mirror of https://git.ffmpeg.org/ffmpeg.git
909 lines
30 KiB
C
909 lines
30 KiB
C
/*
|
|
* ADPCM codecs
|
|
* Copyright (c) 2001-2003 The ffmpeg Project
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include "avcodec.h"
|
|
|
|
/**
|
|
* @file adpcm.c
|
|
* ADPCM codecs.
|
|
* First version by Francois Revol (revol@free.fr)
|
|
* Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
|
|
* by Mike Melanson (melanson@pcisys.net)
|
|
* CD-ROM XA ADPCM codec by BERO
|
|
* EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
|
|
*
|
|
* Features and limitations:
|
|
*
|
|
* Reference documents:
|
|
* http://www.pcisys.net/~melanson/codecs/simpleaudio.html
|
|
* http://www.geocities.com/SiliconValley/8682/aud3.txt
|
|
* http://openquicktime.sourceforge.net/plugins.htm
|
|
* XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
|
|
* http://www.cs.ucla.edu/~leec/mediabench/applications.html
|
|
* SoX source code http://home.sprynet.com/~cbagwell/sox.html
|
|
*
|
|
* CD-ROM XA:
|
|
* http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
|
|
* vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
|
|
* readstr http://www.geocities.co.jp/Playtown/2004/
|
|
*/
|
|
|
|
#define BLKSIZE 1024
|
|
|
|
#define BE_16(x) ((((uint8_t*)(x))[0] << 8) | ((uint8_t*)(x))[1])
|
|
#define LE_16(x) ((((uint8_t*)(x))[1] << 8) | ((uint8_t*)(x))[0])
|
|
#define LE_32(x) ((((uint8_t*)(x))[3] << 24) | \
|
|
(((uint8_t*)(x))[2] << 16) | \
|
|
(((uint8_t*)(x))[1] << 8) | \
|
|
((uint8_t*)(x))[0])
|
|
|
|
#define CLAMP_TO_SHORT(value) \
|
|
if (value > 32767) \
|
|
value = 32767; \
|
|
else if (value < -32768) \
|
|
value = -32768; \
|
|
|
|
/* step_table[] and index_table[] are from the ADPCM reference source */
|
|
/* This is the index table: */
|
|
static const int index_table[16] = {
|
|
-1, -1, -1, -1, 2, 4, 6, 8,
|
|
-1, -1, -1, -1, 2, 4, 6, 8,
|
|
};
|
|
|
|
/**
|
|
* This is the step table. Note that many programs use slight deviations from
|
|
* this table, but such deviations are negligible:
|
|
*/
|
|
static const int step_table[89] = {
|
|
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
|
|
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
|
|
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
|
|
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
|
|
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
|
|
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
|
|
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
|
|
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
|
|
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
|
|
};
|
|
|
|
/* These are for MS-ADPCM */
|
|
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
|
|
static const int AdaptationTable[] = {
|
|
230, 230, 230, 230, 307, 409, 512, 614,
|
|
768, 614, 512, 409, 307, 230, 230, 230
|
|
};
|
|
|
|
static const int AdaptCoeff1[] = {
|
|
256, 512, 0, 192, 240, 460, 392
|
|
};
|
|
|
|
static const int AdaptCoeff2[] = {
|
|
0, -256, 0, 64, 0, -208, -232
|
|
};
|
|
|
|
/* These are for CD-ROM XA ADPCM */
|
|
static const int xa_adpcm_table[5][2] = {
|
|
{ 0, 0 },
|
|
{ 60, 0 },
|
|
{ 115, -52 },
|
|
{ 98, -55 },
|
|
{ 122, -60 }
|
|
};
|
|
|
|
static int ea_adpcm_table[] = {
|
|
0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
|
|
3, 4, 7, 8, 10, 11, 0, -1, -3, -4
|
|
};
|
|
|
|
/* end of tables */
|
|
|
|
typedef struct ADPCMChannelStatus {
|
|
int predictor;
|
|
short int step_index;
|
|
int step;
|
|
/* for encoding */
|
|
int prev_sample;
|
|
|
|
/* MS version */
|
|
short sample1;
|
|
short sample2;
|
|
int coeff1;
|
|
int coeff2;
|
|
int idelta;
|
|
} ADPCMChannelStatus;
|
|
|
