ffmpeg/libavcodec/hevc_mvs.c

1009 lines
32 KiB
C

/*
* HEVC video Decoder
*
* Copyright (C) 2012 - 2013 Guillaume Martres
* Copyright (C) 2013 Anand Meher Kotra
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "hevc.h"
static const uint8_t l0_l1_cand_idx[12][2] = {
{ 0, 1, },
{ 1, 0, },
{ 0, 2, },
{ 2, 0, },
{ 1, 2, },
{ 2, 1, },
{ 0, 3, },
{ 3, 0, },
{ 1, 3, },
{ 3, 1, },
{ 2, 3, },
{ 3, 2, },
};
void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0, int nPbW, int nPbH)
{
HEVCLocalContext *lc = s->HEVClc;
int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
lc->na.cand_up = (lc->ctb_up_flag || y0b);
lc->na.cand_left = (lc->ctb_left_flag || x0b);
lc->na.cand_up_left = (!x0b && !y0b) ? lc->ctb_up_left_flag : lc->na.cand_left && lc->na.cand_up;
lc->na.cand_up_right_sap =
((x0b + nPbW) == (1 << s->sps->log2_ctb_size)) ?
lc->ctb_up_right_flag && !y0b : lc->na.cand_up;
lc->na.cand_up_right =
((x0b + nPbW) == (1 << s->sps->log2_ctb_size) ?
lc->ctb_up_right_flag && !y0b : lc->na.cand_up )
&& (x0 + nPbW) < lc->end_of_tiles_x;
lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left;
}
/*
* 6.4.1 Derivation process for z-scan order block availability
*/
static int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr,
int xN, int yN)
{
#define MIN_TB_ADDR_ZS(x, y) \
s->pps->min_tb_addr_zs[(y) * s->sps->min_tb_width + (x)]
int Curr = MIN_TB_ADDR_ZS(xCurr >> s->sps->log2_min_transform_block_size,
yCurr >> s->sps->log2_min_transform_block_size);
int N;
if ((xN < 0) || (yN < 0) ||
(xN >= s->sps->width) ||
(yN >= s->sps->height))
return 0;
N = MIN_TB_ADDR_ZS(xN >> s->sps->log2_min_transform_block_size,
yN >> s->sps->log2_min_transform_block_size);
return N <= Curr;
}
static int same_prediction_block(HEVCLocalContext *lc, int log2_cb_size,
int x0, int y0, int nPbW, int nPbH,
int xA1, int yA1, int partIdx)
{
return !(nPbW << 1 == 1 << log2_cb_size &&
nPbH << 1 == 1 << log2_cb_size && partIdx == 1 &&
lc->cu.x + nPbW > xA1 &&
lc->cu.y + nPbH <= yA1);
}
/*
* 6.4.2 Derivation process for prediction block availability
*/
static int check_prediction_block_available(HEVCContext *s, int log2_cb_size,
int x0, int y0, int nPbW, int nPbH,
int xA1, int yA1, int partIdx)
{
HEVCLocalContext *lc = s->HEVClc;
if (lc->cu.x < xA1 && lc->cu.y < yA1 &&
(lc->cu.x + (1 << log2_cb_size)) > xA1 &&
(lc->cu.y + (1 << log2_cb_size)) > yA1)
return same_prediction_block(lc, log2_cb_size, x0, y0,
nPbW, nPbH, xA1, yA1, partIdx);
else
return z_scan_block_avail(s, x0, y0, xA1, yA1);
}
//check if the two luma locations belong to the same mostion estimation region
static int isDiffMER(HEVCContext *s, int xN, int yN, int xP, int yP)
{
uint8_t plevel = s->pps->log2_parallel_merge_level;
return xN >> plevel == xP >> plevel &&
yN >> plevel == yP >> plevel;
}
#define MATCH(x) (A.x == B.x)
// check if the mv's and refidx are the same between A and B
static int compareMVrefidx(struct MvField A, struct MvField B)
{
if (A.pred_flag[0] && A.pred_flag[1] && B.pred_flag[0] && B.pred_flag[1])
return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y) &&
MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y);
if (A.pred_flag[0] && !A.pred_flag[1] && B.pred_flag[0] && !B.pred_flag[1])
