ffmpeg/libavcodec/mpegvideo.c

1931 lines
61 KiB
C

/*
* The simplest mpeg encoder (well, it was the simplest!)
* Copyright (c) 2000,2001 Gerard Lantau.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"
#ifdef USE_FASTMEMCPY
#include "fastmemcpy.h"
#endif
static void encode_picture(MpegEncContext *s, int picture_number);
static void rate_control_init(MpegEncContext *s);
static int rate_estimate_qscale(MpegEncContext *s);
static void dct_unquantize_mpeg1_c(MpegEncContext *s,
DCTELEM *block, int n, int qscale);
static void dct_unquantize_h263_c(MpegEncContext *s,
DCTELEM *block, int n, int qscale);
static void draw_edges_c(UINT8 *buf, int wrap, int width, int height, int w);
static int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale);
int (*dct_quantize)(MpegEncContext *s, DCTELEM *block, int n, int qscale)= dct_quantize_c;
void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w)= draw_edges_c;
#define EDGE_WIDTH 16
/* enable all paranoid tests for rounding, overflows, etc... */
//#define PARANOID
//#define DEBUG
/* for jpeg fast DCT */
#define CONST_BITS 14
static const unsigned short aanscales[64] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
static UINT8 h263_chroma_roundtab[16] = {
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
};
static UINT16 default_mv_penalty[MAX_FCODE+1][MAX_MV*2+1];
static UINT8 default_fcode_tab[MAX_MV*2+1];
/* default motion estimation */
int motion_estimation_method = ME_LOG;
extern UINT8 zigzag_end[64];
static void convert_matrix(int *qmat, UINT16 *qmat16, const UINT16 *quant_matrix, int qscale)
{
int i;
if (av_fdct == jpeg_fdct_ifast) {
for(i=0;i<64;i++) {
/* 16 <= qscale * quant_matrix[i] <= 7905 */
/* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */
/* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= (1<<36)/249205026 */
/* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
qmat[block_permute_op(i)] = (int)((UINT64_C(1) << (QMAT_SHIFT + 11)) /
(aanscales[i] * qscale * quant_matrix[block_permute_op(i)]));
}
} else {
for(i=0;i<64;i++) {
/* We can safely suppose that 16 <= quant_matrix[i] <= 255
So 16 <= qscale * quant_matrix[i] <= 7905
so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67
*/
qmat[i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[i]);
qmat16[i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[block_permute_op(i)]);
}
}
}
/* init common structure for both encoder and decoder */
int MPV_common_init(MpegEncContext *s)
{
int c_size, i;
UINT8 *pict;
if (s->out_format == FMT_H263)
s->dct_unquantize = dct_unquantize_h263_c;
else
s->dct_unquantize = dct_unquantize_mpeg1_c;
#ifdef HAVE_MMX
MPV_common_init_mmx(s);
#endif
s->mb_width = (s->width + 15) / 16;
s->mb_height = (s->height + 15) / 16;
s->mb_num = s->mb_width * s->mb_height;
s->linesize = s->mb_width * 16 + 2 * EDGE_WIDTH;
for(i=0;i<3;i++) {
int w, h, shift, pict_start;
w = s->linesize;
h = s->mb_height * 16 + 2 * EDGE_WIDTH;
shift = (i == 0) ? 0 : 1;
c_size = (w >> shift) * (h >> shift);
pict_start = (w >> shift) * (EDGE_WIDTH >> shift) + (EDGE_WIDTH >> shift);
pict = av_mallocz(c_size);
if (pict == NULL)
goto fail;
s->last_picture_base[i] = pict;
s->last_picture[i] = pict + pict_start;
pict = av_mallocz(c_size);
if (pict == NULL)
goto fail;
s->next_picture_base[i] = pict;
s->next_picture[i] = pict + pict_start;
if (s->has_b_frames) {
pict = av_mallocz(c_size);
if (pict == NULL)
goto fail;
s->aux_picture_base[i] = pict;
s->aux_picture[i] = pict + pict_start;
}
}
if (s->encoding) {
/* Allocate MB type table */
s->mb_type = av_mallocz(s->mb_num * sizeof(char));
if (s->mb_type == NULL) {
perror("malloc");
goto fail;
}
s->mb_var = av_mallocz(s->mb_num * sizeof(INT16));
if (s->mb_var == NULL) {
perror("malloc");
goto fail;
}
/* Allocate MV table */
/* By now we just have one MV per MB */
s->mv_table[0] = av_mallocz(s->mb_num * sizeof(INT16));
s->mv_table[1] = av_mallocz(s->mb_num * sizeof(INT16));
if (s->mv_table[1] == NULL || s->mv_table[0] == NULL) {
perror("malloc");
goto fail;
}
}
if (s->out_format == FMT_H263 || s->encoding) {
int size;
/* MV prediction */
size = (2 * s->mb_width + 2) * (2 * s->mb_height + 2);
s->motion_val = malloc(size * 2 * sizeof(INT16));
if (s->motion_val == NULL)
goto fail;
memset(s->motion_val, 0, size * 2 * sizeof(INT16));
}
if (s->h263_pred || s->h263_plus) {
int y_size, c_size, i, size;
/* dc values */
y_size = (2 * s->mb_width + 2) * (2 * s->mb_height + 2);
c_size = (s->mb_width + 2) * (s->mb_height + 2);
size = y_size + 2 * c_size;
s->dc_val[0] = malloc(size * sizeof(INT16));
if (s->dc_val[0] == NULL)
goto fail;
s->dc_val[1] = s->dc_val[0] + y_size;
s->dc_val[2] = s->dc_val[1] + c_size;
for(i=0;i<size;i++)
s->dc_val[0][i] = 1024;
/* ac values */
s->ac_val[0] = av_mallocz(size * sizeof(INT16) * 16);
if (s->ac_val[0] == NULL)
goto fail;
s->ac_val[1] = s->ac_val[0] + y_size;
s->ac_val[2] = s->ac_val[1] + c_size;
/* cbp values */
s->coded_block = av_mallocz(y_size);
if (!s->coded_block)
goto fail;
/* which mb is a intra block */
s->mbintra_table = av_mallocz(s->mb_num);
if (!s->mbintra_table)
goto fail;
memset(s->mbintra_table, 1, s->mb_num);
}
/* default structure is frame */
s->picture_structure = PICT_FRAME;
/* init macroblock skip table */
if (!s->encoding) {
s->mbskip_table = av_mallocz(s->mb_num);
if (!s->mbskip_table)
goto fail;
}
s->context_initialized = 1;
return 0;
fail:
MPV_common_end(s);
return -1;
}
/* init common structure for both encoder and decoder */
void MPV_common_end(MpegEncContext *s)
{
int i;
if (s->mb_type)
free(s->mb_type);
if (s->mb_var)
free(s->mb_var);
if (s->mv_table[0])
free(s->mv_table[0]);
if (s->mv_table[1])
free(s->mv_table[1]);
if (s->motion_val)
free(s->motion_val);
if (s->dc_val[0])
