
(uint8_t *)left, stride);
break;
case INTRA_DC:
s->hpc.pred_dc((uint8_t *)src, (uint8_t *)top,
(uint8_t *)left, stride, log2_size, c_idx);
break;
default:
s->hpc.pred_angular[log2_size - 2]((uint8_t *)src, (uint8_t *)top,
(uint8_t *)left, stride, c_idx,
mode);
break;
}
}
#define INTRA_PRED(size) \
static void FUNC(intra_pred_ ## size)(HEVCContext *s, int x0, int y0, int c_idx) \
{ \
FUNC(intra_pred)(s, x0, y0, size, c_idx); \
}
INTRA_PRED(2)
INTRA_PRED(3)
INTRA_PRED(4)
INTRA_PRED(5)
#undef INTRA_PRED
static av_always_inline void FUNC(pred_planar)(uint8_t *_src, const uint8_t *_top,
const uint8_t *_left, ptrdiff_t stride,
int trafo_size)
{
int x, y;
pixel *src = (pixel *)_src;
const pixel *top = (const pixel *)_top;
const pixel *left = (const pixel *)_left;
int size = 1 << trafo_size;
for (y = 0; y < size; y++)
for (x = 0; x < size; x++)
POS(x, y) = ((size - 1 - x) * left[y] + (x + 1) * top[size] +
(size - 1 - y) * top[x] + (y + 1) * left[size] + size) >> (trafo_size + 1);
}
#define PRED_PLANAR(size)\
static void FUNC(pred_planar_ ## size)(uint8_t *src, const uint8_t *top, \
const uint8_t *left, ptrdiff_t stride) \
{ \
FUNC(pred_planar)(src, top, left, stride, size + 2); \
}
PRED_PLANAR(0)
PRED_PLANAR(1)
PRED_PLANAR(2)
PRED_PLANAR(3)
#undef PRED_PLANAR
static void FUNC(pred_dc)(uint8_t *_src, const uint8_t *_top,
const uint8_t *_left,
ptrdiff_t stride, int log2_size, int c_idx)
{
int i, j, x, y;
int size = (1 << log2_size);
pixel *src = (pixel *)_src;
const pixel *top = (const pixel *)_top;
const pixel *left = (const pixel *)_left;
int dc = size;
pixel4 a;
for (i = 0; i < size; i++)
dc += left[i] + top[i];
dc >>= log2_size + 1;
a = PIXEL_SPLAT_X4(dc);
for (i = 0; i < size; i++)
for (j = 0; j < size; j+=4)
AV_WN4P(&POS(j, i), a);
if (c_idx == 0 && size < 32) {
POS(0, 0) = (left[0] + 2 * dc + top[0] + 2) >> 2;
for (x = 1; x < size; x++)
POS(x, 0) = (top[x] + 3 * dc + 2) >> 2;
for (y = 1; y < size; y++)
POS(0, y) = (left[y] + 3 * dc + 2) >> 2;
}
}
static av_always_inline void FUNC(pred_angular)(uint8_t *_src,
const uint8_t *_top,
const uint8_t *_left,
ptrdiff_t stride, int c_idx,
int mode, int size)
{
int x, y;
pixel *src = (pixel *)_src;
const pixel *top = (const pixel *)_top;
const pixel *left = (const pixel *)_left;
static const int intra_pred_angle[] = {
32, 26, 21, 17, 13, 9, 5, 2, 0, -2, -5, -9, -13, -17, -21, -26, -32,
-26, -21, -17, -13, -9, -5, -2, 0, 2, 5, 9, 13, 17, 21, 26, 32
};
static const int inv_angle[] = {
-4096, -1638, -910, -630, -482, -390, -315, -256, -315, -390, -482,
-630, -910, -1638, -4096
};
int angle = intra_pred_angle[mode - 2];
pixel ref_array[3 * MAX_TB_SIZE + 4];
pixel *ref_tmp = ref_array + size;
const pixel *ref;
int last = (size * angle) >> 5;
if (mode >= 18) {
ref = top - 1;
if (angle < 0 && last < -1) {
