ffmpeg/libavcodec/ffv1.c

1769 lines
56 KiB
C

/*
* FFV1 codec for libavcodec
*
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* FF Video Codec 1 (a lossless codec)
*/
#include "avcodec.h"
#include "get_bits.h"
#include "put_bits.h"
#include "dsputil.h"
#include "rangecoder.h"
#include "golomb.h"
#include "mathops.h"
#include "libavutil/avassert.h"
#define MAX_PLANES 4
#define CONTEXT_SIZE 32
#define MAX_QUANT_TABLES 8
#define MAX_CONTEXT_INPUTS 5
extern const uint8_t ff_log2_run[41];
static const int8_t quant5_10bit[256]={
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
};
static const int8_t quant5[256]={
0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
};
static const int8_t quant9_10bit[256]={
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
};
static const int8_t quant11[256]={
0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
};
static const uint8_t ver2_state[256]= {
0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
};
typedef struct VlcState{
int16_t drift;
uint16_t error_sum;
int8_t bias;
uint8_t count;
} VlcState;
typedef struct PlaneContext{
int16_t quant_table[MAX_CONTEXT_INPUTS][256];
int quant_table_index;
int context_count;
uint8_t (*state)[CONTEXT_SIZE];
VlcState *vlc_state;
uint8_t interlace_bit_state[2];
} PlaneContext;
#define MAX_SLICES 256
typedef struct FFV1Context{
AVCodecContext *avctx;
RangeCoder c;
GetBitContext gb;
PutBitContext pb;
uint64_t rc_stat[256][2];
uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
int version;
int width, height;
int chroma_h_shift, chroma_v_shift;
int flags;
int picture_number;
AVFrame picture;
int plane_count;
int ac; ///< 1=range coder <-> 0=golomb rice
PlaneContext plane[MAX_PLANES];
int16_t quant_table[MAX_CONTEXT_INPUTS][256];
int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
int context_count[MAX_QUANT_TABLES];
uint8_t state_transition[256];
uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
int run_index;
int colorspace;
int16_t *sample_buffer;
int gob_count;
int quant_table_count;
DSPContext dsp;
struct FFV1Context *slice_context[MAX_SLICES];
int slice_count;
int num_v_slices;
int num_h_slices;
int slice_width;
int slice_height;
int slice_x;
int slice_y;
}FFV1Context;
static av_always_inline int fold(int diff, int bits){
if(bits==8)
diff= (int8_t)diff;
else{
diff+= 1<<(bits-1);
diff&=(1<<bits)-1;
diff-= 1<<(bits-1);
}
return diff;
}
static inline int predict(int16_t *src, int16_t *last)
{
const int LT= last[-1];
const int T= last[ 0];
const int L = src[-1];
return mid_pred(L, L + T - LT, T);
}
static inline int get_context(PlaneContext *p, int16_t *src,
int16_t *last, int16_t *last2)
{
const int LT= last[-1];
const int T= last[ 0];
const int RT= last[ 1];
const int L = src[-1];
if(p->quant_table[3][127]){
const int TT= last2[0];
const int LL= src[-2];
return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
+p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
}else
return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
}
static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){
int i,j,k,m;
double l2tab[256];
for(i=1; i<256; i++)
l2tab[i]= log2(i/256.0);
for(i=0; i<256; i++){
double best_len[256];
double p= i/256.0;
for(j=0; j<256; j++)
best_len[j]= 1<<30;
for(j=FFMAX(i-10,1); j<FFMIN(i+11,256); j++){
double occ[256]={0};
double len=0;
occ[j]=1.0;
for(k=0; k<256; k++){
double newocc[256]={0};
for(m=0; m<256; m++){
if(occ[m]){
len -=occ[m]*( p *l2tab[ m]
+ (1-p)*l2tab[256-m]);
}
}
if(len < best_len[k]){
best_len[k]= len;
best_state[i][k]= j;
}
for(m=0; m<256; m++){
if(occ[m]){
newocc[ one_state[ m]] += occ[m]* p ;
newocc[256-one_state[256-m]] += occ[m]*(1-p);
}
}
memcpy(occ, newocc, sizeof(occ));
}
}
}
}
static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
int i;
#define put_rac(C,S,B) \
do{\
if(rc_stat){\
rc_stat[*(S)][B]++;\
rc_stat2[(S)-state][B]++;\
}\
put_rac(C,S,B);\
}while(0)
if(v){
const int a= FFABS(v);
const int e= av_log2(a);
put_rac(c, state+0, 0);
if(e<=9){
for(i=0; i<e; i++){
put_rac(c, state+1+i, 1); //1..10
}
put_rac(c, state+1+i, 0);
for(i=e-1; i>=0; i--){
put_rac(c, state+22+i, (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + e, v < 0); //11..21
}else{
for(i=0; i<e; i++){
put_rac(c, state+1+FFMIN(i,9), 1); //1..10
}
put_rac(c, state+1+9, 0);
for(i=e-1; i>=0; i--){
put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + 10, v < 0); //11..21
}
}else{
put_rac(c, state+0, 1);
}
#undef put_rac
}
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