free(s->dc_val[0]);
if (s->ac_val[0])
free(s->ac_val[0]);
if (s->coded_block)
free(s->coded_block);
if (s->mbintra_table)
free(s->mbintra_table);
if (s->mbskip_table)
free(s->mbskip_table);
for(i=0;i<3;i++) {
if (s->last_picture_base[i])
free(s->last_picture_base[i]);
if (s->next_picture_base[i])
free(s->next_picture_base[i]);
if (s->has_b_frames)
free(s->aux_picture_base[i]);
}
s->context_initialized = 0;
}
/* init video encoder */
int MPV_encode_init(AVCodecContext *avctx)
{
MpegEncContext *s = avctx->priv_data;
int i;
s->bit_rate = avctx->bit_rate;
s->bit_rate_tolerance = avctx->bit_rate_tolerance;
s->frame_rate = avctx->frame_rate;
s->width = avctx->width;
s->height = avctx->height;
s->gop_size = avctx->gop_size;
s->rtp_mode = avctx->rtp_mode;
s->rtp_payload_size = avctx->rtp_payload_size;
if (avctx->rtp_callback)
s->rtp_callback = avctx->rtp_callback;
s->qmin= avctx->qmin;
s->qmax= avctx->qmax;
s->max_qdiff= avctx->max_qdiff;
s->qcompress= avctx->qcompress;
s->qblur= avctx->qblur;
s->avctx = avctx;
s->aspect_ratio_info= avctx->aspect_ratio_info;
s->hq= (avctx->flags & CODEC_FLAG_HQ);
if (s->gop_size <= 1) {
s->intra_only = 1;
s->gop_size = 12;
} else {
s->intra_only = 0;
}
s->full_search = motion_estimation_method;
s->fixed_qscale = (avctx->flags & CODEC_FLAG_QSCALE);
switch(avctx->codec->id) {
case CODEC_ID_MPEG1VIDEO:
s->out_format = FMT_MPEG1;
break;
case CODEC_ID_MJPEG:
s->out_format = FMT_MJPEG;
s->intra_only = 1; /* force intra only for jpeg */
s->mjpeg_write_tables = 1; /* write all tables */
s->mjpeg_vsample[0] = 2; /* set up default sampling factors */
s->mjpeg_vsample[1] = 1; /* the only currently supported values */
s->mjpeg_vsample[2] = 1;
s->mjpeg_hsample[0] = 2;
s->mjpeg_hsample[1] = 1;
s->mjpeg_hsample[2] = 1;
if (mjpeg_init(s) < 0)
return -1;
break;
case CODEC_ID_H263:
if (h263_get_picture_format(s->width, s->height) == 7) {
printf("Input picture size isn't suitable for h263 codec! try h263+\n");
return -1;
}
s->out_format = FMT_H263;
break;
case CODEC_ID_H263P:
s->out_format = FMT_H263;
s->rtp_mode = 1;
s->rtp_payload_size = 1200;
s->h263_plus = 1;
s->unrestricted_mv = 1;
/* These are just to be sure */
s->umvplus = 0;
s->umvplus_dec = 0;
break;
case CODEC_ID_RV10:
s->out_format = FMT_H263;
s->h263_rv10 = 1;
break;
case CODEC_ID_MPEG4:
s->out_format = FMT_H263;
s->h263_pred = 1;
s->unrestricted_mv = 1;
break;
case CODEC_ID_MSMPEG4:
s->out_format = FMT_H263;
s->h263_msmpeg4 = 1;
s->h263_pred = 1;
s->unrestricted_mv = 1;
break;
default:
return -1;
}
{ /* set up some save defaults, some codecs might override them later */
static int done=0;
if(!done){
int i;
done=1;
memset(default_mv_penalty, 0, sizeof(UINT16)*(MAX_FCODE+1)*(2*MAX_MV+1));
memset(default_fcode_tab , 0, sizeof(UINT8)*(2*MAX_MV+1));
for(i=-16; i<16; i++){
default_fcode_tab[i + MAX_MV]= 1;
}
}
}
s->mv_penalty= default_mv_penalty;
s->fcode_tab= default_fcode_tab;
if (s->out_format == FMT_H263)
h263_encode_init(s);
else if (s->out_format == FMT_MPEG1)
mpeg1_encode_init(s);
/* dont use mv_penalty table for crap MV as it would be confused */
if(s->full_search<4) s->mv_penalty= default_mv_penalty;
s->encoding = 1;
/* init */
if (MPV_common_init(s) < 0)
return -1;
/* init default q matrix */
for(i=0;i<64;i++) {
s->intra_matrix[i] = default_intra_matrix[i];
s->non_intra_matrix[i] = default_non_intra_matrix[i];
}
/* rate control init */
rate_control_init(s);
s->picture_number = 0;
s->picture_in_gop_number = 0;
s->fake_picture_number = 0;
/* motion detector init */
s->f_code = 1;
return 0;
}
int MPV_encode_end(AVCodecContext *avctx)
{
MpegEncContext *s = avctx->priv_data;
#ifdef STATS
print_stats();
#endif
MPV_common_end(s);
if (s->out_format == FMT_MJPEG)
mjpeg_close(s);
return 0;
}
/* draw the edges of width 'w' of an image of size width, height */
static void draw_edges_c(UINT8 *buf, int wrap, int width, int height, int w)
{
UINT8 *ptr, *last_line;
int i;
last_line = buf + (height - 1) * wrap;
for(i=0;i<w;i++) {
/* top and bottom */
memcpy(buf - (i + 1) * wrap, buf, width);
memcpy(last_line + (i + 1) * wrap, last_line, width);
}
/* left and right */
ptr = buf;
for(i=0;i<height;i++) {
memset(ptr - w, ptr[0], w);
memset(ptr + width, ptr[width-1], w);
ptr += wrap;
}
/* corners */
for(i=0;i<w;i++) {
memset(buf - (i + 1) * wrap - w, buf[0], w); /* top left */
memset(buf - (i + 1) * wrap + width, buf[width-1], w); /* top right */
memset(last_line + (i + 1) * wrap - w, last_line[0], w); /* top left */
memset(last_line + (i + 1) * wrap + width, last_line[width-1], w); /* top right */
}
}
/* generic function for encode/decode called before a frame is coded/decoded */
void MPV_frame_start(MpegEncContext *s)
{
int i;
UINT8 *tmp;
s->mb_skiped = 0;
if (s->pict_type == B_TYPE) {
for(i=0;i<3;i++) {
s->current_picture[i] = s->aux_picture[i];
}
} else {
s->last_non_b_pict_type= s->pict_type;
for(i=0;i<3;i++) {
/* swap next and last */
tmp = s->last_picture[i];
s->last_picture[i] = s->next_picture[i];
s->next_picture[i] = tmp;
s->current_picture[i] = tmp;
}
}
}
/* generic function for encode/decode called after a frame has been coded/decoded */
void MPV_frame_end(MpegEncContext *s)
{
/* draw edge for correct motion prediction if outside */
if (s->pict_type != B_TYPE && !s->intra_only) {
if(s->avctx==NULL || s->avctx->codec->id!=CODEC_ID_MPEG4 || s->divx_version==500){
draw_edges(s->current_picture[0], s->linesize, s->mb_width*16, s->mb_height*16, EDGE_WIDTH);
draw_edges(s->current_picture[1], s->linesize/2, s->mb_width*8, s->mb_height*8, EDGE_WIDTH/2);
draw_edges(s->current_picture[2], s->linesize/2, s->mb_width*8, s->mb_height*8, EDGE_WIDTH/2);
}else{
/* mpeg4? / opendivx / xvid */
draw_edges(s->current_picture[0], s->linesize, s->width, s->height, EDGE_WIDTH);