return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y);
if (!A.pred_flag[0] && A.pred_flag[1] && !B.pred_flag[0] && B.pred_flag[1])
return MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y);
return 0;
}
static av_always_inline void mv_scale(Mv *dst, Mv *src, int td, int tb)
{
int tx, scale_factor;
td = av_clip_int8_c(td);
tb = av_clip_int8_c(tb);
tx = (0x4000 + abs(td / 2)) / td;
scale_factor = av_clip_c((tb * tx + 32) >> 6, -4096, 4095);
dst->x = av_clip_int16_c((scale_factor * src->x + 127 +
(scale_factor * src->x < 0)) >> 8);
dst->y = av_clip_int16_c((scale_factor * src->y + 127 +
(scale_factor * src->y < 0)) >> 8);
}
static int check_mvset(Mv *mvLXCol, Mv *mvCol,
int colPic, int poc,
RefPicList *refPicList, int X, int refIdxLx,
RefPicList *refPicList_col, int listCol, int refidxCol)
{
int cur_lt = refPicList[X].isLongTerm[refIdxLx];
int col_lt = refPicList_col[listCol].isLongTerm[refidxCol];
int col_poc_diff, cur_poc_diff;
if (cur_lt != col_lt) {
mvLXCol->x = 0;
mvLXCol->y = 0;
return 0;
}
col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol];
cur_poc_diff = poc - refPicList[X].list[refIdxLx];
if (!col_poc_diff)
col_poc_diff = 1; // error resilience
if (cur_lt || col_poc_diff == cur_poc_diff) {
mvLXCol->x = mvCol->x;
mvLXCol->y = mvCol->y;
} else {
mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
}
return 1;
}
#define CHECK_MVSET(l) \
check_mvset(mvLXCol, temp_col.mv + l, \
colPic, s->poc, \
refPicList, X, refIdxLx, \
refPicList_col, L##l, temp_col.ref_idx[l])
// derive the motion vectors section 8.5.3.1.8
static int derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col,
int refIdxLx, Mv* mvLXCol, int X,
int colPic, RefPicList* refPicList_col)
{
RefPicList *refPicList = s->ref->refPicList;
if (temp_col.is_intra) {
mvLXCol->x = 0;
mvLXCol->y = 0;
return 0;
}
if (temp_col.pred_flag[0] == 0)
return CHECK_MVSET(1);
else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 0)
return CHECK_MVSET(0);
else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 1) {
int check_diffpicount = 0;
int i = 0;
for (i = 0; i < refPicList[0].nb_refs; i++) {
if (refPicList[0].list[i] > s->poc)
check_diffpicount++;
}
for (i = 0; i < refPicList[1].nb_refs; i++) {
if (refPicList[1].list[i] > s->poc)
check_diffpicount++;
}
if (check_diffpicount == 0 && X == 0)
return CHECK_MVSET(0);
else if (check_diffpicount == 0 && X == 1)
return CHECK_MVSET(1);
else {
if (s->sh.collocated_list == L1)
return CHECK_MVSET(0);
else
return CHECK_MVSET(1);
}
}
return 0;
}
#define TAB_MVF(x, y) \
tab_mvf[(y) * pic_width_in_min_pu + x]
#define TAB_MVF_PU(v) \
TAB_MVF(x##v##_pu, y##v##_pu)
#define DERIVE_TEMPORAL_COLOCATED_MVS(v) \
derive_temporal_colocated_mvs(s, temp_col, \
refIdxLx, mvLXCol, X, colPic, \
ff_hevc_get_ref_list(s, ref, \
x##v, y##v))
/*
* 8.5.3.1.7 temporal luma motion vector prediction
*/
static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0,
int nPbW, int nPbH, int refIdxLx,
Mv* mvLXCol, int X)
{
MvField *tab_mvf;
MvField temp_col;
int xPRb, yPRb;
int xPRb_pu;
int yPRb_pu;
int xPCtr, yPCtr;
int xPCtr_pu;
int yPCtr_pu;
int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
int availableFlagLXCol = 0;