put_symbol_inline(c, state, v, is_signed, NULL, NULL);
}
static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
if(get_rac(c, state+0))
return 0;
else{
int i, e, a;
e= 0;
while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
e++;
}
a= 1;
for(i=e-1; i>=0; i--){
a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
}
e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
return (a^e)-e;
}
}
static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
return get_symbol_inline(c, state, is_signed);
}
static inline void update_vlc_state(VlcState * const state, const int v){
int drift= state->drift;
int count= state->count;
state->error_sum += FFABS(v);
drift += v;
if(count == 128){ //FIXME variable
count >>= 1;
drift >>= 1;
state->error_sum >>= 1;
}
count++;
if(drift <= -count){
if(state->bias > -128) state->bias--;
drift += count;
if(drift <= -count)
drift= -count + 1;
}else if(drift > 0){
if(state->bias < 127) state->bias++;
drift -= count;
if(drift > 0)
drift= 0;
}
state->drift= drift;
state->count= count;
}
static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
int i, k, code;
//printf("final: %d ", v);
v = fold(v - state->bias, bits);
i= state->count;
k=0;
while(i < state->error_sum){ //FIXME optimize
k++;
i += i;
}
assert(k<=8);
#if 0 // JPEG LS
if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
else code= v;
#else
code= v ^ ((2*state->drift + state->count)>>31);
#endif
//printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
set_sr_golomb(pb, code, k, 12, bits);
update_vlc_state(state, v);
}
static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
int k, i, v, ret;
i= state->count;
k=0;
while(i < state->error_sum){ //FIXME optimize
k++;
i += i;
}
assert(k<=8);
v= get_sr_golomb(gb, k, 12, bits);
//printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
#if 0 // JPEG LS
if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
#else
v ^= ((2*state->drift + state->count)>>31);
#endif
ret= fold(v + state->bias, bits);
update_vlc_state(state, v);
//printf("final: %d\n", ret);
return ret;
}
#if CONFIG_FFV1_ENCODER
static av_always_inline int encode_line(FFV1Context *s, int w,
int16_t *sample[3],
int plane_index, int bits)
{
PlaneContext * const p= &s->plane[plane_index];
RangeCoder * const c= &s->c;
int x;
int run_index= s->run_index;
int run_count=0;
int run_mode=0;
if(s->ac){
if(c->bytestream_end - c->bytestream < w*20){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
}else{
if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
}
for(x=0; x<w; x++){
int diff, context;
context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
if(context < 0){
context = -context;
diff= -diff;
}
diff= fold(diff, bits);
if(s->ac){
if(s->flags & CODEC_FLAG_PASS1){
put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
}else{
put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
}
}else{
if(context == 0) run_mode=1;
if(run_mode){
if(diff){
while(run_count >= 1<<ff_log2_run[run_index]){
run_count -= 1<<ff_log2_run[run_index];
run_index++;
put_bits(&s->pb, 1, 1);
}
put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
if(run_index) run_index--;
run_count=0;
run_mode=0;
if(diff>0) diff--;
}else{
run_count++;
}
}
// printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
if(run_mode == 0)
put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
}
}
if(run_mode){
while(run_count >= 1<<ff_log2_run[run_index]){
run_count -= 1<<ff_log2_run[run_index];
run_index++;
put_bits(&s->pb, 1, 1);
}
if(run_count)
put_bits(&s->pb, 1, 1);
}
s->run_index= run_index;
return 0;
}
static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
int x,y,i;
const int ring_size= s->avctx->context_model ? 3 : 2;
int16_t *sample[3];
s->run_index=0;
memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
for(y=0; y<h; y++){
for(i=0; i<ring_size; i++)
sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
sample[0][-1]= sample[1][0 ];
sample[1][ w]= sample[1][w-1];
//{START_TIMER
if(s->avctx->bits_per_raw_sample<=8){
for(x=0; x<w; x++){
sample[0][x]= src[x + stride*y];
}
encode_line(s, w, sample, plane_index, 8);
}else{
for(x=0; x<w; x++){
sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->avctx->bits_per_raw_sample);
}
encode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
}
//STOP_TIMER("encode line")}
}
}
static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
int x, y, p, i;
const int ring_size= s->avctx->context_model ? 3 : 2;
int16_t *sample[3][3];
s->run_index=0;
memset(s->sample_buffer, 0, ring_size*3*(w+6)*sizeof(*s->sample_buffer));