draw_edges(s->current_picture[1], s->linesize/2, s->width/2, s->height/2, EDGE_WIDTH/2);
draw_edges(s->current_picture[2], s->linesize/2, s->width/2, s->height/2, EDGE_WIDTH/2);
}
}
emms_c();
}
int MPV_encode_picture(AVCodecContext *avctx,
unsigned char *buf, int buf_size, void *data)
{
MpegEncContext *s = avctx->priv_data;
AVPicture *pict = data;
int i, j;
if (s->fixed_qscale)
s->qscale = avctx->quality;
init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
if (!s->intra_only) {
/* first picture of GOP is intra */
if (s->picture_in_gop_number % s->gop_size==0){
s->picture_in_gop_number=0;
s->pict_type = I_TYPE;
}else
s->pict_type = P_TYPE;
} else {
s->pict_type = I_TYPE;
}
MPV_frame_start(s);
for(i=0;i<3;i++) {
UINT8 *src = pict->data[i];
UINT8 *dest = s->current_picture[i];
int src_wrap = pict->linesize[i];
int dest_wrap = s->linesize;
int w = s->width;
int h = s->height;
if (i >= 1) {
dest_wrap >>= 1;
w >>= 1;
h >>= 1;
}
if(dest_wrap==src_wrap){
s->new_picture[i] = pict->data[i];
} else {
for(j=0;j<h;j++) {
memcpy(dest, src, w);
dest += dest_wrap;
src += src_wrap;
}
s->new_picture[i] = s->current_picture[i];
}
}
encode_picture(s, s->picture_number);
avctx->key_frame = (s->pict_type == I_TYPE);
avctx->header_bits = s->header_bits;
avctx->mv_bits = s->mv_bits;
avctx->misc_bits = s->misc_bits;
avctx->i_tex_bits = s->i_tex_bits;
avctx->p_tex_bits = s->p_tex_bits;
avctx->i_count = s->i_count;
avctx->p_count = s->p_count;
avctx->skip_count = s->skip_count;
MPV_frame_end(s);
s->picture_number++;
s->picture_in_gop_number++;
if (s->out_format == FMT_MJPEG)
mjpeg_picture_trailer(s);
flush_put_bits(&s->pb);
s->last_frame_bits= s->frame_bits;
s->frame_bits = (pbBufPtr(&s->pb) - s->pb.buf) * 8;
s->total_bits += s->frame_bits;
avctx->frame_bits = s->frame_bits;
//printf("fcode: %d, type: %d, head: %d, mv: %d, misc: %d, frame: %d, itex: %d, ptex: %d\n",
//s->f_code, avctx->key_frame, s->header_bits, s->mv_bits, s->misc_bits, s->frame_bits, s->i_tex_bits, s->p_tex_bits);
avctx->quality = s->qscale;
if (avctx->get_psnr) {
/* At this point pict->data should have the original frame */
/* an s->current_picture should have the coded/decoded frame */
get_psnr(pict->data, s->current_picture,
pict->linesize, s->linesize, avctx);
}
return pbBufPtr(&s->pb) - s->pb.buf;
}
static inline int clip(int a, int amin, int amax)
{
if (a < amin)
return amin;
else if (a > amax)
return amax;
else
return a;
}
static inline void gmc1_motion(MpegEncContext *s,
UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
int dest_offset,
UINT8 **ref_picture, int src_offset,
int h)
{
UINT8 *ptr;
int dxy, offset, mx, my, src_x, src_y, height, linesize;
int motion_x, motion_y;
if(s->real_sprite_warping_points>1) printf("more than 1 warp point isnt supported\n");
motion_x= s->sprite_offset[0][0];
motion_y= s->sprite_offset[0][1];
src_x = s->mb_x * 16 + (motion_x >> (s->sprite_warping_accuracy+1));
src_y = s->mb_y * 16 + (motion_y >> (s->sprite_warping_accuracy+1));
motion_x<<=(3-s->sprite_warping_accuracy);
motion_y<<=(3-s->sprite_warping_accuracy);
src_x = clip(src_x, -16, s->width);
if (src_x == s->width)
motion_x =0;
src_y = clip(src_y, -16, s->height);
if (src_y == s->height)
motion_y =0;
linesize = s->linesize;
ptr = ref_picture[0] + (src_y * linesize) + src_x + src_offset;
dest_y+=dest_offset;
gmc1(dest_y , ptr , linesize, h, motion_x&15, motion_y&15, s->no_rounding);
gmc1(dest_y+8, ptr+8, linesize, h, motion_x&15, motion_y&15, s->no_rounding);
motion_x= s->sprite_offset[1][0];
motion_y= s->sprite_offset[1][1];
src_x = s->mb_x * 8 + (motion_x >> (s->sprite_warping_accuracy+1));
src_y = s->mb_y * 8 + (motion_y >> (s->sprite_warping_accuracy+1));
motion_x<<=(3-s->sprite_warping_accuracy);
motion_y<<=(3-s->sprite_warping_accuracy);
src_x = clip(src_x, -8, s->width>>1);
if (src_x == s->width>>1)
motion_x =0;
src_y = clip(src_y, -8, s->height>>1);
if (src_y == s->height>>1)
motion_y =0;
offset = (src_y * linesize>>1) + src_x + (src_offset>>1);
ptr = ref_picture[1] + offset;
gmc1(dest_cb + (dest_offset>>1), ptr, linesize>>1, h>>1, motion_x&15, motion_y&15, s->no_rounding);
ptr = ref_picture[2] + offset;
gmc1(dest_cr + (dest_offset>>1), ptr, linesize>>1, h>>1, motion_x&15, motion_y&15, s->no_rounding);
return;
}
/* apply one mpeg motion vector to the three components */
static inline void mpeg_motion(MpegEncContext *s,
UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
int dest_offset,
UINT8 **ref_picture, int src_offset,
int field_based, op_pixels_func *pix_op,
int motion_x, int motion_y, int h)
{
UINT8 *ptr;
int dxy, offset, mx, my, src_x, src_y, height, linesize;
if(s->quarter_sample)
{
motion_x>>=1;
motion_y>>=1;
}
dxy = ((motion_y & 1) << 1) | (motion_x & 1);
src_x = s->mb_x * 16 + (motion_x >> 1);
src_y = s->mb_y * (16 >> field_based) + (motion_y >> 1);
/* WARNING: do no forget half pels */
height = s->height >> field_based;
src_x = clip(src_x, -16, s->width);
if (src_x == s->width)
dxy &= ~1;
src_y = clip(src_y, -16, height);
if (src_y == height)
dxy &= ~2;
linesize = s->linesize << field_based;
ptr = ref_picture[0] + (src_y * linesize) + (src_x) + src_offset;
dest_y += dest_offset;
pix_op[dxy](dest_y, ptr, linesize, h);
pix_op[dxy](dest_y + 8, ptr + 8, linesize, h);
if (s->out_format == FMT_H263) {
dxy = 0;
if ((motion_x & 3) != 0)
dxy |= 1;
if ((motion_y & 3) != 0)
dxy |= 2;
mx = motion_x >> 2;
my = motion_y >> 2;
} else {
mx = motion_x / 2;
my = motion_y / 2;
dxy = ((my & 1) << 1) | (mx & 1);
mx >>= 1;
my >>= 1;
}
src_x = s->mb_x * 8 + mx;
src_y = s->mb_y * (8 >> field_based) + my;
src_x = clip(src_x, -8, s->width >> 1);
if (src_x == (s->width >> 1))
dxy &= ~1;
src_y = clip(src_y, -8, height >> 1);
if (src_y == (height >> 1))