|
typedef struct ADPCMContext {
|
|
int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
|
|
ADPCMChannelStatus status[2];
|
|
short sample_buffer[32]; /* hold left samples while waiting for right samples */
|
|
} ADPCMContext;
|
|
|
|
/* XXX: implement encoding */
|
|
|
|
#ifdef CONFIG_ENCODERS
|
|
static int adpcm_encode_init(AVCodecContext *avctx)
|
|
{
|
|
if (avctx->channels > 2)
|
|
return -1; /* only stereo or mono =) */
|
|
switch(avctx->codec->id) {
|
|
case CODEC_ID_ADPCM_IMA_QT:
|
|
av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
|
|
avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
|
|
return -1;
|
|
break;
|
|
case CODEC_ID_ADPCM_IMA_WAV:
|
|
avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
|
|
/* and we have 4 bytes per channel overhead */
|
|
avctx->block_align = BLKSIZE;
|
|
/* seems frame_size isn't taken into account... have to buffer the samples :-( */
|
|
break;
|
|
case CODEC_ID_ADPCM_MS:
|
|
avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
|
|
/* and we have 7 bytes per channel overhead */
|
|
avctx->block_align = BLKSIZE;
|
|
break;
|
|
default:
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
avctx->coded_frame= avcodec_alloc_frame();
|
|
avctx->coded_frame->key_frame= 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int adpcm_encode_close(AVCodecContext *avctx)
|
|
{
|
|
av_freep(&avctx->coded_frame);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
|
|
{
|
|
int step_index;
|
|
unsigned char nibble;
|
|
|
|
int sign = 0; /* sign bit of the nibble (MSB) */
|
|
int delta, predicted_delta;
|
|
|
|
delta = sample - c->prev_sample;
|
|
|
|
if (delta < 0) {
|
|
sign = 1;
|
|
delta = -delta;
|
|
}
|
|
|
|
step_index = c->step_index;
|
|
|
|
/* nibble = 4 * delta / step_table[step_index]; */
|
|
nibble = (delta << 2) / step_table[step_index];
|
|
|
|
if (nibble > 7)
|
|
nibble = 7;
|
|
|
|
step_index += index_table[nibble];
|
|
if (step_index < 0)
|
|
step_index = 0;
|
|
if (step_index > 88)
|
|
step_index = 88;
|
|
|
|
/* what the decoder will find */
|
|
predicted_delta = ((step_table[step_index] * nibble) / 4) + (step_table[step_index] / 8);
|
|
|
|
if (sign)
|
|
c->prev_sample -= predicted_delta;
|
|
else
|
|
c->prev_sample += predicted_delta;
|
|
|
|
CLAMP_TO_SHORT(c->prev_sample);
|
|
|
|
|
|
nibble += sign << 3; /* sign * 8 */
|
|
|
|
/* save back */
|
|
c->step_index = step_index;
|
|
|
|
return nibble;
|
|
}
|
|
|
|
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
|
|
{
|
|
int predictor, nibble, bias;
|
|
|
|
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
|
|
|
|
nibble= sample - predictor;
|
|
if(nibble>=0) bias= c->idelta/2;
|
|
else bias=-c->idelta/2;
|
|
|
|
nibble= (nibble + bias) / c->idelta;
|
|
nibble= clip(nibble, -8, 7)&0x0F;
|
|
|
|
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
|
|
CLAMP_TO_SHORT(predictor);
|
|
|
|
c->sample2 = c->sample1;
|
|
c->sample1 = predictor;
|
|
|
|
c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
|
|
if (c->idelta < 16) c->idelta = 16;
|
|
|
|
return nibble;
|
|
}
|
|
|
|
static int adpcm_encode_frame(AVCodecContext *avctx,
|
|
unsigned char *frame, int buf_size, void *data)
|
|
{
|
|
int n, i, st;
|
|
short *samples;
|
|
unsigned char *dst;
|
|
ADPCMContext *c = avctx->priv_data;
|
|
|
|
dst = frame;
|
|
samples = (short *)data;
|
|
st= avctx->channels == 2;
|
|
/* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
|
|
|
|
switch(avctx->codec->id) {
|
|
case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
|
|
break;
|
|
case CODEC_ID_ADPCM_IMA_WAV:
|
|
n = avctx->frame_size / 8;
|
|
c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