for(y=0; y<h; y++){
for(i=0; i<ring_size; i++)
for(p=0; p<3; p++)
sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
for(x=0; x<w; x++){
int v= src[x + stride*y];
int b= v&0xFF;
int g= (v>>8)&0xFF;
int r= (v>>16)&0xFF;
b -= g;
r -= g;
g += (b + r)>>2;
b += 0x100;
r += 0x100;
// assert(g>=0 && b>=0 && r>=0);
// assert(g<256 && b<512 && r<512);
sample[0][0][x]= g;
sample[1][0][x]= b;
sample[2][0][x]= r;
}
for(p=0; p<3; p++){
sample[p][0][-1]= sample[p][1][0 ];
sample[p][1][ w]= sample[p][1][w-1];
encode_line(s, w, sample[p], FFMIN(p, 1), 9);
}
}
}
static void write_quant_table(RangeCoder *c, int16_t *quant_table){
int last=0;
int i;
uint8_t state[CONTEXT_SIZE];
memset(state, 128, sizeof(state));
for(i=1; i<128 ; i++){
if(quant_table[i] != quant_table[i-1]){
put_symbol(c, state, i-last-1, 0);
last= i;
}
}
put_symbol(c, state, i-last-1, 0);
}
static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
int i;
for(i=0; i<5; i++)
write_quant_table(c, quant_table[i]);
}
static void write_header(FFV1Context *f){
uint8_t state[CONTEXT_SIZE];
int i, j;
RangeCoder * const c= &f->slice_context[0]->c;
memset(state, 128, sizeof(state));
if(f->version < 2){
put_symbol(c, state, f->version, 0);
put_symbol(c, state, f->ac, 0);
if(f->ac>1){
for(i=1; i<256; i++){
put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
}
}
put_symbol(c, state, f->colorspace, 0); //YUV cs type
if(f->version>0)
put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
put_rac(c, state, 1); //chroma planes
put_symbol(c, state, f->chroma_h_shift, 0);
put_symbol(c, state, f->chroma_v_shift, 0);
put_rac(c, state, 0); //no transparency plane
write_quant_tables(c, f->quant_table);
}else{
put_symbol(c, state, f->slice_count, 0);
for(i=0; i<f->slice_count; i++){
FFV1Context *fs= f->slice_context[i];
put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
for(j=0; j<f->plane_count; j++){
put_symbol(c, state, f->plane[j].quant_table_index, 0);
av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
}
}
}
}
#endif /* CONFIG_FFV1_ENCODER */
static av_cold int common_init(AVCodecContext *avctx){
FFV1Context *s = avctx->priv_data;
s->avctx= avctx;
s->flags= avctx->flags;
ff_dsputil_init(&s->dsp, avctx);
s->width = avctx->width;
s->height= avctx->height;
assert(s->width && s->height);
//defaults
s->num_h_slices=1;
s->num_v_slices=1;
return 0;
}
static int init_slice_state(FFV1Context *f){
int i, j;
for(i=0; i<f->slice_count; i++){
FFV1Context *fs= f->slice_context[i];
for(j=0; j<f->plane_count; j++){
PlaneContext * const p= &fs->plane[j];
if(fs->ac){
if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
if(!p-> state)
return AVERROR(ENOMEM);
}else{
if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
if(!p->vlc_state)
return AVERROR(ENOMEM);
}
}
if (fs->ac>1){
//FIXME only redo if state_transition changed
for(j=1; j<256; j++){
fs->c.one_state [ j]= fs->state_transition[j];
fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
}
}
}
return 0;
}
static av_cold int init_slice_contexts(FFV1Context *f){
int i;
f->slice_count= f->num_h_slices * f->num_v_slices;
for(i=0; i<f->slice_count; i++){
FFV1Context *fs= av_mallocz(sizeof(*fs));
int sx= i % f->num_h_slices;
int sy= i / f->num_h_slices;
int sxs= f->avctx->width * sx / f->num_h_slices;
int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
int sys= f->avctx->height* sy / f->num_v_slices;
int sye= f->avctx->height*(sy+1) / f->num_v_slices;
f->slice_context[i]= fs;
memcpy(fs, f, sizeof(*fs));
memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
fs->slice_width = sxe - sxs;
fs->slice_height= sye - sys;
fs->slice_x = sxs;
fs->slice_y = sys;
fs->sample_buffer = av_malloc(9 * (fs->width+6) * sizeof(*fs->sample_buffer));
if (!fs->sample_buffer)
return AVERROR(ENOMEM);
}
return 0;
}
static int allocate_initial_states(FFV1Context *f){
int i;
for(i=0; i<f->quant_table_count; i++){
f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i]));
if(!f->initial_states[i])
return AVERROR(ENOMEM);
memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i]));
}
return 0;
}
#if CONFIG_FFV1_ENCODER
static int write_extra_header(FFV1Context *f){
RangeCoder * const c= &f->c;
uint8_t state[CONTEXT_SIZE];
int i, j, k;
uint8_t state2[32][CONTEXT_SIZE];
memset(state2, 128, sizeof(state2));
memset(state, 128, sizeof(state));
f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32);
ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
put_symbol(c, state, f->version, 0);
put_symbol(c, state, f->ac, 0);
if(f->ac>1){
for(i=1; i<256; i++){
