mirror of https://git.ffmpeg.org/ffmpeg.git
366 lines
9.1 KiB
C
366 lines
9.1 KiB
C
/*
|
|
* FFT/IFFT transforms
|
|
* Copyright (c) 2008 Loren Merritt
|
|
* Copyright (c) 2002 Fabrice Bellard
|
|
* Partly based on libdjbfft by D. J. Bernstein
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file libavcodec/fft.c
|
|
* FFT/IFFT transforms.
|
|
*/
|
|
|
|
#include "dsputil.h"
|
|
|
|
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
|
|
#if !CONFIG_HARDCODED_TABLES
|
|
COSTABLE(16);
|
|
COSTABLE(32);
|
|
COSTABLE(64);
|
|
COSTABLE(128);
|
|
COSTABLE(256);
|
|
COSTABLE(512);
|
|
COSTABLE(1024);
|
|
COSTABLE(2048);
|
|
COSTABLE(4096);
|
|
COSTABLE(8192);
|
|
COSTABLE(16384);
|
|
COSTABLE(32768);
|
|
COSTABLE(65536);
|
|
#endif
|
|
COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
|
|
NULL, NULL, NULL, NULL,
|
|
ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
|
|
ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
|
|
};
|
|
|
|
static int split_radix_permutation(int i, int n, int inverse)
|
|
{
|
|
int m;
|
|
if(n <= 2) return i&1;
|
|
m = n >> 1;
|
|
if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
|
|
m >>= 1;
|
|
if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
|
|
else return split_radix_permutation(i, m, inverse)*4 - 1;
|
|
}
|
|
|
|
av_cold void ff_init_ff_cos_tabs(int index)
|
|
{
|
|
#if !CONFIG_HARDCODED_TABLES
|
|
int i;
|
|
int m = 1<<index;
|
|
double freq = 2*M_PI/m;
|
|
FFTSample *tab = ff_cos_tabs[index];
|
|
for(i=0; i<=m/4; i++)
|
|
tab[i] = cos(i*freq);
|
|
for(i=1; i<m/4; i++)
|
|
tab[m/2-i] = tab[i];
|
|
#endif
|
|
}
|
|
|
|
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
|
|
{
|
|
int i, j, m, n;
|
|
float alpha, c1, s1, s2;
|
|
int av_unused has_vectors;
|
|
|
|
if (nbits < 2 || nbits > 16)
|
|
goto fail;
|
|
s->nbits = nbits;
|
|
n = 1 << nbits;
|
|
|
|
s->tmp_buf = NULL;
|
|
s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
|
|
if (!s->exptab)
|
|
goto fail;
|
|
s->revtab = av_malloc(n * sizeof(uint16_t));
|
|
if (!s->revtab)
|
|
goto fail;
|
|
s->inverse = inverse;
|
|
|
|
s2 = inverse ? 1.0 : -1.0;
|
|
|
|
s->fft_permute = ff_fft_permute_c;
|
|
s->fft_calc = ff_fft_calc_c;
|
|
#if CONFIG_MDCT
|
|
s->imdct_calc = ff_imdct_calc_c;
|
|
s->imdct_half = ff_imdct_half_c;
|
|
s->mdct_calc = ff_mdct_calc_c;
|
|
#endif
|
|
s->exptab1 = NULL;
|
|
s->split_radix = 1;
|
|
|
|
if (ARCH_ARM) ff_fft_init_arm(s);
|
|
if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
|
|
if (HAVE_MMX) ff_fft_init_mmx(s);
|
|
|
|
if (s->split_radix) {
|
|
for(j=4; j<=nbits; j++) {
|
|