|
|
/* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
|
|
*dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
|
|
*dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
|
|
*dst++ = (unsigned char)c->status[0].step_index;
|
|
*dst++ = 0; /* unknown */
|
|
samples++;
|
|
if (avctx->channels == 2) {
|
|
c->status[1].prev_sample = (signed short)samples[1];
|
|
/* c->status[1].step_index = 0; */
|
|
*dst++ = (c->status[1].prev_sample) & 0xFF;
|
|
*dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
|
|
*dst++ = (unsigned char)c->status[1].step_index;
|
|
*dst++ = 0;
|
|
samples++;
|
|
}
|
|
|
|
/* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
|
|
for (; n>0; n--) {
|
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
|
|
*dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
|
|
dst++;
|
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
|
|
*dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
|
|
dst++;
|
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
|
|
*dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
|
|
dst++;
|
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
|
|
*dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
|
|
dst++;
|
|
/* right channel */
|
|
if (avctx->channels == 2) {
|
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
|
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
|
|
dst++;
|
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
|
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
|
|
dst++;
|
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
|
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
|
|
dst++;
|
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
|
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
|
|
dst++;
|
|
}
|
|
samples += 8 * avctx->channels;
|
|
}
|
|
break;
|
|
case CODEC_ID_ADPCM_MS:
|
|
for(i=0; i<avctx->channels; i++){
|
|
int predictor=0;
|
|
|
|
*dst++ = predictor;
|
|
c->status[i].coeff1 = AdaptCoeff1[predictor];
|
|
c->status[i].coeff2 = AdaptCoeff2[predictor];
|
|
}
|
|
for(i=0; i<avctx->channels; i++){
|
|
if (c->status[i].idelta < 16)
|
|
c->status[i].idelta = 16;
|
|
|
|
*dst++ = c->status[i].idelta & 0xFF;
|
|
*dst++ = c->status[i].idelta >> 8;
|
|
}
|
|
for(i=0; i<avctx->channels; i++){
|
|
c->status[i].sample1= *samples++;
|
|
|
|
*dst++ = c->status[i].sample1 & 0xFF;
|
|
*dst++ = c->status[i].sample1 >> 8;
|
|
}
|
|
for(i=0; i<avctx->channels; i++){
|
|
c->status[i].sample2= *samples++;
|
|
|
|
*dst++ = c->status[i].sample2 & 0xFF;
|
|
*dst++ = c->status[i].sample2 >> 8;
|
|
}
|
|
|
|
for(i=7*avctx->channels; i<avctx->block_align; i++) {
|
|
int nibble;
|
|
nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
|
|
nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
|
|
*dst++ = nibble;
|
|
}
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
return dst - frame;
|
|
}
|
|
#endif //CONFIG_ENCODERS
|
|
|
|
static int adpcm_decode_init(AVCodecContext * avctx)
|
|
{
|
|
ADPCMContext *c = avctx->priv_data;
|
|
|
|
c->channel = 0;
|
|
c->status[0].predictor = c->status[1].predictor = 0;
|
|
c->status[0].step_index = c->status[1].step_index = 0;
|
|
c->status[0].step = c->status[1].step = 0;
|
|
|
|
switch(avctx->codec->id) {
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
|
|
{
|
|
int step_index;
|
|
int predictor;
|
|
int sign, delta, diff, step;
|
|
|
|
step = step_table[c->step_index];
|
|
step_index = c->step_index + index_table[(unsigned)nibble];
|
|
if (step_index < 0) step_index = 0;
|
|
else if (step_index > 88) step_index = 88;
|
|
|
|
sign = nibble & 8;
|
|
delta = nibble & 7;
|
|