put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
}
}
put_symbol(c, state, f->colorspace, 0); //YUV cs type
put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
put_rac(c, state, 1); //chroma planes
put_symbol(c, state, f->chroma_h_shift, 0);
put_symbol(c, state, f->chroma_v_shift, 0);
put_rac(c, state, 0); //no transparency plane
put_symbol(c, state, f->num_h_slices-1, 0);
put_symbol(c, state, f->num_v_slices-1, 0);
put_symbol(c, state, f->quant_table_count, 0);
for(i=0; i<f->quant_table_count; i++)
write_quant_tables(c, f->quant_tables[i]);
for(i=0; i<f->quant_table_count; i++){
for(j=0; j<f->context_count[i]*CONTEXT_SIZE; j++)
if(f->initial_states[i] && f->initial_states[i][0][j] != 128)
break;
if(j<f->context_count[i]*CONTEXT_SIZE){
put_rac(c, state, 1);
for(j=0; j<f->context_count[i]; j++){
for(k=0; k<CONTEXT_SIZE; k++){
int pred= j ? f->initial_states[i][j-1][k] : 128;
put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1);
}
}
}else{
put_rac(c, state, 0);
}
}
f->avctx->extradata_size= ff_rac_terminate(c);
return 0;
}
static int sort_stt(FFV1Context *s, uint8_t stt[256]){
int i,i2,changed,print=0;
do{
changed=0;
for(i=12; i<244; i++){
for(i2=i+1; i2<245 && i2<i+4; i2++){
#define COST(old, new) \
s->rc_stat[old][0]*-log2((256-(new))/256.0)\
+s->rc_stat[old][1]*-log2( (new) /256.0)
#define COST2(old, new) \
COST(old, new)\
+COST(256-(old), 256-(new))
double size0= COST2(i, i ) + COST2(i2, i2);
double sizeX= COST2(i, i2) + COST2(i2, i );
if(sizeX < size0 && i!=128 && i2!=128){
int j;
FFSWAP(int, stt[ i], stt[ i2]);
FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
if(i != 256-i2){
FFSWAP(int, stt[256-i], stt[256-i2]);
FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
}
for(j=1; j<256; j++){
if (stt[j] == i ) stt[j] = i2;
else if(stt[j] == i2) stt[j] = i ;
if(i != 256-i2){
if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
}
}
print=changed=1;
}
}
}
}while(changed);
return print;
}
static av_cold int encode_init(AVCodecContext *avctx)
{
FFV1Context *s = avctx->priv_data;
int i, j, k, m;
common_init(avctx);
s->version=0;
s->ac= avctx->coder_type ? 2:0;
if(s->ac>1)
for(i=1; i<256; i++)
s->state_transition[i]=ver2_state[i];
s->plane_count=2;
for(i=0; i<256; i++){
s->quant_table_count=2;
if(avctx->bits_per_raw_sample <=8){
s->quant_tables[0][0][i]= quant11[i];
s->quant_tables[0][1][i]= 11*quant11[i];
s->quant_tables[0][2][i]= 11*11*quant11[i];
s->quant_tables[1][0][i]= quant11[i];
s->quant_tables[1][1][i]= 11*quant11[i];
s->quant_tables[1][2][i]= 11*11*quant5 [i];
s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
}else{
s->quant_tables[0][0][i]= quant9_10bit[i];
s->quant_tables[0][1][i]= 11*quant9_10bit[i];
s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
s->quant_tables[1][0][i]= quant9_10bit[i];
s->quant_tables[1][1][i]= 11*quant9_10bit[i];
s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
}
}
s->context_count[0]= (11*11*11+1)/2;
s->context_count[1]= (11*11*5*5*5+1)/2;
memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
for(i=0; i<s->plane_count; i++){
PlaneContext * const p= &s->plane[i];
memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
p->quant_table_index= avctx->context_model;
p->context_count= s->context_count[p->quant_table_index];
}
if(allocate_initial_states(s) < 0)
return AVERROR(ENOMEM);
avctx->coded_frame= &s->picture;
switch(avctx->pix_fmt){
case PIX_FMT_YUV444P16:
case PIX_FMT_YUV422P16:
case PIX_FMT_YUV420P16:
if(avctx->bits_per_raw_sample <=8){
av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
return -1;
}
if(!s->ac){
av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
return -1;
}
s->version= FFMAX(s->version, 1);
case PIX_FMT_YUV444P:
case PIX_FMT_YUV422P:
case PIX_FMT_YUV420P:
case PIX_FMT_YUV411P:
case PIX_FMT_YUV410P:
s->colorspace= 0;
break;
case PIX_FMT_RGB32:
s->colorspace= 1;
break;
default:
av_log(avctx, AV_LOG_ERROR, "format not supported\n");
return -1;
}
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
s->picture_number=0;
if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
for(i=0; i<s->quant_table_count; i++){
s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i]));
if(!s->rc_stat2[i])
return AVERROR(ENOMEM);
}
}
if(avctx->stats_in){
char *p= avctx->stats_in;
uint8_t best_state[256][256];
int gob_count=0;
char *next;
av_assert0(s->version>=2);
for(;;){
for(j=0; j<256; j++){
for(i=0; i<2; i++){
s->rc_stat[j][i]= strtol(p, &next, 0);
if(next==p){
av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
return -1;
}
p=next;
