mirror of https://git.ffmpeg.org/ffmpeg.git
273 lines
7.6 KiB
C
273 lines
7.6 KiB
C
/*
|
|
* RealAudio 2.0 (28.8K)
|
|
* Copyright (c) 2003 the ffmpeg project
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "avcodec.h"
|
|
#define ALT_BITSTREAM_READER_LE
|
|
#include "bitstream.h"
|
|
#include "ra288.h"
|
|
|
|
typedef struct {
|
|
float sp_lpc[36]; ///< LPC coefficients for speech data (spec: A)
|
|
float gain_lpc[10]; ///< LPC coefficients for gain (spec: GB)
|
|
|
|
float sp_hist[111]; ///< Speech data history (spec: SB)
|
|
|
|
/** Speech part of the gain autocorrelation (spec: REXP) */
|
|
float sp_rec[37];
|
|
|
|
float gain_hist[38]; ///< Log-gain history (spec: SBLG)
|
|
|
|
/** Recursive part of the gain autocorrelation (spec: REXPLG) */
|
|
float gain_rec[11];
|
|
|
|
float sp_block[41]; ///< Speech data of four blocks (spec: STTMP)
|
|
float gain_block[10]; ///< Gain data of four blocks (spec: GSTATE)
|
|
} RA288Context;
|
|
|
|
static av_cold int ra288_decode_init(AVCodecContext *avctx)
|
|
{
|
|
avctx->sample_fmt = SAMPLE_FMT_S16;
|
|
return 0;
|
|
}
|
|
|
|
static inline float scalar_product_float(const float * v1, const float * v2,
|
|
int size)
|
|
{
|
|
float res = 0.;
|
|
|
|
while (size--)
|
|
res += *v1++ * *v2++;
|
|
|
|
return res;
|
|
}
|
|
|
|
static void colmult(float *tgt, const float *m1, const float *m2, int n)
|
|
{
|
|
while (n--)
|
|
*tgt++ = *m1++ * *m2++;
|
|
}
|
|
|
|
static void decode(RA288Context *ractx, float gain, int cb_coef)
|
|
{
|
|
int i, j;
|
|
double sumsum;
|
|
float sum, buffer[5];
|
|
float *block = ractx->sp_block + 36; // Current block
|
|
|
|
memmove(ractx->sp_block, ractx->sp_block + 5, 36*sizeof(*ractx->sp_block));
|
|
|
|
for (i=0; i < 5; i++) {
|
|
block[i] = 0.;
|
|
for (j=0; j < 36; j++)
|
|
block[i] -= block[i-1-j]*ractx->sp_lpc[j];
|
|
}
|
|
|
|
/* block 46 of G.728 spec */
|
|
sum = 32.;
|
|
for (i=0; i < 10; i++)
|
|
sum -= ractx->gain_block[9-i] * ractx->gain_lpc[i];
|
|
|
|
/* block 47 of G.728 spec */
|
|
sum = av_clipf(sum, 0, 60);
|
|
|
|
/* block 48 of G.728 spec */
|
|
sumsum = exp(sum * 0.1151292546497) * gain; /* pow(10.0,sum/20)*gain */
|
|
|
|
for (i=0; i < 5; i++)
|
|
buffer[i] = codetable[cb_coef][i] * sumsum;
|
|
|
|
sum = scalar_product_float(buffer, buffer, 5) / 5;
|
|
|
|
sum = FFMAX(sum, 1);
|
|
|
|
/* shift and store */
|
|
memmove(ractx->gain_block, ractx->gain_block + 1,
|
|
9 * sizeof(*ractx->gain_block));
|
|
|
|
ractx->gain_block[9] = 10 * log10(sum) - 32;
|
|
|
|
for (i=1; i < 5; i++)
|
|
for (j=i-1; j >= 0; j--)
|
|
buffer[i] -= ractx->sp_lpc[i-j-1] * buffer[j];
|
|
|
|
/* output */
|
|
for (i=0; i < 5; i++)
|
|
block[i] = av_clipf(block[i] + buffer[i], -4095, 4095);
|
|
}
|
|
|
|
/**
|
|
* Converts autocorrelation coefficients to LPC coefficients using the
|
|
* Levinson-Durbin algorithm. See blocks 37 and 50 of the G.728 specification.
|
|
*
|
|
* @return 0 if success, -1 if fail
|
|
*/
|
|
static int eval_lpc_coeffs(const float *in, float *tgt, int n)
|
|
{
|
|
int i, j;
|
|
double f0, f1, f2;
|
|
|
|
if (in[n] == 0)
|
|
return -1;
|
|
|
|
if ((f0 = *in) <= 0)
|
|
return -1;
|
|
|
|
in--; // To avoid a -1 subtraction in the inner loop
|
|
|
|
for (i=1; i <= n; i++) {
|
|
f1 = in[i+1];
|
|
|
|
for (j=0; j < i - 1; j++)
|
|
f1 += in[i-j]*tgt[j];
|
|
|
|
tgt[i-1] = f2 = -f1/f0;
|
|
for (j=0; j < i >> 1; j++) {
|
|
float temp = tgt[j] + tgt[i-j-2]*f2;
|
|
tgt[i-j-2] += tgt[j]*f2;
|
|
tgt[j] = temp;
|
|
}
|
|
if ((f0 += f1*f2) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void convolve(float *tgt, const float *src, int len, int n)
|
|
{
|
|
for (; n >= 0; n--)
|
|
tgt[n] = scalar_product_float(src, src - n, len);
|
|
|
|
}
|
|
|
|
/**
|
|
* Hybrid window filtering. See blocks 36 and 49 of the G.728 specification.