dxy &= ~2;
offset = (src_y * (linesize >> 1)) + src_x + (src_offset >> 1);
ptr = ref_picture[1] + offset;
pix_op[dxy](dest_cb + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
ptr = ref_picture[2] + offset;
pix_op[dxy](dest_cr + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
}
static inline void qpel_motion(MpegEncContext *s,
UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
int dest_offset,
UINT8 **ref_picture, int src_offset,
int field_based, op_pixels_func *pix_op,
qpel_mc_func *qpix_op,
int motion_x, int motion_y, int h)
{
UINT8 *ptr;
int dxy, offset, mx, my, src_x, src_y, height, linesize;
dxy = ((motion_y & 3) << 2) | (motion_x & 3);
src_x = s->mb_x * 16 + (motion_x >> 2);
src_y = s->mb_y * (16 >> field_based) + (motion_y >> 2);
height = s->height >> field_based;
src_x = clip(src_x, -16, s->width);
if (src_x == s->width)
dxy &= ~3;
src_y = clip(src_y, -16, height);
if (src_y == height)
dxy &= ~12;
linesize = s->linesize << field_based;
ptr = ref_picture[0] + (src_y * linesize) + src_x + src_offset;
dest_y += dest_offset;
//printf("%d %d %d\n", src_x, src_y, dxy);
qpix_op[dxy](dest_y , ptr , linesize, linesize, motion_x&3, motion_y&3);
qpix_op[dxy](dest_y + 8, ptr + 8, linesize, linesize, motion_x&3, motion_y&3);
qpix_op[dxy](dest_y + linesize*8 , ptr + linesize*8 , linesize, linesize, motion_x&3, motion_y&3);
qpix_op[dxy](dest_y + linesize*8 + 8, ptr + linesize*8 + 8, linesize, linesize, motion_x&3, motion_y&3);
mx= (motion_x>>1) | (motion_x&1);
my= (motion_y>>1) | (motion_y&1);
dxy = 0;
if ((mx & 3) != 0)
dxy |= 1;
if ((my & 3) != 0)
dxy |= 2;
mx = mx >> 2;
my = my >> 2;
src_x = s->mb_x * 8 + mx;
src_y = s->mb_y * (8 >> field_based) + my;
src_x = clip(src_x, -8, s->width >> 1);
if (src_x == (s->width >> 1))
dxy &= ~1;
src_y = clip(src_y, -8, height >> 1);
if (src_y == (height >> 1))
dxy &= ~2;
offset = (src_y * (linesize >> 1)) + src_x + (src_offset >> 1);
ptr = ref_picture[1] + offset;
pix_op[dxy](dest_cb + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
ptr = ref_picture[2] + offset;
pix_op[dxy](dest_cr + (dest_offset >> 1), ptr, linesize >> 1, h >> 1);
}
static inline void MPV_motion(MpegEncContext *s,
UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr,
int dir, UINT8 **ref_picture,
op_pixels_func *pix_op, qpel_mc_func *qpix_op)
{
int dxy, offset, mx, my, src_x, src_y, motion_x, motion_y;
int mb_x, mb_y, i;
UINT8 *ptr, *dest;
mb_x = s->mb_x;
mb_y = s->mb_y;
switch(s->mv_type) {
case MV_TYPE_16X16:
if(s->mcsel){
#if 0
mpeg_motion(s, dest_y, dest_cb, dest_cr, 0,
ref_picture, 0,
0, pix_op,
s->sprite_offset[0][0]>>3,
s->sprite_offset[0][1]>>3,
16);
#else
gmc1_motion(s, dest_y, dest_cb, dest_cr, 0,
ref_picture, 0,
16);
#endif
}else if(s->quarter_sample && dir==0){ //FIXME
qpel_motion(s, dest_y, dest_cb, dest_cr, 0,
ref_picture, 0,
0, pix_op, qpix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 16);
}else{
mpeg_motion(s, dest_y, dest_cb, dest_cr, 0,
ref_picture, 0,
0, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 16);
}
break;
case MV_TYPE_8X8:
for(i=0;i<4;i++) {
motion_x = s->mv[dir][i][0];
motion_y = s->mv[dir][i][1];
dxy = ((motion_y & 1) << 1) | (motion_x & 1);
src_x = mb_x * 16 + (motion_x >> 1) + (i & 1) * 8;
src_y = mb_y * 16 + (motion_y >> 1) + ((i >> 1) & 1) * 8;
/* WARNING: do no forget half pels */
src_x = clip(src_x, -16, s->width);
if (src_x == s->width)
dxy &= ~1;
src_y = clip(src_y, -16, s->height);
if (src_y == s->height)
dxy &= ~2;
ptr = ref_picture[0] + (src_y * s->linesize) + (src_x);
dest = dest_y + ((i & 1) * 8) + (i >> 1) * 8 * s->linesize;
pix_op[dxy](dest, ptr, s->linesize, 8);
}
/* In case of 8X8, we construct a single chroma motion vector
with a special rounding */
mx = 0;
my = 0;
for(i=0;i<4;i++) {
mx += s->mv[dir][i][0];
my += s->mv[dir][i][1];
}
if (mx >= 0)
mx = (h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1));
else {
mx = -mx;
mx = -(h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1));
}
if (my >= 0)
my = (h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1));
else {
my = -my;
my = -(h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1));
}
dxy = ((my & 1) << 1) | (mx & 1);
mx >>= 1;
my >>= 1;
src_x = mb_x * 8 + mx;
src_y = mb_y * 8 + my;
src_x = clip(src_x, -8, s->width/2);
if (src_x == s->width/2)
dxy &= ~1;
src_y = clip(src_y, -8, s->height/2);
if (src_y == s->height/2)
dxy &= ~2;
offset = (src_y * (s->linesize >> 1)) + src_x;
ptr = ref_picture[1] + offset;
pix_op[dxy](dest_cb, ptr, s->linesize >> 1, 8);
ptr = ref_picture[2] + offset;
pix_op[dxy](dest_cr, ptr, s->linesize >> 1, 8);
break;
case MV_TYPE_FIELD:
if (s->picture_structure == PICT_FRAME) {
/* top field */
mpeg_motion(s, dest_y, dest_cb, dest_cr, 0,
ref_picture, s->field_select[dir][0] ? s->linesize : 0,
1, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 8);
/* bottom field */
mpeg_motion(s, dest_y, dest_cb, dest_cr, s->linesize,
ref_picture, s->field_select[dir][1] ? s->linesize : 0,
1, pix_op,
s->mv[dir][1][0], s->mv[dir][1][1], 8);
} else {
}
break;
}
}
/* put block[] to dest[] */
static inline void put_dct(MpegEncContext *s,
DCTELEM *block, int i, UINT8 *dest, int line_size)
{
if (!s->mpeg2)
s->dct_unquantize(s, block, i, s->qscale);
ff_idct (block);
put_pixels_clamped(block, dest, line_size);
}
/* add block[] to dest[] */
static inline void add_dct(MpegEncContext *s,
DCTELEM *block, int i, UINT8 *dest, int line_size)
{
if (s->block_last_index[i] >= 0) {
if (!s->mpeg2)
if(s->encoding || (!s->h263_msmpeg4))
s->dct_unquantize(s, block, i, s->qscale);
ff_idct (block);
add_pixels_clamped(block, dest, line_size);
}
}
/* generic function called after a macroblock has been parsed by the
decoder or after it has been encoded by the encoder.