}
}
for(i=0; i<s->quant_table_count; i++){
for(j=0; j<s->context_count[i]; j++){
for(k=0; k<32; k++){
for(m=0; m<2; m++){
s->rc_stat2[i][j][k][m]= strtol(p, &next, 0);
if(next==p){
av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p);
return -1;
}
p=next;
}
}
}
}
gob_count= strtol(p, &next, 0);
if(next==p || gob_count <0){
av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
return -1;
}
p=next;
while(*p=='\n' || *p==' ') p++;
if(p[0]==0) break;
}
sort_stt(s, s->state_transition);
find_best_state(best_state, s->state_transition);
for(i=0; i<s->quant_table_count; i++){
for(j=0; j<s->context_count[i]; j++){
for(k=0; k<32; k++){
double p= 128;
if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){
p=256.0*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]);
}
s->initial_states[i][j][k]= best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1])/gob_count, 0, 255)];
}
}
}
}
if(s->version>1){
s->num_h_slices=2;
s->num_v_slices=2;
write_extra_header(s);
}
if(init_slice_contexts(s) < 0)
return -1;
if(init_slice_state(s) < 0)
return -1;
#define STATS_OUT_SIZE 1024*1024*6
if(avctx->flags & CODEC_FLAG_PASS1){
avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
for(i=0; i<s->quant_table_count; i++){
for(j=0; j<s->slice_count; j++){
FFV1Context *sf= s->slice_context[j];
av_assert0(!sf->rc_stat2[i]);
sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
if(!sf->rc_stat2[i])
return AVERROR(ENOMEM);
}
}
}
return 0;
}
#endif /* CONFIG_FFV1_ENCODER */
static void clear_state(FFV1Context *f){
int i, si, j;
for(si=0; si<f->slice_count; si++){
FFV1Context *fs= f->slice_context[si];
for(i=0; i<f->plane_count; i++){
PlaneContext *p= &fs->plane[i];
p->interlace_bit_state[0]= 128;
p->interlace_bit_state[1]= 128;
if(fs->ac){
if(f->initial_states[p->quant_table_index]){
memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count);
}else
memset(p->state, 128, CONTEXT_SIZE*p->context_count);
}else{
for(j=0; j<p->context_count; j++){
p->vlc_state[j].drift= 0;
p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
p->vlc_state[j].bias= 0;
p->vlc_state[j].count= 1;
}
}
}
}
}
#if CONFIG_FFV1_ENCODER
static int encode_slice(AVCodecContext *c, void *arg){
FFV1Context *fs= *(void**)arg;
FFV1Context *f= fs->avctx->priv_data;
int width = fs->slice_width;
int height= fs->slice_height;
int x= fs->slice_x;
int y= fs->slice_y;
AVFrame * const p= &f->picture;
if(f->colorspace==0){
const int chroma_width = -((-width )>>f->chroma_h_shift);
const int chroma_height= -((-height)>>f->chroma_v_shift);
const int cx= x>>f->chroma_h_shift;
const int cy= y>>f->chroma_v_shift;
encode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
encode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
encode_plane(fs, p->data[2] + cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
}else{
encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
}
emms_c();
return 0;
}
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
FFV1Context *f = avctx->priv_data;
RangeCoder * const c= &f->slice_context[0]->c;
AVFrame * const p= &f->picture;
int used_count= 0;
uint8_t keystate=128;
uint8_t *buf_p;
int i, ret;
if (!pkt->data &&
(ret = av_new_packet(pkt, avctx->width*avctx->height*((8*2+1+1)*4)/8
+ FF_MIN_BUFFER_SIZE)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
return ret;
}
ff_init_range_encoder(c, pkt->data, pkt->size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
*p = *pict;
p->pict_type= AV_PICTURE_TYPE_I;
if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
put_rac(c, &keystate, 1);
p->key_frame= 1;
f->gob_count++;
write_header(f);
clear_state(f);
}else{
put_rac(c, &keystate, 0);
p->key_frame= 0;
}
if(!f->ac){
used_count += ff_rac_terminate(c);
//printf("pos=%d\n", used_count);
init_put_bits(&f->slice_context[0]->pb, pkt->data + used_count, pkt->size - used_count);
}else if (f->ac>1){
int i;
for(i=1; i<256; i++){
c->one_state[i]= f->state_transition[i];
c->zero_state[256-i]= 256-c->one_state[i];
}
}
for(i=1; i<f->slice_count; i++){
FFV1Context *fs= f->slice_context[i];
uint8_t *start = pkt->data + (pkt->size-used_count)*i/f->slice_count;
int len = pkt->size/f->slice_count;
if(fs->ac){
ff_init_range_encoder(&fs->c, start, len);
}else{
init_put_bits(&fs->pb, start, len);
}
}
avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
buf_p = pkt->data;
for(i=0; i<f->slice_count; i++){
FFV1Context *fs= f->slice_context[i];
int bytes;
if(fs->ac){
uint8_t state=128;
put_rac(&fs->c, &state, 0);
bytes= ff_rac_terminate(&fs->c);
}else{