/* perform direct multiplication instead of series of jumps proposed by
|
|
* the reference ADPCM implementation since modern CPUs can do the mults
|
|
* quickly enough */
|
|
diff = ((2 * delta + 1) * step) >> shift;
|
|
predictor = c->predictor;
|
|
if (sign) predictor -= diff;
|
|
else predictor += diff;
|
|
|
|
CLAMP_TO_SHORT(predictor);
|
|
c->predictor = predictor;
|
|
c->step_index = step_index;
|
|
|
|
return (short)predictor;
|
|
}
|
|
|
|
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
|
|
{
|
|
int predictor;
|
|
|
|
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
|
|
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
|
|
CLAMP_TO_SHORT(predictor);
|
|
|
|
c->sample2 = c->sample1;
|
|
c->sample1 = predictor;
|
|
c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
|
|
if (c->idelta < 16) c->idelta = 16;
|
|
|
|
return (short)predictor;
|
|
}
|
|
|
|
static void xa_decode(short *out, const unsigned char *in,
|
|
ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
|
|
{
|
|
int i, j;
|
|
int shift,filter,f0,f1;
|
|
int s_1,s_2;
|
|
int d,s,t;
|
|
|
|
for(i=0;i<4;i++) {
|
|
|
|
shift = 12 - (in[4+i*2] & 15);
|
|
filter = in[4+i*2] >> 4;
|
|
f0 = xa_adpcm_table[filter][0];
|
|
f1 = xa_adpcm_table[filter][1];
|
|
|
|
s_1 = left->sample1;
|
|
s_2 = left->sample2;
|
|
|
|
for(j=0;j<28;j++) {
|
|
d = in[16+i+j*4];
|
|
|
|
t = (signed char)(d<<4)>>4;
|
|
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
|
|
CLAMP_TO_SHORT(s);
|
|
*out = s;
|
|
out += inc;
|
|
s_2 = s_1;
|
|
s_1 = s;
|
|
}
|
|
|
|
if (inc==2) { /* stereo */
|
|
left->sample1 = s_1;
|
|
left->sample2 = s_2;
|
|
s_1 = right->sample1;
|
|
s_2 = right->sample2;
|
|
out = out + 1 - 28*2;
|
|
}
|
|
|
|
shift = 12 - (in[5+i*2] & 15);
|
|
filter = in[5+i*2] >> 4;
|
|
|
|
f0 = xa_adpcm_table[filter][0];
|
|
f1 = xa_adpcm_table[filter][1];
|
|
|
|
for(j=0;j<28;j++) {
|
|
d = in[16+i+j*4];
|
|
|
|
t = (signed char)d >> 4;
|
|
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
|
|
CLAMP_TO_SHORT(s);
|
|
*out = s;
|
|
out += inc;
|
|
s_2 = s_1;
|
|
s_1 = s;
|
|
}
|
|
|
|
if (inc==2) { /* stereo */
|
|
right->sample1 = s_1;
|
|
right->sample2 = s_2;
|
|
out -= 1;
|
|
} else {
|
|
left->sample1 = s_1;
|
|
left->sample2 = s_2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* DK3 ADPCM support macro */
|
|
#define DK3_GET_NEXT_NIBBLE() \
|
|
if (decode_top_nibble_next) \
|
|
{ \
|
|
nibble = (last_byte >> 4) & 0x0F; \
|
|
decode_top_nibble_next = 0; \
|
|
} \
|
|
else \
|
|
{ \
|
|
last_byte = *src++; \
|
|
if (src >= buf + buf_size) break; \
|
|
nibble = last_byte & 0x0F; \
|
|
decode_top_nibble_next = 1; \
|
|
}
|
|
|
|
static int adpcm_decode_frame(AVCodecContext *avctx,
|
|
void *data, int *data_size,
|
|
uint8_t *buf, int buf_size)
|
|
{
|
|
ADPCMContext *c = avctx->priv_data;
|
|
ADPCMChannelStatus *cs;
|
|
int n, m, channel, i;
|
|
int block_predictor[2];
|
|
short *samples;
|
|
uint8_t *src;
|
|
int st; /* stereo */
|
|
|
|
/* DK3 ADPCM accounting variables */
|
|
unsigned char last_byte = 0;
|
|
unsigned char nibble;
|
|
int decode_top_nibble_next = 0;
|
|
int diff_channel;
|
|
|
|
/* EA ADPCM state variables */
|
|
uint32_t samples_in_chunk;
|
|
int32_t previous_left_sample, previous_right_sample;
|
|
int32_t current_left_sample, current_right_sample;
|
|
int32_t next_left_sample, next_right_sample;
|
|
int32_t coeff1l, coeff2l, coeff1r, coeff2r;
|
|
uint8_t shift_left, shift_right;
|
|
int count1, count2;
|
|
|
|
if (!buf_size)
|
|
return 0;
|
|
|
|
samples = data;
|
|
src = buf;
|
|
|
|
st = avctx->channels == 2;
|
|
|
|
switch(avctx->codec->id) {
|
|
case CODEC_ID_ADPCM_IMA_QT:
|
|