Important variables used:
s->mb_intra : true if intra macroblock
s->mv_dir : motion vector direction
s->mv_type : motion vector type
s->mv : motion vector
s->interlaced_dct : true if interlaced dct used (mpeg2)
*/
void MPV_decode_mb(MpegEncContext *s, DCTELEM block[6][64])
{
int mb_x, mb_y;
int dct_linesize, dct_offset;
op_pixels_func *op_pix;
qpel_mc_func *op_qpix;
mb_x = s->mb_x;
mb_y = s->mb_y;
#ifdef FF_POSTPROCESS
quant_store[mb_y][mb_x]=s->qscale;
//printf("[%02d][%02d] %d\n",mb_x,mb_y,s->qscale);
#endif
/* update DC predictors for P macroblocks */
if (!s->mb_intra) {
if (s->h263_pred || s->h263_aic) {
if(s->mbintra_table[mb_x + mb_y*s->mb_width])
{
int wrap, xy, v;
s->mbintra_table[mb_x + mb_y*s->mb_width]=0;
wrap = 2 * s->mb_width + 2;
xy = 2 * mb_x + 1 + (2 * mb_y + 1) * wrap;
v = 1024;
s->dc_val[0][xy] = v;
s->dc_val[0][xy + 1] = v;
s->dc_val[0][xy + wrap] = v;
s->dc_val[0][xy + 1 + wrap] = v;
/* ac pred */
memset(s->ac_val[0][xy], 0, 16 * sizeof(INT16));
memset(s->ac_val[0][xy + 1], 0, 16 * sizeof(INT16));
memset(s->ac_val[0][xy + wrap], 0, 16 * sizeof(INT16));
memset(s->ac_val[0][xy + 1 + wrap], 0, 16 * sizeof(INT16));
if (s->h263_msmpeg4) {
s->coded_block[xy] = 0;
s->coded_block[xy + 1] = 0;
s->coded_block[xy + wrap] = 0;
s->coded_block[xy + 1 + wrap] = 0;
}
/* chroma */
wrap = s->mb_width + 2;
xy = mb_x + 1 + (mb_y + 1) * wrap;
s->dc_val[1][xy] = v;
s->dc_val[2][xy] = v;
/* ac pred */
memset(s->ac_val[1][xy], 0, 16 * sizeof(INT16));
memset(s->ac_val[2][xy], 0, 16 * sizeof(INT16));
}
} else {
s->last_dc[0] = 128 << s->intra_dc_precision;
s->last_dc[1] = 128 << s->intra_dc_precision;
s->last_dc[2] = 128 << s->intra_dc_precision;
}
}
else if (s->h263_pred || s->h263_aic)
s->mbintra_table[mb_x + mb_y*s->mb_width]=1;
/* update motion predictor, not for B-frames as they need the motion_val from the last P/S-Frame */
if (s->out_format == FMT_H263) {
if(s->pict_type!=B_TYPE){
int xy, wrap, motion_x, motion_y;
wrap = 2 * s->mb_width + 2;
xy = 2 * mb_x + 1 + (2 * mb_y + 1) * wrap;
if (s->mb_intra) {
motion_x = 0;
motion_y = 0;
goto motion_init;
} else if (s->mv_type == MV_TYPE_16X16) {
motion_x = s->mv[0][0][0];
motion_y = s->mv[0][0][1];
motion_init:
/* no update if 8X8 because it has been done during parsing */
s->motion_val[xy][0] = motion_x;
s->motion_val[xy][1] = motion_y;
s->motion_val[xy + 1][0] = motion_x;
s->motion_val[xy + 1][1] = motion_y;
s->motion_val[xy + wrap][0] = motion_x;
s->motion_val[xy + wrap][1] = motion_y;
s->motion_val[xy + 1 + wrap][0] = motion_x;
s->motion_val[xy + 1 + wrap][1] = motion_y;
}
}
}
if (!s->intra_only) {
UINT8 *dest_y, *dest_cb, *dest_cr;
UINT8 *mbskip_ptr;
/* avoid copy if macroblock skipped in last frame too */
if (!s->encoding && s->pict_type != B_TYPE) {
mbskip_ptr = &s->mbskip_table[s->mb_y * s->mb_width + s->mb_x];
if (s->mb_skiped) {
s->mb_skiped = 0;
/* if previous was skipped too, then nothing to do ! */
if (*mbskip_ptr != 0)
goto the_end;
*mbskip_ptr = 1; /* indicate that this time we skiped it */
} else {
*mbskip_ptr = 0; /* not skipped */
}
}
dest_y = s->current_picture[0] + (mb_y * 16 * s->linesize) + mb_x * 16;
dest_cb = s->current_picture[1] + (mb_y * 8 * (s->linesize >> 1)) + mb_x * 8;
dest_cr = s->current_picture[2] + (mb_y * 8 * (s->linesize >> 1)) + mb_x * 8;
if (s->interlaced_dct) {
dct_linesize = s->linesize * 2;
dct_offset = s->linesize;
} else {
dct_linesize = s->linesize;
dct_offset = s->linesize * 8;
}
if (!s->mb_intra) {
/* motion handling */
if (!s->no_rounding){
op_pix = put_pixels_tab;
op_qpix= qpel_mc_rnd_tab;
}else{
op_pix = put_no_rnd_pixels_tab;
op_qpix= qpel_mc_no_rnd_tab;
}
if (s->mv_dir & MV_DIR_FORWARD) {
MPV_motion(s, dest_y, dest_cb, dest_cr, 0, s->last_picture, op_pix, op_qpix);
if (!s->no_rounding)
op_pix = avg_pixels_tab;
else
op_pix = avg_no_rnd_pixels_tab;
}
if (s->mv_dir & MV_DIR_BACKWARD) {
MPV_motion(s, dest_y, dest_cb, dest_cr, 1, s->next_picture, op_pix, op_qpix);
}
/* add dct residue */
add_dct(s, block[0], 0, dest_y, dct_linesize);
add_dct(s, block[1], 1, dest_y + 8, dct_linesize);
add_dct(s, block[2], 2, dest_y + dct_offset, dct_linesize);
add_dct(s, block[3], 3, dest_y + dct_offset + 8, dct_linesize);
add_dct(s, block[4], 4, dest_cb, s->linesize >> 1);
add_dct(s, block[5], 5, dest_cr, s->linesize >> 1);
} else {
/* dct only in intra block */
put_dct(s, block[0], 0, dest_y, dct_linesize);
put_dct(s, block[1], 1, dest_y + 8, dct_linesize);
put_dct(s, block[2], 2, dest_y + dct_offset, dct_linesize);
put_dct(s, block[3], 3, dest_y + dct_offset + 8, dct_linesize);
put_dct(s, block[4], 4, dest_cb, s->linesize >> 1);
put_dct(s, block[5], 5, dest_cr, s->linesize >> 1);
}
}
the_end:
emms_c();
}
static void encode_picture(MpegEncContext *s, int picture_number)
{
int mb_x, mb_y, wrap, last_gob, pdif = 0;
UINT8 *ptr;
int i, motion_x, motion_y;
int bits;
s->picture_number = picture_number;
s->last_mc_mb_var = s->mc_mb_var;
/* Reset the average MB variance */
s->avg_mb_var = 0;
s->mc_mb_var = 0;
/* Estimate motion for every MB */
for(mb_y=0; mb_y < s->mb_height; mb_y++) {
for(mb_x=0; mb_x < s->mb_width; mb_x++) {
int xy= mb_y * s->mb_width + mb_x;
const int mot_stride = s->mb_width*2 + 2;
int mot_xy = (mb_y*2 + 1)*mot_stride + mb_x*2 + 1;
s->mb_x = mb_x;
s->mb_y = mb_y;
/* compute motion vector and macro block type (intra or non intra) */
motion_x = 0;
motion_y = 0;
if (s->pict_type == P_TYPE) {
s->mb_intra = estimate_motion(s, mb_x, mb_y,
&motion_x,
&motion_y);
} else {
s->mb_intra = 1;
}
/* Store MB type and MV */
s->mb_type[xy] = s->mb_intra;
s->mv_table[0][xy] = motion_x;
s->mv_table[1][xy] = motion_y;
s->motion_val[mot_xy ][0]= motion_x;
s->motion_val[mot_xy ][1]= motion_y;
s->motion_val[mot_xy+1][0]= motion_x;
s->motion_val[mot_xy+1][1]= motion_y;
mot_xy += mot_stride;
s->motion_val[mot_xy ][0]= motion_x;
s->motion_val[mot_xy ][1]= motion_y;
s->motion_val[mot_xy+1][0]= motion_x;
s->motion_val[mot_xy+1][1]= motion_y;
}
}
emms_c();
if(s->avg_mb_var < s->mc_mb_var && s->pict_type != B_TYPE){ //FIXME subtract MV bits
int i;
s->pict_type= I_TYPE;