flush_put_bits(&fs->pb); //nicer padding FIXME
bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
used_count= 0;
}
if(i>0){
av_assert0(bytes < pkt->size/f->slice_count);
memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
av_assert0(bytes < (1<<24));
AV_WB24(buf_p+bytes, bytes);
bytes+=3;
}
buf_p += bytes;
}
if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
int j, k, m;
char *p= avctx->stats_out;
char *end= p + STATS_OUT_SIZE;
memset(f->rc_stat, 0, sizeof(f->rc_stat));
for(i=0; i<f->quant_table_count; i++)
memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i]));
for(j=0; j<f->slice_count; j++){
FFV1Context *fs= f->slice_context[j];
for(i=0; i<256; i++){
f->rc_stat[i][0] += fs->rc_stat[i][0];
f->rc_stat[i][1] += fs->rc_stat[i][1];
}
for(i=0; i<f->quant_table_count; i++){
for(k=0; k<f->context_count[i]; k++){
for(m=0; m<32; m++){
f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
}
}
}
}
for(j=0; j<256; j++){
snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
p+= strlen(p);
}
snprintf(p, end-p, "\n");
for(i=0; i<f->quant_table_count; i++){
for(j=0; j<f->context_count[i]; j++){
for(m=0; m<32; m++){
snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
p+= strlen(p);
}
}
}
snprintf(p, end-p, "%d\n", f->gob_count);
} else if(avctx->flags&CODEC_FLAG_PASS1)
avctx->stats_out[0] = '\0';
f->picture_number++;
pkt->size = buf_p - pkt->data;
pkt->flags |= AV_PKT_FLAG_KEY*p->key_frame;
*got_packet = 1;
return 0;
}
#endif /* CONFIG_FFV1_ENCODER */
static av_cold int common_end(AVCodecContext *avctx){
FFV1Context *s = avctx->priv_data;
int i, j;
if (avctx->codec->decode && s->picture.data[0])
avctx->release_buffer(avctx, &s->picture);
for(j=0; j<s->slice_count; j++){
FFV1Context *fs= s->slice_context[j];
for(i=0; i<s->plane_count; i++){
PlaneContext *p= &fs->plane[i];
av_freep(&p->state);
av_freep(&p->vlc_state);
}
av_freep(&fs->sample_buffer);
}
av_freep(&avctx->stats_out);
for(j=0; j<s->quant_table_count; j++){
av_freep(&s->initial_states[j]);
for(i=0; i<s->slice_count; i++){
FFV1Context *sf= s->slice_context[i];
av_freep(&sf->rc_stat2[j]);
}
av_freep(&s->rc_stat2[j]);
}
for(i=0; i<s->slice_count; i++){
av_freep(&s->slice_context[i]);
}
return 0;
}
static av_always_inline void decode_line(FFV1Context *s, int w,
int16_t *sample[2],
int plane_index, int bits)
{
PlaneContext * const p= &s->plane[plane_index];
RangeCoder * const c= &s->c;
int x;
int run_count=0;
int run_mode=0;
int run_index= s->run_index;
for(x=0; x<w; x++){
int diff, context, sign;
context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
if(context < 0){
context= -context;
sign=1;
}else
sign=0;
av_assert2(context < p->context_count);
if(s->ac){
diff= get_symbol_inline(c, p->state[context], 1);
}else{
if(context == 0 && run_mode==0) run_mode=1;
if(run_mode){
if(run_count==0 && run_mode==1){
if(get_bits1(&s->gb)){
run_count = 1<<ff_log2_run[run_index];
if(x + run_count <= w) run_index++;
}else{
if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
else run_count=0;
if(run_index) run_index--;
run_mode=2;
}
}
run_count--;
if(run_count < 0){
run_mode=0;
run_count=0;
diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
if(diff>=0) diff++;
}else
diff=0;
}else
diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
// printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
}
if(sign) diff= -diff;
sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
}
s->run_index= run_index;
}
static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
int x, y;
int16_t *sample[2];
sample[0]=s->sample_buffer +3;
sample[1]=s->sample_buffer+w+6+3;
s->run_index=0;
memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
for(y=0; y<h; y++){
int16_t *temp = sample[0]; //FIXME try a normal buffer
sample[0]= sample[1];
sample[1]= temp;
sample[1][-1]= sample[0][0 ];
sample[0][ w]= sample[0][w-1];
//{START_TIMER
if(s->avctx->bits_per_raw_sample <= 8){
decode_line(s, w, sample, plane_index, 8);
for(x=0; x<w; x++){
src[x + stride*y]= sample[1][x];
}
}else{
decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
for(x=0; x<w; x++){
((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
}
}
//STOP_TIMER("decode-line")}
}
}
static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
int x, y, p;
int16_t *sample[3][2];
for(x=0; x<3; x++){
sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
}
s->run_index=0;
memset(s->sample_buffer, 0, 6*(w+6)*sizeof(*s->sample_buffer));
for(y=0; y<h; y++){
for(p=0; p<3; p++){
int16_t *temp = sample[p][0]; //FIXME try a normal buffer
sample[p][0]= sample[p][1];