n = (buf_size - 2);/* >> 2*avctx->channels;*/
|
|
channel = c->channel;
|
|
cs = &(c->status[channel]);
|
|
/* (pppppp) (piiiiiii) */
|
|
|
|
/* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
|
|
cs->predictor = (*src++) << 8;
|
|
cs->predictor |= (*src & 0x80);
|
|
cs->predictor &= 0xFF80;
|
|
|
|
/* sign extension */
|
|
if(cs->predictor & 0x8000)
|
|
cs->predictor -= 0x10000;
|
|
|
|
CLAMP_TO_SHORT(cs->predictor);
|
|
|
|
cs->step_index = (*src++) & 0x7F;
|
|
|
|
if (cs->step_index > 88) av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
|
|
if (cs->step_index > 88) cs->step_index = 88;
|
|
|
|
cs->step = step_table[cs->step_index];
|
|
|
|
if (st && channel)
|
|
samples++;
|
|
|
|
for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
|
|
*samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
|
|
samples += avctx->channels;
|
|
*samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
|
|
samples += avctx->channels;
|
|
src ++;
|
|
}
|
|
|
|
if(st) { /* handle stereo interlacing */
|
|
c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
|
|
if(channel == 1) { /* wait for the other packet before outputing anything */
|
|
*data_size = 0;
|
|
return src - buf;
|
|
}
|
|
}
|
|
break;
|
|
case CODEC_ID_ADPCM_IMA_WAV:
|
|
if (avctx->block_align != 0 && buf_size > avctx->block_align)
|
|
buf_size = avctx->block_align;
|
|
|
|
for(i=0; i<avctx->channels; i++){
|
|
cs = &(c->status[i]);
|
|
cs->predictor = *src++;
|
|
cs->predictor |= (*src++) << 8;
|
|
if(cs->predictor & 0x8000)
|
|
cs->predictor -= 0x10000;
|
|
CLAMP_TO_SHORT(cs->predictor);
|
|
|
|
// XXX: is this correct ??: *samples++ = cs->predictor;
|
|
|
|
cs->step_index = *src++;
|
|
if (cs->step_index < 0) cs->step_index = 0;
|
|
if (cs->step_index > 88) cs->step_index = 88;
|
|
if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null !!\n"); /* unused */
|
|
}
|
|
|
|
for(m=4; src < (buf + buf_size);) {
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3);
|
|
if (st)
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F, 3);
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F, 3);
|
|
if (st) {
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F, 3);
|
|
if (!--m) {
|
|
m=4;
|
|
src+=4;
|
|
}
|
|
}
|
|
src++;
|
|
}
|
|
break;
|
|
case CODEC_ID_ADPCM_4XM:
|
|
cs = &(c->status[0]);
|
|
c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
|
|
if(st){
|
|
c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
|
|
}
|
|
c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
|
|
if(st){
|
|
c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
|
|
}
|
|
if (cs->step_index < 0) cs->step_index = 0;
|
|
if (cs->step_index > 88) cs->step_index = 88;
|
|
|
|
m= (buf_size - (src - buf))>>st;
|
|
for(i=0; i<m; i++) {
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
|
|
if (st)
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
|
|
if (st)
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
|
|
}
|
|
|
|
src += m<<st;
|
|
|
|
break;
|
|
case CODEC_ID_ADPCM_MS:
|
|
if (avctx->block_align != 0 && buf_size > avctx->block_align)
|
|
buf_size = avctx->block_align;
|
|
n = buf_size - 7 * avctx->channels;
|
|
if (n < 0)
|
|
return -1;
|
|
block_predictor[0] = clip(*src++, 0, 7);
|
|
block_predictor[1] = 0;
|
|
if (st)
|
|
block_predictor[1] = clip(*src++, 0, 7);
|
|
c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
|
src+=2;
|
|
if (st){
|
|
c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
|
src+=2;
|
|
}
|
|
c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
|
|
c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
|
|
c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
|