ff_init_ff_cos_tabs(j);
|
|
}
|
|
for(i=0; i<n; i++)
|
|
s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
|
|
s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
|
|
} else {
|
|
int np, nblocks, np2, l;
|
|
FFTComplex *q;
|
|
|
|
for(i=0; i<(n/2); i++) {
|
|
alpha = 2 * M_PI * (float)i / (float)n;
|
|
c1 = cos(alpha);
|
|
s1 = sin(alpha) * s2;
|
|
s->exptab[i].re = c1;
|
|
s->exptab[i].im = s1;
|
|
}
|
|
|
|
np = 1 << nbits;
|
|
nblocks = np >> 3;
|
|
np2 = np >> 1;
|
|
s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
|
|
if (!s->exptab1)
|
|
goto fail;
|
|
q = s->exptab1;
|
|
do {
|
|
for(l = 0; l < np2; l += 2 * nblocks) {
|
|
*q++ = s->exptab[l];
|
|
*q++ = s->exptab[l + nblocks];
|
|
|
|
q->re = -s->exptab[l].im;
|
|
q->im = s->exptab[l].re;
|
|
q++;
|
|
q->re = -s->exptab[l + nblocks].im;
|
|
q->im = s->exptab[l + nblocks].re;
|
|
q++;
|
|
}
|
|
nblocks = nblocks >> 1;
|
|
} while (nblocks != 0);
|
|
av_freep(&s->exptab);
|
|
|
|
/* compute bit reverse table */
|
|
for(i=0;i<n;i++) {
|
|
m=0;
|
|
for(j=0;j<nbits;j++) {
|
|
m |= ((i >> j) & 1) << (nbits-j-1);
|
|
}
|
|
s->revtab[i]=m;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
av_freep(&s->revtab);
|
|
av_freep(&s->exptab);
|
|
av_freep(&s->exptab1);
|
|
av_freep(&s->tmp_buf);
|
|
return -1;
|
|
}
|
|
|
|
void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
|
|
{
|
|
int j, k, np;
|
|
FFTComplex tmp;
|
|
const uint16_t *revtab = s->revtab;
|
|
np = 1 << s->nbits;
|
|
|
|
if (s->tmp_buf) {
|
|
/* TODO: handle split-radix permute in a more optimal way, probably in-place */
|
|
for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
|
|
memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
|
|
return;
|
|
}
|
|
|
|
/* reverse */
|
|
for(j=0;j<np;j++) {
|
|
k = revtab[j];
|
|
if (k < j) {
|
|
tmp = z[k];
|
|
z[k] = z[j];
|
|
z[j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
av_cold void ff_fft_end(FFTContext *s)
|
|
{
|
|
av_freep(&s->revtab);
|
|
av_freep(&s->exptab);
|
|
av_freep(&s->exptab1);
|
|
av_freep(&s->tmp_buf);
|
|
}
|
|
|
|
#define sqrthalf (float)M_SQRT1_2
|
|
|
|
#define BF(x,y,a,b) {\
|
|
x = a - b;\
|
|
y = a + b;\
|
|
}
|
|
|
|
#define BUTTERFLIES(a0,a1,a2,a3) {\
|
|
BF(t3, t5, t5, t1);\
|
|
BF(a2.re, a0.re, a0.re, t5);\
|
|
BF(a3.im, a1.im, a1.im, t3);\
|
|
BF(t4, t6, t2, t6);\
|
|
BF(a3.re, a1.re, a1.re, t4);\
|
|
BF(a2.im, a0.im, a0.im, t6);\
|
|
}
|
|
|
|
// force loading all the inputs before storing any.
|
|
// this is slightly slower for small data, but avoids store->load aliasing
|
|
// for addresses separated by large powers of 2.