int colPic;
HEVCFrame *ref = s->ref->collocated_ref;
if (!ref)
return 0;
tab_mvf = ref->tab_mvf;
colPic = ref->poc;
//bottom right collocated motion vector
xPRb = x0 + nPbW;
yPRb = y0 + nPbH;
if (s->threads_type == FF_THREAD_FRAME )
ff_thread_await_progress(&ref->tf, INT_MAX, 0);
if (tab_mvf &&
y0 >> s->sps->log2_ctb_size == yPRb >> s->sps->log2_ctb_size &&
yPRb < s->sps->height &&
xPRb < s->sps->width) {
xPRb = ((xPRb >> 4) << 4);
yPRb = ((yPRb >> 4) << 4);
xPRb_pu = xPRb >> s->sps->log2_min_pu_size;
yPRb_pu = yPRb >> s->sps->log2_min_pu_size;
temp_col = TAB_MVF_PU(PRb);
availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(PRb);
} else {
mvLXCol->x = 0;
mvLXCol->y = 0;
availableFlagLXCol = 0;
}
// derive center collocated motion vector
if (tab_mvf && availableFlagLXCol == 0) {
xPCtr = x0 + (nPbW >> 1);
yPCtr = y0 + (nPbH >> 1);
xPCtr = ((xPCtr >> 4) << 4);
yPCtr = ((yPCtr >> 4) << 4);
xPCtr_pu = xPCtr >> s->sps->log2_min_pu_size;
yPCtr_pu = yPCtr >> s->sps->log2_min_pu_size;
temp_col = TAB_MVF_PU(PCtr);
availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(PCtr);
}
return availableFlagLXCol;
}
#define AVAILABLE(cand, v) \
(cand && !TAB_MVF_PU(v).is_intra)
#define PRED_BLOCK_AVAILABLE(v) \
check_prediction_block_available(s, log2_cb_size, \
x0, y0, nPbW, nPbH, \
x##v, y##v, part_idx)
#define COMPARE_MV_REFIDX(a, b) \
compareMVrefidx(TAB_MVF_PU(a), TAB_MVF_PU(b))
/*
* 8.5.3.1.2 Derivation process for spatial merging candidates
*/
static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0,
int nPbW, int nPbH, int log2_cb_size,
int singleMCLFlag, int part_idx,
struct MvField mergecandlist[])
{
HEVCLocalContext *lc = s->HEVClc;
RefPicList *refPicList = s->ref->refPicList;
MvField *tab_mvf = s->ref->tab_mvf;
int available_a1_flag = 0;
int available_b1_flag = 0;
int available_b0_flag = 0;
int available_a0_flag = 0;
int available_b2_flag = 0;
struct MvField spatialCMVS[MRG_MAX_NUM_CANDS];
struct MvField combCand = { { { 0 } } };
struct MvField TMVPCand = { { { 0 } } };
struct Mv mvL0Col = { 0 };
struct Mv mvL1Col = { 0 };
//first left spatial merge candidate
int xA1 = x0 - 1;
int yA1 = y0 + nPbH - 1;
int is_available_a1;
int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
int check_MER = 1;
int check_MER_1 = 1;
int xB1, yB1;
int is_available_b1;
int xB1_pu;
int yB1_pu;
int check_B0;
int xB0, yB0;
int isAvailableB0;
int xB0_pu;
int yB0_pu;
int check_A0;
int xA0, yA0;
int is_available_a0;
int xA0_pu;
int yA0_pu;
int xB2, yB2;
int isAvailableB2;
int xB2_pu;
int yB2_pu;
int mergearray_index = 0;
struct MvField zerovector;
int numRefIdx = 0;
int zeroIdx = 0;
int numMergeCand = 0;
int numOrigMergeCand = 0;
int sumcandidates = 0;
int combIdx = 0;
int combStop = 0;
int l0CandIdx = 0;
int l1CandIdx = 0;
int refIdxL0Col = 0;
int refIdxL1Col = 0;
int availableFlagLXCol = 0;
int cand_bottom_left = lc->na.cand_bottom_left;
int cand_left = lc->na.cand_left;
int cand_up_left = lc->na.cand_up_left;
int cand_up = lc->na.cand_up;
int cand_up_right = lc->na.cand_up_right_sap;
int xA1_pu = xA1 >> s->sps->log2_min_pu_size;
int yA1_pu = yA1 >> s->sps->log2_min_pu_size;
int availableFlagL0Col = 0;
int availableFlagL1Col = 0;