for (x = 0; x <= size; x += 4)
AV_WN4P(&ref_tmp[x], AV_RN4P(&top[x - 1]));
for (x = last; x <= -1; x++)
ref_tmp[x] = left[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)];
ref = ref_tmp;
}
for (y = 0; y < size; y++) {
int idx = ((y + 1) * angle) >> 5;
int fact = ((y + 1) * angle) & 31;
if (fact) {
for (x = 0; x < size; x += 4) {
POS(x , y) = ((32 - fact) * ref[x + idx + 1] +
fact * ref[x + idx + 2] + 16) >> 5;
POS(x + 1, y) = ((32 - fact) * ref[x + 1 + idx + 1] +
fact * ref[x + 1 + idx + 2] + 16) >> 5;
POS(x + 2, y) = ((32 - fact) * ref[x + 2 + idx + 1] +
fact * ref[x + 2 + idx + 2] + 16) >> 5;
POS(x + 3, y) = ((32 - fact) * ref[x + 3 + idx + 1] +
fact * ref[x + 3 + idx + 2] + 16) >> 5;
}
} else {
for (x = 0; x < size; x += 4)
AV_WN4P(&POS(x, y), AV_RN4P(&ref[x + idx + 1]));
}
}
if (mode == 26 && c_idx == 0 && size < 32) {
for (y = 0; y < size; y++)
POS(0, y) = av_clip_pixel(top[0] + ((left[y] - left[-1]) >> 1));
}
} else {
ref = left - 1;
if (angle < 0 && last < -1) {
for (x = 0; x <= size; x += 4)
AV_WN4P(&ref_tmp[x], AV_RN4P(&left[x - 1]));
for (x = last; x <= -1; x++)
ref_tmp[x] = top[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)];
ref = ref_tmp;
}
for (x = 0; x < size; x++) {
int idx = ((x + 1) * angle) >> 5;
int fact = ((x + 1) * angle) & 31;
if (fact) {
for (y = 0; y < size; y++) {
POS(x, y) = ((32 - fact) * ref[y + idx + 1] +
fact * ref[y + idx + 2] + 16) >> 5;
}
} else {
for (y = 0; y < size; y++)
POS(x, y) = ref[y + idx + 1];
}
}
if (mode == 10 && c_idx == 0 && size < 32) {
for (x = 0; x < size; x += 4) {
POS(x, 0) = av_clip_pixel(left[0] + ((top[x ] - top[-1]) >> 1));
POS(x + 1, 0) = av_clip_pixel(left[0] + ((top[x + 1] - top[-1]) >> 1));
POS(x + 2, 0) = av_clip_pixel(left[0] + ((top[x + 2] - top[-1]) >> 1));
POS(x + 3, 0) = av_clip_pixel(left[0] + ((top[x + 3] - top[-1]) >> 1));
}
}
}
}
static void FUNC(pred_angular_0)(uint8_t *src, const uint8_t *top,
const uint8_t *left,
ptrdiff_t stride, int c_idx, int mode)
{
FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 2);
}
static void FUNC(pred_angular_1)(uint8_t *src, const uint8_t *top,
const uint8_t *left,
ptrdiff_t stride, int c_idx, int mode)
{
FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 3);
}
static void FUNC(pred_angular_2)(uint8_t *src, const uint8_t *top,
const uint8_t *left,
ptrdiff_t stride, int c_idx, int mode)
{
FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 4);
}
static void FUNC(pred_angular_3)(uint8_t *src, const uint8_t *top,
const uint8_t *left,
ptrdiff_t stride, int c_idx, int mode)
{
FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 5);
}
#undef EXTEND_LEFT_CIP
#undef EXTEND_RIGHT_CIP
#undef EXTEND_UP_CIP
#undef EXTEND_DOWN_CIP
#undef IS_INTRA
#undef MVF_PU
#undef MVF
#undef PU
#undef EXTEND
#undef MIN_TB_ADDR_ZS
#undef POS