sample[p][1]= temp;
sample[p][1][-1]= sample[p][0][0 ];
sample[p][0][ w]= sample[p][0][w-1];
decode_line(s, w, sample[p], FFMIN(p, 1), 9);
}
for(x=0; x<w; x++){
int g= sample[0][1][x];
int b= sample[1][1][x];
int r= sample[2][1][x];
// assert(g>=0 && b>=0 && r>=0);
// assert(g<256 && b<512 && r<512);
b -= 0x100;
r -= 0x100;
g -= (b + r)>>2;
b += g;
r += g;
src[x + stride*y]= b + (g<<8) + (r<<16) + (0xFF<<24);
}
}
}
static int decode_slice(AVCodecContext *c, void *arg){
FFV1Context *fs= *(void**)arg;
FFV1Context *f= fs->avctx->priv_data;
int width = fs->slice_width;
int height= fs->slice_height;
int x= fs->slice_x;
int y= fs->slice_y;
AVFrame * const p= &f->picture;
av_assert1(width && height);
if(f->colorspace==0){
const int chroma_width = -((-width )>>f->chroma_h_shift);
const int chroma_height= -((-height)>>f->chroma_v_shift);
const int cx= x>>f->chroma_h_shift;
const int cy= y>>f->chroma_v_shift;
decode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
decode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
decode_plane(fs, p->data[2] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[2], 1);
}else{
decode_rgb_frame(fs, (uint32_t*)p->data[0] + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
}
emms_c();
return 0;
}
static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
int v;
int i=0;
uint8_t state[CONTEXT_SIZE];
memset(state, 128, sizeof(state));
for(v=0; i<128 ; v++){
int len= get_symbol(c, state, 0) + 1;
if(len + i > 128) return -1;
while(len--){
quant_table[i] = scale*v;
i++;
//printf("%2d ",v);
//if(i%16==0) printf("\n");
}
}
for(i=1; i<128; i++){
quant_table[256-i]= -quant_table[i];
}
quant_table[128]= -quant_table[127];
return 2*v - 1;
}
static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
int i;
int context_count=1;
for(i=0; i<5; i++){
context_count*= read_quant_table(c, quant_table[i], context_count);
if(context_count > 32768U){
return -1;
}
}
return (context_count+1)/2;
}
static int read_extra_header(FFV1Context *f){
RangeCoder * const c= &f->c;
uint8_t state[CONTEXT_SIZE];
int i, j, k;
uint8_t state2[32][CONTEXT_SIZE];
memset(state2, 128, sizeof(state2));
memset(state, 128, sizeof(state));
ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
f->version= get_symbol(c, state, 0);
f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
if(f->ac>1){
for(i=1; i<256; i++){
f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
}
}
f->colorspace= get_symbol(c, state, 0); //YUV cs type
f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
get_rac(c, state); //no chroma = false
f->chroma_h_shift= get_symbol(c, state, 0);
f->chroma_v_shift= get_symbol(c, state, 0);
get_rac(c, state); //transparency plane
f->plane_count= 2;
f->num_h_slices= 1 + get_symbol(c, state, 0);
f->num_v_slices= 1 + get_symbol(c, state, 0);
if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
return -1;
}
f->quant_table_count= get_symbol(c, state, 0);
if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
return -1;
for(i=0; i<f->quant_table_count; i++){
if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
return -1;
}
}
if(allocate_initial_states(f) < 0)
return AVERROR(ENOMEM);
for(i=0; i<f->quant_table_count; i++){
if(get_rac(c, state)){
for(j=0; j<f->context_count[i]; j++){
for(k=0; k<CONTEXT_SIZE; k++){
int pred= j ? f->initial_states[i][j-1][k] : 128;
f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF;
}
}
}
}
return 0;
}
static int read_header(FFV1Context *f){
uint8_t state[CONTEXT_SIZE];
int i, j, context_count;
RangeCoder * const c= &f->slice_context[0]->c;
memset(state, 128, sizeof(state));
if(f->version < 2){
f->version= get_symbol(c, state, 0);
f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
if(f->ac>1){
for(i=1; i<256; i++){
f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
}
}
f->colorspace= get_symbol(c, state, 0); //YUV cs type
if(f->version>0)
f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
get_rac(c, state); //no chroma = false
f->chroma_h_shift= get_symbol(c, state, 0);
f->chroma_v_shift= get_symbol(c, state, 0);
get_rac(c, state); //transparency plane
f->plane_count= 2;
}
if(f->colorspace==0){
if(f->avctx->bits_per_raw_sample<=8){
switch(16*f->chroma_h_shift + f->chroma_v_shift){
case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
default:
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return -1;
}
}else{
switch(16*f->chroma_h_shift + f->chroma_v_shift){
case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
default:
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return -1;
}
}
}else if(f->colorspace==1){
if(f->chroma_h_shift || f->chroma_v_shift){
av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
return -1;
}
f->avctx->pix_fmt= PIX_FMT_RGB32;
}else{
av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
return -1;
}
//printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
if(f->version < 2){
context_count= read_quant_tables(c, f->quant_table);
if(context_count < 0){
av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
return -1;
}
}else{
f->slice_count= get_symbol(c, state, 0);
if(f->slice_count > (unsigned)MAX_SLICES)
return -1;
}
for(j=0; j<f->slice_count; j++){
FFV1Context *fs= f->slice_context[j];
fs->ac= f->ac;
if(f->version >= 2){
fs->slice_x = get_symbol(c, state, 0) *f->width ;
fs->slice_y = get_symbol(c, state, 0) *f->height;
fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
fs->slice_x /= f->num_h_slices;
fs->slice_y /= f->num_v_slices;
fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
return -1;
if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
|| (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
return -1;
}
for(i=0; i<f->plane_count; i++){
PlaneContext * const p= &fs->plane[i];
if(f->version >= 2){
int idx=get_symbol(c, state, 0);
if(idx > (unsigned)f->quant_table_count){
av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
return -1;
}
p->quant_table_index= idx;
memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
context_count= f->context_count[idx];
}else{
memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
}
if(p->context_count < context_count){
av_freep(&p->state);
av_freep(&p->vlc_state);
}
p->context_count= context_count;
}
}
return 0;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
FFV1Context *f = avctx->priv_data;
common_init(avctx);
if(avctx->extradata && read_extra_header(f) < 0)
return -1;
if(init_slice_contexts(f) < 0)
return -1;
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
FFV1Context *f = avctx->priv_data;
RangeCoder * const c= &f->slice_context[0]->c;
AVFrame * const p= &f->picture;
int bytes_read, i;
uint8_t keystate= 128;
const uint8_t *buf_p;
AVFrame *picture = data;
/* release previously stored data */
if (p->data[0])
avctx->release_buffer(avctx, p);
ff_init_range_decoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
p->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
if(get_rac(c, &keystate)){
p->key_frame= 1;
if(read_header(f) < 0)
return -1;
if(init_slice_state(f) < 0)
return -1;
clear_state(f);
}else{
p->key_frame= 0;
}
if(f->ac>1){
int i;
for(i=1; i<256; i++){
c->one_state[i]= f->state_transition[i];
c->zero_state[256-i]= 256-c->one_state[i];
}
}
p->reference= 0;
if(avctx->get_buffer(avctx, p) < 0){
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
if(avctx->debug&FF_DEBUG_PICT_INFO)
av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
if(!f->ac){
bytes_read = c->bytestream - c->bytestream_start - 1;
if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
//printf("pos=%d\n", bytes_read);
init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, (buf_size - bytes_read) * 8);
} else {
bytes_read = 0; /* avoid warning */
}
buf_p= buf + buf_size;
for(i=f->slice_count-1; i>0; i--){
FFV1Context *fs= f->slice_context[i];
int v= AV_RB24(buf_p-3)+3;
if(buf_p - buf <= v){
av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
return -1;
}
buf_p -= v;
if(fs->ac){
ff_init_range_decoder(&fs->c, buf_p, v);
}else{
init_get_bits(&fs->gb, buf_p, v * 8);
}
}
avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
f->picture_number++;
*picture= *p;
*data_size = sizeof(AVFrame);
return buf_size;
}
AVCodec ff_ffv1_decoder = {
.name = "ffv1",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_FFV1,
.priv_data_size = sizeof(FFV1Context),
.init = decode_init,
.close = common_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ |
CODEC_CAP_SLICE_THREADS,
.long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
};
#if CONFIG_FFV1_ENCODER
AVCodec ff_ffv1_encoder = {
.name = "ffv1",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_FFV1,
.priv_data_size = sizeof(FFV1Context),
.init = encode_init,
.encode2 = encode_frame,
.close = common_end,
.capabilities = CODEC_CAP_SLICE_THREADS,
.pix_fmts = (const enum PixelFormat[]){
PIX_FMT_YUV420P, PIX_FMT_YUV444P, PIX_FMT_YUV422P, PIX_FMT_YUV411P,
PIX_FMT_YUV410P, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16,
PIX_FMT_YUV444P16, PIX_FMT_NONE
},
.long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
};
#endif