is_available_a1 = AVAILABLE(cand_left, A1);
if (!singleMCLFlag && part_idx == 1 &&
(lc->cu.part_mode == PART_Nx2N ||
lc->cu.part_mode == PART_nLx2N ||
lc->cu.part_mode == PART_nRx2N) ||
isDiffMER(s, xA1, yA1, x0, y0)) {
is_available_a1 = 0;
}
if (is_available_a1) {
available_a1_flag = 1;
spatialCMVS[0] = TAB_MVF_PU(A1);
} else {
available_a1_flag = 0;
spatialCMVS[0].ref_idx[0] = -1;
spatialCMVS[0].ref_idx[1] = -1;
spatialCMVS[0].mv[0].x = 0;
spatialCMVS[0].mv[0].y = 0;
spatialCMVS[0].mv[1].x = 0;
spatialCMVS[0].mv[1].y = 0;
spatialCMVS[0].pred_flag[0] = 0;
spatialCMVS[0].pred_flag[1] = 0;
spatialCMVS[0].is_intra = 0;
}
// above spatial merge candidate
xB1 = x0 + nPbW - 1;
yB1 = y0 - 1;
xB1_pu = xB1 >> s->sps->log2_min_pu_size;
yB1_pu = yB1 >> s->sps->log2_min_pu_size;
is_available_b1 = AVAILABLE(cand_up, B1);
if (!singleMCLFlag && part_idx == 1 &&
(lc->cu.part_mode == PART_2NxN ||
lc->cu.part_mode == PART_2NxnU ||
lc->cu.part_mode == PART_2NxnD) ||
isDiffMER(s, xB1, yB1, x0, y0)) {
is_available_b1 = 0;
}
if (is_available_a1 && is_available_b1)
check_MER = !COMPARE_MV_REFIDX(B1, A1);
if (is_available_b1 && check_MER) {
available_b1_flag = 1;
spatialCMVS[1] = TAB_MVF_PU(B1);
} else {
available_b1_flag = 0;
spatialCMVS[1].ref_idx[0] = -1;
spatialCMVS[1].ref_idx[1] = -1;
spatialCMVS[1].mv[0].x = 0;
spatialCMVS[1].mv[0].y = 0;
spatialCMVS[1].mv[1].x = 0;
spatialCMVS[1].mv[1].y = 0;
spatialCMVS[1].pred_flag[0] = 0;
spatialCMVS[1].pred_flag[1] = 0;
spatialCMVS[1].is_intra = 0;
}
// above right spatial merge candidate
xB0 = x0 + nPbW;
yB0 = y0 - 1;
check_MER = 1;
xB0_pu = xB0 >> s->sps->log2_min_pu_size;
yB0_pu = yB0 >> s->sps->log2_min_pu_size;
check_B0 = PRED_BLOCK_AVAILABLE(B0);
isAvailableB0 = check_B0 && AVAILABLE(cand_up_right, B0);
if (isDiffMER(s, xB0, yB0, x0, y0))
isAvailableB0 = 0;
if (is_available_b1 && isAvailableB0)
check_MER = !COMPARE_MV_REFIDX(B0, B1);
if (isAvailableB0 && check_MER) {
available_b0_flag = 1;
spatialCMVS[2] = TAB_MVF_PU(B0);
} else {
available_b0_flag = 0;
spatialCMVS[2].ref_idx[0] = -1;
spatialCMVS[2].ref_idx[1] = -1;
spatialCMVS[2].mv[0].x = 0;
spatialCMVS[2].mv[0].y = 0;
spatialCMVS[2].mv[1].x = 0;
spatialCMVS[2].mv[1].y = 0;
spatialCMVS[2].pred_flag[0] = 0;
spatialCMVS[2].pred_flag[1] = 0;
spatialCMVS[2].is_intra = 0;
}
// left bottom spatial merge candidate
xA0 = x0 - 1;
yA0 = y0 + nPbH;
check_MER = 1;
xA0_pu = xA0 >> s->sps->log2_min_pu_size;
yA0_pu = yA0 >> s->sps->log2_min_pu_size;
check_A0 = PRED_BLOCK_AVAILABLE(A0);
is_available_a0 = check_A0 && AVAILABLE(cand_bottom_left, A0);
if (isDiffMER(s, xA0, yA0, x0, y0))
is_available_a0 = 0;
if (is_available_a1 && is_available_a0)
check_MER = !COMPARE_MV_REFIDX(A0, A1);
if (is_available_a0 && check_MER) {
available_a0_flag = 1;
spatialCMVS[3] = TAB_MVF_PU(A0);
} else {
available_a0_flag = 0;
spatialCMVS[3].ref_idx[0] = -1;
spatialCMVS[3].ref_idx[1] = -1;
spatialCMVS[3].mv[0].x = 0;
spatialCMVS[3].mv[0].y = 0;
spatialCMVS[3].mv[1].x = 0;
spatialCMVS[3].mv[1].y = 0;
spatialCMVS[3].pred_flag[0] = 0;
spatialCMVS[3].pred_flag[1] = 0;
spatialCMVS[3].is_intra = 0;
}
// above left spatial merge candidate
xB2 = x0 - 1;
yB2 = y0 - 1;
check_MER = 1;