s->picture_in_gop_number=0;
for(i=0; i<s->mb_num; i++){
s->mb_type[i] = 1;
s->mv_table[0][i] = 0;
s->mv_table[1][i] = 0;
}
}
/* find best f_code for ME which do unlimited searches */
if(s->pict_type==P_TYPE && s->full_search>3){
int mv_num[8];
int i;
int loose=0;
UINT8 * fcode_tab= s->fcode_tab;
for(i=0; i<8; i++) mv_num[i]=0;
for(i=0; i<s->mb_num; i++){
if(s->mb_type[i] == 0){
mv_num[ fcode_tab[s->mv_table[0][i] + MAX_MV] ]++;
mv_num[ fcode_tab[s->mv_table[1][i] + MAX_MV] ]++;
//printf("%d %d %d\n", s->mv_table[0][i], fcode_tab[s->mv_table[0][i] + MAX_MV], i);
}
//else printf("I");
}
for(i=MAX_FCODE; i>1; i--){
loose+= mv_num[i];
if(loose > 10) break; //FIXME this is pretty ineffective
}
s->f_code= i;
/* for(i=0; i<=MAX_FCODE; i++){
printf("%d ", mv_num[i]);
}
printf("\n");*/
}else{
s->f_code= 1;
}
//printf("f_code %d ///\n", s->f_code);
/* convert MBs with too long MVs to I-Blocks */
if(s->pict_type==P_TYPE){
int i;
const int f_code= s->f_code;
UINT8 * fcode_tab= s->fcode_tab;
for(i=0; i<s->mb_num; i++){
if(s->mb_type[i] == 0){
if( fcode_tab[s->mv_table[0][i] + MAX_MV] > f_code
|| fcode_tab[s->mv_table[0][i] + MAX_MV] == 0
|| fcode_tab[s->mv_table[1][i] + MAX_MV] > f_code
|| fcode_tab[s->mv_table[1][i] + MAX_MV] == 0 ){
s->mb_type[i] = 1;
s->mv_table[0][i] = 0;
s->mv_table[1][i] = 0;
}
}
}
}
// printf("%d %d\n", s->avg_mb_var, s->mc_mb_var);
if (!s->fixed_qscale)
s->qscale = rate_estimate_qscale(s);
/* precompute matrix */
if (s->out_format == FMT_MJPEG) {
/* for mjpeg, we do include qscale in the matrix */
s->intra_matrix[0] = default_intra_matrix[0];
for(i=1;i<64;i++)
s->intra_matrix[i] = (default_intra_matrix[i] * s->qscale) >> 3;
convert_matrix(s->q_intra_matrix, s->q_intra_matrix16, s->intra_matrix, 8);
} else {
convert_matrix(s->q_intra_matrix, s->q_intra_matrix16, s->intra_matrix, s->qscale);
convert_matrix(s->q_non_intra_matrix, s->q_non_intra_matrix16, s->non_intra_matrix, s->qscale);
}
s->last_bits= get_bit_count(&s->pb);
switch(s->out_format) {
case FMT_MJPEG:
mjpeg_picture_header(s);
break;
case FMT_H263:
if (s->h263_msmpeg4)
msmpeg4_encode_picture_header(s, picture_number);
else if (s->h263_pred)
mpeg4_encode_picture_header(s, picture_number);
else if (s->h263_rv10)
rv10_encode_picture_header(s, picture_number);
else
h263_encode_picture_header(s, picture_number);
break;
case FMT_MPEG1:
mpeg1_encode_picture_header(s, picture_number);
break;
}
bits= get_bit_count(&s->pb);
s->header_bits= bits - s->last_bits;
s->last_bits= bits;
s->mv_bits=0;
s->misc_bits=0;
s->i_tex_bits=0;
s->p_tex_bits=0;
s->i_count=0;
s->p_count=0;
s->skip_count=0;
/* init last dc values */
/* note: quant matrix value (8) is implied here */
s->last_dc[0] = 128;
s->last_dc[1] = 128;
s->last_dc[2] = 128;
s->mb_incr = 1;
s->last_mv[0][0][0] = 0;
s->last_mv[0][0][1] = 0;
s->mv_type = MV_TYPE_16X16;
s->mv_dir = MV_DIR_FORWARD;
/* Get the GOB height based on picture height */
if (s->out_format == FMT_H263 && !s->h263_pred && !s->h263_msmpeg4) {
if (s->height <= 400)
s->gob_index = 1;
else if (s->height <= 800)
s->gob_index = 2;
else
s->gob_index = 4;
}
s->avg_mb_var = s->avg_mb_var / s->mb_num;
s->block_wrap[0]=
s->block_wrap[1]=
s->block_wrap[2]=
s->block_wrap[3]= s->mb_width*2 + 2;
s->block_wrap[4]=
s->block_wrap[5]= s->mb_width + 2;
for(mb_y=0; mb_y < s->mb_height; mb_y++) {
/* Put GOB header based on RTP MTU */
/* TODO: Put all this stuff in a separate generic function */
if (s->rtp_mode) {
if (!mb_y) {
s->ptr_lastgob = s->pb.buf;
s->ptr_last_mb_line = s->pb.buf;
} else if (s->out_format == FMT_H263 && !s->h263_pred && !s->h263_msmpeg4 && !(mb_y % s->gob_index)) {
last_gob = h263_encode_gob_header(s, mb_y);
if (last_gob) {
s->first_gob_line = 1;
}
}
}
s->block_index[0]= s->block_wrap[0]*(mb_y*2 + 1) - 1;
s->block_index[1]= s->block_wrap[0]*(mb_y*2 + 1);
s->block_index[2]= s->block_wrap[0]*(mb_y*2 + 2) - 1;
s->block_index[3]= s->block_wrap[0]*(mb_y*2 + 2);
s->block_index[4]= s->block_wrap[4]*(mb_y + 1) + s->block_wrap[0]*(s->mb_height*2 + 2);
s->block_index[5]= s->block_wrap[4]*(mb_y + 1 + s->mb_height + 2) + s->block_wrap[0]*(s->mb_height*2 + 2);
for(mb_x=0; mb_x < s->mb_width; mb_x++) {
s->mb_x = mb_x;
s->mb_y = mb_y;
s->block_index[0]+=2;
s->block_index[1]+=2;
s->block_index[2]+=2;
s->block_index[3]+=2;
s->block_index[4]++;
s->block_index[5]++;
#if 0
/* compute motion vector and macro block type (intra or non intra) */
motion_x = 0;
motion_y = 0;
if (s->pict_type == P_TYPE) {
s->mb_intra = estimate_motion(s, mb_x, mb_y,
&motion_x,
&motion_y);
} else {
s->mb_intra = 1;
}
#endif
s->mb_intra = s->mb_type[mb_y * s->mb_width + mb_x];
motion_x = s->mv_table[0][mb_y * s->mb_width + mb_x];
motion_y = s->mv_table[1][mb_y * s->mb_width + mb_x];
/* get the pixels */
wrap = s->linesize;
ptr = s->new_picture[0] + (mb_y * 16 * wrap) + mb_x * 16;
get_pixels(s->block[0], ptr, wrap);
get_pixels(s->block[1], ptr + 8, wrap);
get_pixels(s->block[2], ptr + 8 * wrap, wrap);
get_pixels(s->block[3], ptr + 8 * wrap + 8, wrap);
wrap = s->linesize >> 1;
ptr = s->new_picture[1] + (mb_y * 8 * wrap) + mb_x * 8;
get_pixels(s->block[4], ptr, wrap);
wrap = s->linesize >> 1;
ptr = s->new_picture[2] + (mb_y * 8 * wrap) + mb_x * 8;
get_pixels(s->block[5], ptr, wrap);
/* subtract previous frame if non intra */
if (!s->mb_intra) {
int dxy, offset, mx, my;
dxy = ((motion_y & 1) << 1) | (motion_x & 1);
ptr = s->last_picture[0] +
((mb_y * 16 + (motion_y >> 1)) * s->linesize) +
(mb_x * 16 + (motion_x >> 1));
sub_pixels_2(s->block[0], ptr, s->linesize, dxy);
sub_pixels_2(s->block[1], ptr + 8, s->linesize, dxy);
sub_pixels_2(s->block[2], ptr + s->linesize * 8, s->linesize, dxy);
sub_pixels_2(s->block[3], ptr + 8 + s->linesize * 8, s->linesize ,dxy);
if (s->out_format == FMT_H263) {
/* special rounding for h263 */
dxy = 0;
if ((motion_x & 3) != 0)
dxy |= 1;
if ((motion_y & 3) != 0)
dxy |= 2;
mx = motion_x >> 2;
my = motion_y >> 2;
} else {
mx = motion_x / 2;
my = motion_y / 2;
dxy = ((my & 1) << 1) | (mx & 1);
mx >>= 1;
my >>= 1;
}
offset = ((mb_y * 8 + my) * (s->linesize >> 1)) + (mb_x * 8 + mx);