|
c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
|
|
|
|
c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
|
src+=2;
|
|
if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
|
if (st) src+=2;
|
|
c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
|
src+=2;
|
|
if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
|
|
if (st) src+=2;
|
|
|
|
*samples++ = c->status[0].sample1;
|
|
if (st) *samples++ = c->status[1].sample1;
|
|
*samples++ = c->status[0].sample2;
|
|
if (st) *samples++ = c->status[1].sample2;
|
|
for(;n>0;n--) {
|
|
*samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
|
|
*samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
|
|
src ++;
|
|
}
|
|
break;
|
|
case CODEC_ID_ADPCM_IMA_DK4:
|
|
if (avctx->block_align != 0 && buf_size > avctx->block_align)
|
|
buf_size = avctx->block_align;
|
|
|
|
c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
|
|
c->status[0].step_index = src[2];
|
|
src += 4;
|
|
*samples++ = c->status[0].predictor;
|
|
if (st) {
|
|
c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
|
|
c->status[1].step_index = src[2];
|
|
src += 4;
|
|
*samples++ = c->status[1].predictor;
|
|
}
|
|
while (src < buf + buf_size) {
|
|
|
|
/* take care of the top nibble (always left or mono channel) */
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
|
(src[0] >> 4) & 0x0F, 3);
|
|
|
|
/* take care of the bottom nibble, which is right sample for
|
|
* stereo, or another mono sample */
|
|
if (st)
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1],
|
|
src[0] & 0x0F, 3);
|
|
else
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
|
src[0] & 0x0F, 3);
|
|
|
|
src++;
|
|
}
|
|
break;
|
|
case CODEC_ID_ADPCM_IMA_DK3:
|
|
if (avctx->block_align != 0 && buf_size > avctx->block_align)
|
|
buf_size = avctx->block_align;
|
|
|
|
c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
|
|
c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
|
|
c->status[0].step_index = src[14];
|
|
c->status[1].step_index = src[15];
|
|
/* sign extend the predictors */
|
|
src += 16;
|
|
diff_channel = c->status[1].predictor;
|
|
|
|
/* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
|
|
* the buffer is consumed */
|
|
while (1) {
|
|
|
|
/* for this algorithm, c->status[0] is the sum channel and
|
|
* c->status[1] is the diff channel */
|
|
|
|
/* process the first predictor of the sum channel */
|
|
DK3_GET_NEXT_NIBBLE();
|
|
adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
|
|
|
|
/* process the diff channel predictor */
|
|
DK3_GET_NEXT_NIBBLE();
|
|
adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
|
|
|
|
/* process the first pair of stereo PCM samples */
|
|
diff_channel = (diff_channel + c->status[1].predictor) / 2;
|
|
*samples++ = c->status[0].predictor + c->status[1].predictor;
|
|
*samples++ = c->status[0].predictor - c->status[1].predictor;
|
|
|
|
/* process the second predictor of the sum channel */
|
|
DK3_GET_NEXT_NIBBLE();
|
|
adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
|
|
|
|
/* process the second pair of stereo PCM samples */
|
|
diff_channel = (diff_channel + c->status[1].predictor) / 2;
|
|
*samples++ = c->status[0].predictor + c->status[1].predictor;
|
|
*samples++ = c->status[0].predictor - c->status[1].predictor;
|
|
}
|
|
break;
|
|
case CODEC_ID_ADPCM_IMA_WS:
|
|
/* no per-block initialization; just start decoding the data */
|
|
while (src < buf + buf_size) {
|
|
|
|
if (st) {
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
|
(src[0] >> 4) & 0x0F, 3);
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1],
|
|
src[0] & 0x0F, 3);
|
|
} else {