xB2_pu = xB2 >> s->sps->log2_min_pu_size;
yB2_pu = yB2 >> s->sps->log2_min_pu_size;
isAvailableB2 = AVAILABLE(cand_up_left, B2);
if (isDiffMER(s, xB2, yB2, x0, y0))
isAvailableB2 = 0;
if (is_available_a1 && isAvailableB2)
check_MER = !COMPARE_MV_REFIDX(B2, A1);
if (is_available_b1 && isAvailableB2)
check_MER_1 = !COMPARE_MV_REFIDX(B2, B1);
sumcandidates = available_a1_flag + available_b1_flag + available_b0_flag
+ available_a0_flag;
if (isAvailableB2 && check_MER && check_MER_1 && sumcandidates != 4) {
available_b2_flag = 1;
spatialCMVS[4] = TAB_MVF_PU(B2);
} else {
available_b2_flag = 0;
spatialCMVS[4].ref_idx[0] = -1;
spatialCMVS[4].ref_idx[1] = -1;
spatialCMVS[4].mv[0].x = 0;
spatialCMVS[4].mv[0].y = 0;
spatialCMVS[4].mv[1].x = 0;
spatialCMVS[4].mv[1].y = 0;
spatialCMVS[4].pred_flag[0] = 0;
spatialCMVS[4].pred_flag[1] = 0;
spatialCMVS[4].is_intra = 0;
}
// temporal motion vector candidate
// one optimization is that do temporal checking only if the number of
// available candidates < MRG_MAX_NUM_CANDS
if (s->sh.slice_temporal_mvp_enabled_flag == 0) {
availableFlagLXCol = 0;
} else {
availableFlagL0Col = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
refIdxL0Col, &mvL0Col, 0);
// one optimization is that l1 check can be done only when the current slice type is B_SLICE
if (s->sh.slice_type == B_SLICE) {
availableFlagL1Col = temporal_luma_motion_vector(s, x0, y0, nPbW,
nPbH, refIdxL1Col, &mvL1Col, 1);
}
availableFlagLXCol = availableFlagL0Col || availableFlagL1Col;
if (availableFlagLXCol) {
TMVPCand.is_intra = 0;
TMVPCand.pred_flag[0] = availableFlagL0Col;
TMVPCand.pred_flag[1] = availableFlagL1Col;
if (TMVPCand.pred_flag[0]) {
TMVPCand.mv[0] = mvL0Col;
TMVPCand.ref_idx[0] = refIdxL0Col;
}
if (TMVPCand.pred_flag[1]) {
TMVPCand.mv[1] = mvL1Col;
TMVPCand.ref_idx[1] = refIdxL1Col;
}
}
}
if (available_a1_flag) {
mergecandlist[mergearray_index] = spatialCMVS[0];
mergearray_index++;
}
if (available_b1_flag) {
mergecandlist[mergearray_index] = spatialCMVS[1];
mergearray_index++;
}
if (available_b0_flag) {
mergecandlist[mergearray_index] = spatialCMVS[2];
mergearray_index++;
}
if (available_a0_flag) {
mergecandlist[mergearray_index] = spatialCMVS[3];
mergearray_index++;
}
if (available_b2_flag) {
mergecandlist[mergearray_index] = spatialCMVS[4];
mergearray_index++;
}
if (availableFlagLXCol && mergearray_index < s->sh.max_num_merge_cand) {
mergecandlist[mergearray_index] = TMVPCand;
mergearray_index++;
}
numMergeCand = mergearray_index;
numOrigMergeCand = mergearray_index;
// combined bi-predictive merge candidates (applies for B slices)
if (s->sh.slice_type == B_SLICE) {
if (numOrigMergeCand > 1 &&
numOrigMergeCand < s->sh.max_num_merge_cand) {
combIdx = 0;
combStop = 0;
while (combStop != 1) {
MvField l0Cand;
MvField l1Cand;
l0CandIdx = l0_l1_cand_idx[combIdx][0];
l1CandIdx = l0_l1_cand_idx[combIdx][1];
l0Cand = mergecandlist[l0CandIdx];
l1Cand = mergecandlist[l1CandIdx];
if (l0Cand.pred_flag[0] == 1 &&
l1Cand.pred_flag[1] == 1 &&
(refPicList[0].list[l0Cand.ref_idx[0]] !=
refPicList[1].list[l1Cand.ref_idx[1]] ||
l0Cand.mv[0].x != l1Cand.mv[1].x ||
l0Cand.mv[0].y != l1Cand.mv[1].y)) {
combCand.ref_idx[0] = l0Cand.ref_idx[0];