ptr = s->last_picture[1] + offset;
sub_pixels_2(s->block[4], ptr, s->linesize >> 1, dxy);
ptr = s->last_picture[2] + offset;
sub_pixels_2(s->block[5], ptr, s->linesize >> 1, dxy);
}
emms_c();
#if 0
{
float adap_parm;
adap_parm = ((s->avg_mb_var << 1) + s->mb_var[s->mb_width*mb_y+mb_x] + 1.0) /
((s->mb_var[s->mb_width*mb_y+mb_x] << 1) + s->avg_mb_var + 1.0);
printf("\ntype=%c qscale=%2d adap=%0.2f dquant=%4.2f var=%4d avgvar=%4d",
(s->mb_type[s->mb_width*mb_y+mb_x] > 0) ? 'I' : 'P',
s->qscale, adap_parm, s->qscale*adap_parm,
s->mb_var[s->mb_width*mb_y+mb_x], s->avg_mb_var);
}
#endif
/* DCT & quantize */
if (s->h263_msmpeg4) {
msmpeg4_dc_scale(s);
} else if (s->h263_pred) {
h263_dc_scale(s);
} else {
/* default quantization values */
s->y_dc_scale = 8;
s->c_dc_scale = 8;
}
for(i=0;i<6;i++) {
s->block_last_index[i] = dct_quantize(s, s->block[i], i, s->qscale);
}
/* huffman encode */
switch(s->out_format) {
case FMT_MPEG1:
mpeg1_encode_mb(s, s->block, motion_x, motion_y);
break;
case FMT_H263:
if (s->h263_msmpeg4)
msmpeg4_encode_mb(s, s->block, motion_x, motion_y);
else if(s->h263_pred)
mpeg4_encode_mb(s, s->block, motion_x, motion_y);
else
h263_encode_mb(s, s->block, motion_x, motion_y);
break;
case FMT_MJPEG:
mjpeg_encode_mb(s, s->block);
break;
}
/* decompress blocks so that we keep the state of the decoder */
s->mv[0][0][0] = motion_x;
s->mv[0][0][1] = motion_y;
MPV_decode_mb(s, s->block);
}
/* Obtain average GOB size for RTP */
if (s->rtp_mode) {
if (!mb_y)
s->mb_line_avgsize = pbBufPtr(&s->pb) - s->ptr_last_mb_line;
else if (!(mb_y % s->gob_index)) {
s->mb_line_avgsize = (s->mb_line_avgsize + pbBufPtr(&s->pb) - s->ptr_last_mb_line) >> 1;
s->ptr_last_mb_line = pbBufPtr(&s->pb);
}
//fprintf(stderr, "\nMB line: %d\tSize: %u\tAvg. Size: %u", s->mb_y,
// (s->pb.buf_ptr - s->ptr_last_mb_line), s->mb_line_avgsize);
s->first_gob_line = 0;
}
}
if (s->h263_msmpeg4 && s->pict_type == I_TYPE)
msmpeg4_encode_ext_header(s);
//if (s->gob_number)
// fprintf(stderr,"\nNumber of GOB: %d", s->gob_number);
/* Send the last GOB if RTP */
if (s->rtp_mode) {
flush_put_bits(&s->pb);
pdif = pbBufPtr(&s->pb) - s->ptr_lastgob;
/* Call the RTP callback to send the last GOB */
if (s->rtp_callback)
s->rtp_callback(s->ptr_lastgob, pdif, s->gob_number);
s->ptr_lastgob = pbBufPtr(&s->pb);
//fprintf(stderr,"\nGOB: %2d size: %d (last)", s->gob_number, pdif);
}
}
static int dct_quantize_c(MpegEncContext *s,
DCTELEM *block, int n,
int qscale)
{
int i, j, level, last_non_zero, q;
const int *qmat;
int minLevel, maxLevel;
if(s->avctx!=NULL && s->avctx->codec->id==CODEC_ID_MPEG4){
/* mpeg4 */
minLevel= -2048;
maxLevel= 2047;
}else if(s->out_format==FMT_MPEG1){
/* mpeg1 */
minLevel= -255;
maxLevel= 255;
}else if(s->out_format==FMT_MJPEG){
/* (m)jpeg */
minLevel= -1023;
maxLevel= 1023;
}else{
/* h263 / msmpeg4 */
minLevel= -128;
maxLevel= 127;
}
av_fdct (block);
/* we need this permutation so that we correct the IDCT
permutation. will be moved into DCT code */
block_permute(block);
if (s->mb_intra) {
if (n < 4)
q = s->y_dc_scale;
else
q = s->c_dc_scale;
q = q << 3;
/* note: block[0] is assumed to be positive */
block[0] = (block[0] + (q >> 1)) / q;
i = 1;
last_non_zero = 0;
if (s->out_format == FMT_H263) {
qmat = s->q_non_intra_matrix;
} else {
qmat = s->q_intra_matrix;
}
} else {
i = 0;
last_non_zero = -1;
qmat = s->q_non_intra_matrix;
}
for(;i<64;i++) {
j = zigzag_direct[i];
level = block[j];
level = level * qmat[j];
#ifdef PARANOID
{
static int count = 0;
int level1, level2, qmat1;
double val;
if (qmat == s->q_non_intra_matrix) {
qmat1 = default_non_intra_matrix[j] * s->qscale;
} else {
qmat1 = default_intra_matrix[j] * s->qscale;
}
if (av_fdct != jpeg_fdct_ifast)
val = ((double)block[j] * 8.0) / (double)qmat1;
else
val = ((double)block[j] * 8.0 * 2048.0) /
((double)qmat1 * aanscales[j]);
level1 = (int)val;
level2 = level / (1 << (QMAT_SHIFT - 3));
if (level1 != level2) {
fprintf(stderr, "%d: quant error qlevel=%d wanted=%d level=%d qmat1=%d qmat=%d wantedf=%0.6f\n",
count, level2, level1, block[j], qmat1, qmat[j],
val);
count++;
}
}
#endif
/* XXX: slight error for the low range. Test should be equivalent to
(level <= -(1 << (QMAT_SHIFT - 3)) || level >= (1 <<
(QMAT_SHIFT - 3)))
*/
if (((level << (31 - (QMAT_SHIFT - 3))) >> (31 - (QMAT_SHIFT - 3))) !=
level) {
level = level / (1 << (QMAT_SHIFT - 3));
/* XXX: currently, this code is not optimal. the range should be:
mpeg1: -255..255
mpeg2: -2048..2047
h263: -128..127
mpeg4: -2048..2047
*/
if (level > maxLevel)
level = maxLevel;
else if (level < minLevel)
level = minLevel;
block[j] = level;
last_non_zero = i;
} else {
block[j] = 0;
}
}
return last_non_zero;
}
static void dct_unquantize_mpeg1_c(MpegEncContext *s,
DCTELEM *block, int n, int qscale)
{
int i, level, nCoeffs;
const UINT16 *quant_matrix;
if(s->alternate_scan) nCoeffs= 64;
else nCoeffs= s->block_last_index[n]+1;
if (s->mb_intra) {
if (n < 4)
block[0] = block[0] * s->y_dc_scale;
else
block[0] = block[0] * s->c_dc_scale;
/* XXX: only mpeg1 */
quant_matrix = s->intra_matrix;
for(i=1;i<nCoeffs;i++) {
int j= zigzag_direct[i];
level = block[j];
if (level) {
if (level < 0) {
level = -level;
level = (int)(level * qscale * quant_matrix[j]) >> 3;
level = (level - 1) | 1;
level = -level;
} else {
level = (int)(level * qscale * quant_matrix[j]) >> 3;
level = (level - 1) | 1;
}
#ifdef PARANOID
if (level < -2048 || level > 2047)
fprintf(stderr, "unquant error %d %d\n", i, level);
#endif
block[j] = level;
}
}
} else {
i = 0;
quant_matrix = s->non_intra_matrix;
for(;i<nCoeffs;i++) {
int j= zigzag_direct[i];
level = block[j];
if (level) {
if (level < 0) {
level = -level;
level = (((level << 1) + 1) * qscale *
((int) (quant_matrix[j]))) >> 4;
level = (level - 1) | 1;
level = -level;
} else {
level = (((level << 1) + 1) * qscale *
((int) (quant_matrix[j]))) >> 4;
level = (level - 1) | 1;
}
#ifdef PARANOID
if (level < -2048 || level > 2047)
fprintf(stderr, "unquant error %d %d\n", i, level);
#endif
block[j] = level;
}
}
}
}