|
|
*
|
|
* @param order the order of the filter
|
|
* @param n the length of the input
|
|
* @param non_rec the number of non-recursive samples
|
|
* @param out the filter output
|
|
* @param in pointer to the input of the filter
|
|
* @param hist pointer to the input history of the filter. It is updated by
|
|
* this function.
|
|
* @param out pointer to the non-recursive part of the output
|
|
* @param out2 pointer to the recursive part of the output
|
|
* @param window pointer to the windowing function table
|
|
*/
|
|
static void do_hybrid_window(int order, int n, int non_rec, const float *in,
|
|
float *out, float *hist, float *out2,
|
|
const float *window)
|
|
{
|
|
int i;
|
|
float buffer1[order + 1];
|
|
float buffer2[order + 1];
|
|
float work[order + n + non_rec];
|
|
|
|
/* update history */
|
|
memmove(hist , hist + n, (order + non_rec)*sizeof(*hist));
|
|
memcpy (hist + order + non_rec, in , n *sizeof(*hist));
|
|
|
|
colmult(work, window, hist, order + n + non_rec);
|
|
|
|
convolve(buffer1, work + order , n , order);
|
|
convolve(buffer2, work + order + n, non_rec, order);
|
|
|
|
for (i=0; i <= order; i++) {
|
|
out2[i] = out2[i] * 0.5625 + buffer1[i];
|
|
out [i] = out2[i] + buffer2[i];
|
|
}
|
|
|
|
/* Multiply by the white noise correcting factor (WNCF) */
|
|
*out *= 257./256.;
|
|
}
|
|
|
|
/**
|
|
* Backward synthesis filter. Find the LPC coefficients from past speech data.
|
|
*/
|
|
static void backward_filter(RA288Context *ractx)
|
|
{
|
|
float temp1[37]; // RTMP in the spec
|
|
float temp2[11]; // GPTPMP in the spec
|
|
|
|
do_hybrid_window(36, 40, 35, ractx->sp_block+1, temp1, ractx->sp_hist,
|
|
ractx->sp_rec, syn_window);
|
|
|
|
if (!eval_lpc_coeffs(temp1, ractx->sp_lpc, 36))
|
|
colmult(ractx->sp_lpc, ractx->sp_lpc, syn_bw_tab, 36);
|
|
|
|
do_hybrid_window(10, 8, 20, ractx->gain_block+2, temp2, ractx->gain_hist,
|
|
ractx->gain_rec, gain_window);
|
|
|
|
if (!eval_lpc_coeffs(temp2, ractx->gain_lpc, 10))
|
|
colmult(ractx->gain_lpc, ractx->gain_lpc, gain_bw_tab, 10);
|
|
}
|
|
|
|
static int ra288_decode_frame(AVCodecContext * avctx, void *data,
|
|
int *data_size, const uint8_t * buf,
|
|
int buf_size)
|
|
{
|
|
int16_t *out = data;
|
|
int i, j;
|
|
RA288Context *ractx = avctx->priv_data;
|
|
GetBitContext gb;
|
|
|
|
if (buf_size < avctx->block_align) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Error! Input buffer is too small [%d<%d]\n",
|
|
buf_size, avctx->block_align);
|
|
return 0;
|
|
}
|
|
|
|
if (*data_size < 32*5*2)
|
|
return -1;
|
|
|
|
init_get_bits(&gb, buf, avctx->block_align * 8);
|
|
|
|
for (i=0; i < 32; i++) {
|
|
float gain = amptable[get_bits(&gb, 3)];
|
|
int cb_coef = get_bits(&gb, 6 + (i&1));
|
|
|
|
decode(ractx, gain, cb_coef);
|
|
|
|
for (j=0; j < 5; j++)
|
|
*(out++) = 8 * ractx->sp_block[36 + j];
|
|
|
|
if ((i & 7) == 3)
|
|
backward_filter(ractx);
|
|
}
|
|
|
|
*data_size = (char *)out - (char *)data;
|
|
return avctx->block_align;
|
|
}
|
|
|
|
AVCodec ra_288_decoder =
|
|
{
|
|
"real_288",
|
|
CODEC_TYPE_AUDIO,
|
|
CODEC_ID_RA_288,
|
|
sizeof(RA288Context),
|
|
ra288_decode_init,
|
|
NULL,
|
|
NULL,
|
|
ra288_decode_frame,
|
|
.long_name = NULL_IF_CONFIG_SMALL("RealAudio 2.0 (28.8K)"),
|
|
};
|