combCand.ref_idx[1] = l1Cand.ref_idx[1];
combCand.pred_flag[0] = 1;
combCand.pred_flag[1] = 1;
combCand.mv[0].x = l0Cand.mv[0].x;
combCand.mv[0].y = l0Cand.mv[0].y;
combCand.mv[1].x = l1Cand.mv[1].x;
combCand.mv[1].y = l1Cand.mv[1].y;
combCand.is_intra = 0;
mergecandlist[numMergeCand] = combCand;
numMergeCand++;
}
combIdx++;
if (combIdx == numOrigMergeCand * (numOrigMergeCand - 1) ||
numMergeCand == s->sh.max_num_merge_cand)
combStop = 1;
}
}
}
/*
* append Zero motion vector candidates
*/
if (s->sh.slice_type == P_SLICE) {
numRefIdx = s->sh.nb_refs[0];
} else if (s->sh.slice_type == B_SLICE) {
numRefIdx = FFMIN(s->sh.nb_refs[0],
s->sh.nb_refs[1]);
}
while (numMergeCand < s->sh.max_num_merge_cand) {
if (s->sh.slice_type == P_SLICE) {
zerovector.ref_idx[0] = (zeroIdx < numRefIdx) ? zeroIdx : 0;
zerovector.ref_idx[1] = -1;
zerovector.pred_flag[0] = 1;
zerovector.pred_flag[1] = 0;
zerovector.mv[0].x = 0;
zerovector.mv[0].y = 0;
zerovector.mv[1].x = 0;
zerovector.mv[1].y = 0;
zerovector.is_intra = 0;
} else {
zerovector.ref_idx[0] = (zeroIdx < numRefIdx) ? zeroIdx : 0;
zerovector.ref_idx[1] = (zeroIdx < numRefIdx) ? zeroIdx : 0;
zerovector.pred_flag[0] = 1;
zerovector.pred_flag[1] = 1;
zerovector.mv[0].x = 0;
zerovector.mv[0].y = 0;
zerovector.mv[1].x = 0;
zerovector.mv[1].y = 0;
zerovector.is_intra = 0;
}
mergecandlist[numMergeCand] = zerovector;
numMergeCand++;
zeroIdx++;
}
}
/*
* 8.5.3.1.1 Derivation process of luma Mvs for merge mode
*/
void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW,
int nPbH, int log2_cb_size, int part_idx,
int merge_idx, MvField *mv)
{
int singleMCLFlag = 0;
int nCS = 1 << log2_cb_size;
struct MvField mergecand_list[MRG_MAX_NUM_CANDS] = { { { { 0 } } } };
int nPbW2 = nPbW;
int nPbH2 = nPbH;
HEVCLocalContext *lc = s->HEVClc;
if (s->pps->log2_parallel_merge_level > 2 && nCS == 8) {
singleMCLFlag = 1;
x0 = lc->cu.x;
y0 = lc->cu.y;
nPbW = nCS;
nPbH = nCS;
part_idx = 0;
}
ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size,
singleMCLFlag, part_idx, mergecand_list);
if (mergecand_list[merge_idx].pred_flag[0] == 1 &&
mergecand_list[merge_idx].pred_flag[1] == 1 &&
(nPbW2 + nPbH2) == 12) {
mergecand_list[merge_idx].ref_idx[1] = -1;
mergecand_list[merge_idx].pred_flag[1] = 0;
}
*mv = mergecand_list[merge_idx];
}
static av_always_inline void dist_scale(HEVCContext *s, Mv * mv,
int pic_width_in_min_pu, int x, int y,
int elist, int ref_idx_curr, int ref_idx)
{
RefPicList *refPicList = s->ref->refPicList;
MvField *tab_mvf = s->ref->tab_mvf;
int ref_pic_elist = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]];
int ref_pic_curr = refPicList[ref_idx_curr].list[ref_idx];
if (ref_pic_elist != ref_pic_curr)
mv_scale(mv, mv, s->poc - ref_pic_elist, s->poc - ref_pic_curr);
}
static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index,
Mv *mv, int ref_idx_curr, int ref_idx)
{
MvField *tab_mvf = s->ref->tab_mvf;
int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
RefPicList *refPicList = s->ref->refPicList;
if (TAB_MVF(x, y).pred_flag[pred_flag_index] == 1 &&
refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) {
*mv = TAB_MVF(x, y).mv[pred_flag_index];
return 1;
}
return 0;
}