|
|
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
|
|
FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
|
|
BF(t3, t5, t5, t1);\
|
|
BF(a2.re, a0.re, r0, t5);\
|
|
BF(a3.im, a1.im, i1, t3);\
|
|
BF(t4, t6, t2, t6);\
|
|
BF(a3.re, a1.re, r1, t4);\
|
|
BF(a2.im, a0.im, i0, t6);\
|
|
}
|
|
|
|
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
|
|
t1 = a2.re * wre + a2.im * wim;\
|
|
t2 = a2.im * wre - a2.re * wim;\
|
|
t5 = a3.re * wre - a3.im * wim;\
|
|
t6 = a3.im * wre + a3.re * wim;\
|
|
BUTTERFLIES(a0,a1,a2,a3)\
|
|
}
|
|
|
|
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
|
|
t1 = a2.re;\
|
|
t2 = a2.im;\
|
|
t5 = a3.re;\
|
|
t6 = a3.im;\
|
|
BUTTERFLIES(a0,a1,a2,a3)\
|
|
}
|
|
|
|
/* z[0...8n-1], w[1...2n-1] */
|
|
#define PASS(name)\
|
|
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
|
|
{\
|
|
FFTSample t1, t2, t3, t4, t5, t6;\
|
|
int o1 = 2*n;\
|
|
int o2 = 4*n;\
|
|
int o3 = 6*n;\
|
|
const FFTSample *wim = wre+o1;\
|
|
n--;\
|
|
\
|
|
TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
|
|
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
|
|
do {\
|
|
z += 2;\
|
|
wre += 2;\
|
|
wim -= 2;\
|
|
TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
|
|
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
|
|
} while(--n);\
|
|
}
|
|
|
|
PASS(pass)
|
|
#undef BUTTERFLIES
|
|
#define BUTTERFLIES BUTTERFLIES_BIG
|
|
PASS(pass_big)
|
|
|
|
#define DECL_FFT(n,n2,n4)\
|
|
static void fft##n(FFTComplex *z)\
|
|
{\
|
|
fft##n2(z);\
|
|
fft##n4(z+n4*2);\
|
|
fft##n4(z+n4*3);\
|
|
pass(z,ff_cos_##n,n4/2);\
|
|
}
|
|
|
|
static void fft4(FFTComplex *z)
|
|
{
|
|
FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
|
|
|
|
BF(t3, t1, z[0].re, z[1].re);
|
|
BF(t8, t6, z[3].re, z[2].re);
|
|
BF(z[2].re, z[0].re, t1, t6);
|
|
BF(t4, t2, z[0].im, z[1].im);
|
|
BF(t7, t5, z[2].im, z[3].im);
|
|
BF(z[3].im, z[1].im, t4, t8);
|
|
BF(z[3].re, z[1].re, t3, t7);
|
|
BF(z[2].im, z[0].im, t2, t5);
|
|
}
|
|
|
|
static void fft8(FFTComplex *z)
|
|
{
|
|
FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
|
|
|
|
fft4(z);
|
|
|
|
BF(t1, z[5].re, z[4].re, -z[5].re);
|
|
BF(t2, z[5].im, z[4].im, -z[5].im);
|
|
BF(t3, z[7].re, z[6].re, -z[7].re);
|
|
BF(t4, z[7].im, z[6].im, -z[7].im);
|
|
BF(t8, t1, t3, t1);
|
|
BF(t7, t2, t2, t4);
|
|
BF(z[4].re, z[0].re, z[0].re, t1);
|
|
BF(z[4].im, z[0].im, z[0].im, t2);
|
|
BF(z[6].re, z[2].re, z[2].re, t7);
|
|
BF(z[6].im, z[2].im, z[2].im, t8);
|
|
|
|
TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
|
|
}
|
|
|
|
#if !CONFIG_SMALL
|
|
static void fft16(FFTComplex *z)
|
|
{
|
|
FFTSample t1, t2, t3, t4, t5, t6;
|
|
|
|
fft8(z);
|
|
fft4(z+8);
|
|
fft4(z+12);
|
|
|
|
TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
|
|
TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
|
|
TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
|
|
TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
|
|
}
|
|
#else
|
|
DECL_FFT(16,8,4)
|
|
#endif
|
|
DECL_FFT(32,16,8)
|
|
DECL_FFT(64,32,16)
|
|
DECL_FFT(128,64,32)
|
|
DECL_FFT(256,128,64)
|
|
DECL_FFT(512,256,128)
|
|
#if !CONFIG_SMALL
|
|
#define pass pass_big
|
|
#endif
|
|
DECL_FFT(1024,512,256)
|
|
DECL_FFT(2048,1024,512)
|
|
DECL_FFT(4096,2048,1024)
|
|
DECL_FFT(8192,4096,2048)
|
|
DECL_FFT(16384,8192,4096)
|
|
DECL_FFT(32768,16384,8192)
|
|
DECL_FFT(65536,32768,16384)
|
|
|
|
static void (* const fft_dispatch[])(FFTComplex*) = {
|
|
fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
|
|
fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
|
|
};
|
|
|
|
void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
|
|
{
|
|
fft_dispatch[s->nbits-2](z);
|
|
}
|
|
|