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
|
(src[0] >> 4) & 0x0F, 3);
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
|
src[0] & 0x0F, 3);
|
|
}
|
|
|
|
src++;
|
|
}
|
|
break;
|
|
case CODEC_ID_ADPCM_XA:
|
|
c->status[0].sample1 = c->status[0].sample2 =
|
|
c->status[1].sample1 = c->status[1].sample2 = 0;
|
|
while (buf_size >= 128) {
|
|
xa_decode(samples, src, &c->status[0], &c->status[1],
|
|
avctx->channels);
|
|
src += 128;
|
|
samples += 28 * 8;
|
|
buf_size -= 128;
|
|
}
|
|
break;
|
|
case CODEC_ID_ADPCM_EA:
|
|
samples_in_chunk = LE_32(src);
|
|
if (samples_in_chunk >= ((buf_size - 12) * 2)) {
|
|
src += buf_size;
|
|
break;
|
|
}
|
|
src += 4;
|
|
current_left_sample = (int16_t)LE_16(src);
|
|
src += 2;
|
|
previous_left_sample = (int16_t)LE_16(src);
|
|
src += 2;
|
|
current_right_sample = (int16_t)LE_16(src);
|
|
src += 2;
|
|
previous_right_sample = (int16_t)LE_16(src);
|
|
src += 2;
|
|
|
|
for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
|
|
coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
|
|
coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
|
|
coeff1r = ea_adpcm_table[*src & 0x0F];
|
|
coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
|
|
src++;
|
|
|
|
shift_left = ((*src >> 4) & 0x0F) + 8;
|
|
shift_right = (*src & 0x0F) + 8;
|
|
src++;
|
|
|
|
for (count2 = 0; count2 < 28; count2++) {
|
|
next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
|
|
next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
|
|
src++;
|
|
|
|
next_left_sample = (next_left_sample +
|
|
(current_left_sample * coeff1l) +
|
|
(previous_left_sample * coeff2l) + 0x80) >> 8;
|
|
next_right_sample = (next_right_sample +
|
|
(current_right_sample * coeff1r) +
|
|
(previous_right_sample * coeff2r) + 0x80) >> 8;
|
|
CLAMP_TO_SHORT(next_left_sample);
|
|
CLAMP_TO_SHORT(next_right_sample);
|
|
|
|
previous_left_sample = current_left_sample;
|
|
current_left_sample = next_left_sample;
|
|
previous_right_sample = current_right_sample;
|
|
current_right_sample = next_right_sample;
|
|
*samples++ = (unsigned short)current_left_sample;
|
|
*samples++ = (unsigned short)current_right_sample;
|
|
}
|
|
}
|
|
break;
|
|
case CODEC_ID_ADPCM_IMA_SMJPEG:
|
|
c->status[0].predictor = *src;
|
|
src += 2;
|
|
c->status[0].step_index = *src++;
|
|
src++; /* skip another byte before getting to the meat */
|
|
while (src < buf + buf_size) {
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
|
*src & 0x0F, 3);
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
|
(*src >> 4) & 0x0F, 3);
|
|
src++;
|
|
}
|
|
break;
|
|
default:
|
|
*data_size = 0;
|
|
return -1;
|
|
}
|
|
*data_size = (uint8_t *)samples - (uint8_t *)data;
|
|
return src - buf;
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_ENCODERS
|
|
#define ADPCM_ENCODER(id,name) \
|
|
AVCodec name ## _encoder = { \
|
|
#name, \
|
|
CODEC_TYPE_AUDIO, \
|
|
id, \
|
|
sizeof(ADPCMContext), \
|
|
adpcm_encode_init, \
|
|
adpcm_encode_frame, \
|
|
adpcm_encode_close, \
|
|
NULL, \
|
|
};
|
|
#else
|
|
#define ADPCM_ENCODER(id,name)
|
|
#endif
|
|
|
|
#ifdef CONFIG_DECODERS
|
|
#define ADPCM_DECODER(id,name) \
|
|
AVCodec name ## _decoder = { \
|
|
#name, \
|
|
CODEC_TYPE_AUDIO, \
|
|
id, \
|
|
sizeof(ADPCMContext), \
|
|
adpcm_decode_init, \
|
|
NULL, \
|
|
NULL, \
|
|
adpcm_decode_frame, \
|
|
};
|
|
#else
|
|
#define ADPCM_DECODER(id,name)
|
|
#endif
|
|
|
|
#define ADPCM_CODEC(id, name) \
|
|
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
|
|
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_ADX, adpcm_adx);
|
|
ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
|
|
|
|
#undef ADPCM_CODEC
|