static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index,
Mv *mv, int ref_idx_curr, int ref_idx)
{
MvField *tab_mvf = s->ref->tab_mvf;
int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
RefPicList *refPicList = s->ref->refPicList;
int currIsLongTerm = refPicList[ref_idx_curr].isLongTerm[ref_idx];
int colIsLongTerm =
refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])];
if (TAB_MVF(x, y).pred_flag[pred_flag_index] && colIsLongTerm == currIsLongTerm) {
*mv = TAB_MVF(x, y).mv[pred_flag_index];
if (!currIsLongTerm)
dist_scale(s, mv, pic_width_in_min_pu, x, y, pred_flag_index, ref_idx_curr, ref_idx);
return 1;
}
return 0;
}
#define MP_MX(v, pred, mx) \
mv_mp_mode_mx(s, x##v##_pu, y##v##_pu, pred, &mx, ref_idx_curr, ref_idx)
#define MP_MX_LT(v, pred, mx) \
mv_mp_mode_mx_lt(s, x##v##_pu, y##v##_pu, pred, &mx, ref_idx_curr, ref_idx)
void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
int nPbH, int log2_cb_size, int part_idx,
int merge_idx, MvField *mv,
int mvp_lx_flag, int LX)
{
HEVCLocalContext *lc = s->HEVClc;
MvField *tab_mvf = s->ref->tab_mvf;
int isScaledFlag_L0 = 0;
int availableFlagLXA0 = 0;
int availableFlagLXB0 = 0;
int availableFlagLXCol = 0;
int numMVPCandLX = 0;
int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
int xA0, yA0;
int xA0_pu, yA0_pu;
int is_available_a0;
int xA1, yA1;
int xA1_pu, yA1_pu;
int is_available_a1;
int xB0, yB0;
int xB0_pu, yB0_pu;
int is_available_b0;
int xB1, yB1;
int xB1_pu = 0, yB1_pu = 0;
int is_available_b1 = 0;
int xB2, yB2;
int xB2_pu = 0, yB2_pu = 0;
int is_available_b2 = 0;
Mv mvpcand_list[2] = { { 0 } };
Mv mxA = { 0 };
Mv mxB = { 0 };
Mv mvLXCol = { 0 };
int ref_idx_curr = 0;
int ref_idx = 0;
int pred_flag_index_l0;
int pred_flag_index_l1;
int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
int cand_up = (lc->ctb_up_flag || y0b);
int cand_left = (lc->ctb_left_flag || x0b);
int cand_up_left =
(!x0b && !y0b) ? lc->ctb_up_left_flag : cand_left && cand_up;
int cand_up_right =
(x0b + nPbW == (1 << s->sps->log2_ctb_size) ||
x0 + nPbW >= lc->end_of_tiles_x) ? lc->ctb_up_right_flag && !y0b
: cand_up;
int cand_bottom_left = (y0 + nPbH >= lc->end_of_tiles_y) ? 0 : cand_left;
ref_idx_curr = LX;
ref_idx = mv->ref_idx[LX];
pred_flag_index_l0 = LX;
pred_flag_index_l1 = !LX;
// left bottom spatial candidate
xA0 = x0 - 1;
yA0 = y0 + nPbH;
xA0_pu = xA0 >> s->sps->log2_min_pu_size;
yA0_pu = yA0 >> s->sps->log2_min_pu_size;
is_available_a0 = PRED_BLOCK_AVAILABLE(A0) && AVAILABLE(cand_bottom_left, A0);
//left spatial merge candidate
xA1 = x0 - 1;
yA1 = y0 + nPbH - 1;
xA1_pu = xA1 >> s->sps->log2_min_pu_size;
yA1_pu = yA1 >> s->sps->log2_min_pu_size;
is_available_a1 = AVAILABLE(cand_left, A1);
if (is_available_a0 || is_available_a1) {
isScaledFlag_L0 = 1;
}
if (is_available_a0) {
availableFlagLXA0 = MP_MX(A0, pred_flag_index_l0, mxA);
if (!availableFlagLXA0)
availableFlagLXA0 = MP_MX(A0, pred_flag_index_l1, mxA);
}
if (is_available_a1 && !availableFlagLXA0) {
availableFlagLXA0 = MP_MX(A1, pred_flag_index_l0, mxA);
if (!availableFlagLXA0)
availableFlagLXA0 = MP_MX(A1, pred_flag_index_l1, mxA);
}
if (is_available_a0 && !availableFlagLXA0) {
availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l0, mxA);