static void dct_unquantize_h263_c(MpegEncContext *s,
DCTELEM *block, int n, int qscale)
{
int i, level, qmul, qadd;
int nCoeffs;
if (s->mb_intra) {
if (!s->h263_aic) {
if (n < 4)
block[0] = block[0] * s->y_dc_scale;
else
block[0] = block[0] * s->c_dc_scale;
}
i = 1;
nCoeffs= 64; //does not allways use zigzag table
} else {
i = 0;
nCoeffs= zigzag_end[ s->block_last_index[n] ];
}
qmul = s->qscale << 1;
if (s->h263_aic && s->mb_intra)
qadd = 0;
else
qadd = (s->qscale - 1) | 1;
for(;i<nCoeffs;i++) {
level = block[i];
if (level) {
if (level < 0) {
level = level * qmul - qadd;
} else {
level = level * qmul + qadd;
}
#ifdef PARANOID
if (level < -2048 || level > 2047)
fprintf(stderr, "unquant error %d %d\n", i, level);
#endif
block[i] = level;
}
}
}
/* rate control */
/* an I frame is I_FRAME_SIZE_RATIO bigger than a P frame */
#define I_FRAME_SIZE_RATIO 3.0
#define QSCALE_K 20
static void rate_control_init(MpegEncContext *s)
{
#if 1
emms_c();
//initial values, they dont really matter as they will be totally different within a few frames
s->i_pred.coeff= s->p_pred.coeff= 7.0;
s->i_pred.count= s->p_pred.count= 1.0;
s->i_pred.decay= s->p_pred.decay= 0.4;
// use more bits at the beginning, otherwise high motion at the begin will look like shit
s->qsum=100;
s->qcount=100;
s->short_term_qsum=0.001;
s->short_term_qcount=0.001;
#else
s->wanted_bits = 0;
if (s->intra_only) {
s->I_frame_bits = ((INT64)s->bit_rate * FRAME_RATE_BASE) / s->frame_rate;
s->P_frame_bits = s->I_frame_bits;
} else {
s->P_frame_bits = (int) ((float)(s->gop_size * s->bit_rate) /
(float)((float)s->frame_rate / FRAME_RATE_BASE * (I_FRAME_SIZE_RATIO + s->gop_size - 1)));
s->I_frame_bits = (int)(s->P_frame_bits * I_FRAME_SIZE_RATIO);
}
#if defined(DEBUG)
printf("I_frame_size=%d P_frame_size=%d\n",
s->I_frame_bits, s->P_frame_bits);
#endif
#endif
}
static double predict(Predictor *p, double q, double var)
{
return p->coeff*var / (q*p->count);
}
static void update_predictor(Predictor *p, double q, double var, double size)
{
double new_coeff= size*q / (var + 1);
if(var<1000) return;
/*{
int pred= predict(p, q, var);
int error= abs(pred-size);
static double sum=0;
static int count=0;
if(count>5) sum+=error;
count++;
if(256*256*256*64%count==0){
printf("%d %f %f\n", count, sum/count, p->coeff);
}
}*/
p->count*= p->decay;
p->coeff*= p->decay;
p->count++;
p->coeff+= new_coeff;
}
static int rate_estimate_qscale(MpegEncContext *s)
{
#if 1
int qmin= s->qmin;
int qmax= s->qmax;
int rate_q=5;
float q;
int qscale;
float br_compensation;
double diff;
double short_term_q;
double long_term_q;
int last_qscale= s->qscale;
double fps;
INT64 wanted_bits;
emms_c();
fps= (double)s->frame_rate / FRAME_RATE_BASE;
wanted_bits= s->bit_rate*(double)s->picture_number/fps;
if(s->picture_number>2){
/* update predictors */
if(s->last_pict_type == I_TYPE){
//FIXME
}else{ //P Frame
//printf("%d %d %d %f\n", s->qscale, s->last_mc_mb_var, s->frame_bits, s->p_pred.coeff);
update_predictor(&s->p_pred, s->qscale, s->last_mc_mb_var, s->frame_bits);
}
}
if(s->pict_type == I_TYPE){
//FIXME
rate_q= s->qsum/s->qcount;
}else{ //P Frame
int i;
int diff, best_diff=1000000000;
for(i=1; i<=31; i++){
diff= predict(&s->p_pred, i, s->mc_mb_var) - (double)s->bit_rate/fps;
if(diff<0) diff= -diff;
if(diff<best_diff){
best_diff= diff;
rate_q= i;
}
}
}
s->short_term_qsum*=s->qblur;
s->short_term_qcount*=s->qblur;
s->short_term_qsum+= rate_q;
s->short_term_qcount++;
short_term_q= s->short_term_qsum/s->short_term_qcount;
long_term_q= s->qsum/s->qcount*s->total_bits/wanted_bits;
// q= (long_term_q - short_term_q)*s->qcompress + short_term_q;
q= 1/((1/long_term_q - 1/short_term_q)*s->qcompress + 1/short_term_q);
diff= s->total_bits - wanted_bits;
br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
if(br_compensation<=0.0) br_compensation=0.001;
q/=br_compensation;
qscale= (int)(q + 0.5);
if (qscale<qmin) qscale=qmin;
else if(qscale>qmax) qscale=qmax;
if (qscale<last_qscale-s->max_qdiff) qscale=last_qscale-s->max_qdiff;
else if(qscale>last_qscale+s->max_qdiff) qscale=last_qscale+s->max_qdiff;
s->qsum+= qscale;
s->qcount++;
s->last_pict_type= s->pict_type;
//printf("q:%d diff:%d comp:%f rate_q:%d st_q:%d fvar:%d last_size:%d\n", qscale, (int)diff, br_compensation,
// rate_q, (int)short_term_q, s->mc_mb_var, s->frame_bits);
//printf("%d %d\n", s->bit_rate, (int)fps);
return qscale;
#else
INT64 diff, total_bits = s->total_bits;
float q;
int qscale;
if (s->pict_type == I_TYPE) {
s->wanted_bits += s->I_frame_bits;
} else {
s->wanted_bits += s->P_frame_bits;
}
diff = s->wanted_bits - total_bits;
q = 31.0 - (float)diff / (QSCALE_K * s->mb_height * s->mb_width);
/* adjust for I frame */
if (s->pict_type == I_TYPE && !s->intra_only) {
q /= I_FRAME_SIZE_RATIO;
}
/* using a too small Q scale leeds to problems in mpeg1 and h263
because AC coefficients are clamped to 255 or 127 */
qmin = 3;
if (q < qmin)
q = qmin;
else if (q > 31)
q = 31;
qscale = (int)(q + 0.5);
#if defined(DEBUG)
printf("\n%d: total=%0.0f wanted=%0.0f br=%0.1f diff=%d qest=%2.1f\n",
s->picture_number,
(double)total_bits,
(double)s->wanted_bits,
(float)s->frame_rate / FRAME_RATE_BASE *
total_bits / s->picture_number,
(int)diff, q);
#endif
return qscale;
#endif
}
AVCodec mpeg1video_encoder = {
"mpeg1video",
CODEC_TYPE_VIDEO,
CODEC_ID_MPEG1VIDEO,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec h263_encoder = {
"h263",
CODEC_TYPE_VIDEO,
CODEC_ID_H263,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec h263p_encoder = {
"h263p",
CODEC_TYPE_VIDEO,
CODEC_ID_H263P,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec rv10_encoder = {
"rv10",
CODEC_TYPE_VIDEO,
CODEC_ID_RV10,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec mjpeg_encoder = {
"mjpeg",
CODEC_TYPE_VIDEO,
CODEC_ID_MJPEG,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec mpeg4_encoder = {
"mpeg4",
CODEC_TYPE_VIDEO,
CODEC_ID_MPEG4,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVCodec msmpeg4_encoder = {
"msmpeg4",
CODEC_TYPE_VIDEO,
CODEC_ID_MSMPEG4,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};