if (!availableFlagLXA0)
availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l1, mxA);
}
if (is_available_a1 && !availableFlagLXA0) {
availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l0, mxA);
if (!availableFlagLXA0)
availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l1, mxA);
}
// B candidates
// above right spatial merge candidate
xB0 = x0 + nPbW;
yB0 = y0 - 1;
xB0_pu = xB0 >> s->sps->log2_min_pu_size;
yB0_pu = yB0 >> s->sps->log2_min_pu_size;
is_available_b0 = PRED_BLOCK_AVAILABLE(B0) && AVAILABLE(cand_up_right, B0);
if (is_available_b0) {
availableFlagLXB0 = MP_MX(B0, pred_flag_index_l0, mxB);
if (!availableFlagLXB0)
availableFlagLXB0 = MP_MX(B0, pred_flag_index_l1, mxB);
}
if (!availableFlagLXB0) {
// above spatial merge candidate
xB1 = x0 + nPbW - 1;
yB1 = y0 - 1;
xB1_pu = xB1 >> s->sps->log2_min_pu_size;
yB1_pu = yB1 >> s->sps->log2_min_pu_size;
is_available_b1 = AVAILABLE(cand_up, B1);
if (is_available_b1) {
availableFlagLXB0 = MP_MX(B1, pred_flag_index_l0, mxB);
if (!availableFlagLXB0)
availableFlagLXB0 = MP_MX(B1, pred_flag_index_l1, mxB);
}
}
if (!availableFlagLXB0) {
// above left spatial merge candidate
xB2 = x0 - 1;
yB2 = y0 - 1;
xB2_pu = xB2 >> s->sps->log2_min_pu_size;
yB2_pu = yB2 >> s->sps->log2_min_pu_size;
is_available_b2 = AVAILABLE(cand_up_left, B2);
if (is_available_b2) {
availableFlagLXB0 = MP_MX(B2, pred_flag_index_l0, mxB);
if (!availableFlagLXB0)
availableFlagLXB0 = MP_MX(B2, pred_flag_index_l1, mxB);
}
}
if (isScaledFlag_L0 == 0) {
if (availableFlagLXB0) {
availableFlagLXA0 = 1;
mxA = mxB;
}
availableFlagLXB0 = 0;
// XB0 and L1
if (is_available_b0) {
availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB);
if (!availableFlagLXB0)
availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB);
}
if (is_available_b1 && !availableFlagLXB0) {
availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB);
if (!availableFlagLXB0)
availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB);
}
if (is_available_b2 && !availableFlagLXB0) {
availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB);
if (!availableFlagLXB0)
availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB);
}
}
if (availableFlagLXA0 && availableFlagLXB0 &&
(mxA.x != mxB.x || mxA.y != mxB.y)) {
availableFlagLXCol = 0;
} else {
//temporal motion vector prediction candidate
if (s->sh.slice_temporal_mvp_enabled_flag == 0) {
availableFlagLXCol = 0;
} else {
availableFlagLXCol = temporal_luma_motion_vector(s, x0, y0, nPbW,
nPbH, ref_idx, &mvLXCol, LX);
}
}
if (availableFlagLXA0) {
mvpcand_list[numMVPCandLX] = mxA;
numMVPCandLX++;
}
if (availableFlagLXB0) {
mvpcand_list[numMVPCandLX] = mxB;
numMVPCandLX++;
}
if (availableFlagLXA0 && availableFlagLXB0 &&
mxA.x == mxB.x && mxA.y == mxB.y) {
numMVPCandLX--;
}
if (availableFlagLXCol && numMVPCandLX < 2) {
mvpcand_list[numMVPCandLX] = mvLXCol;
numMVPCandLX++;
}
while (numMVPCandLX < 2) { // insert zero motion vectors when the number of available candidates are less than 2
mvpcand_list[numMVPCandLX].x = 0;
mvpcand_list[numMVPCandLX].y = 0;
numMVPCandLX++;
}
mv->mv[LX].x = mvpcand_list[mvp_lx_flag].x;
mv->mv[LX].y = mvpcand_list[mvp_lx_flag].y;
}