ffmpeg/libavutil/x86/x86inc.asm

1979 lines
58 KiB
NASM

;*****************************************************************************
;* x86inc.asm: x86 abstraction layer
;*****************************************************************************
;* Copyright (C) 2005-2024 x264 project
;*
;* Authors: Loren Merritt <lorenm@u.washington.edu>
;* Henrik Gramner <henrik@gramner.com>
;* Anton Mitrofanov <BugMaster@narod.ru>
;* Fiona Glaser <fiona@x264.com>
;*
;* Permission to use, copy, modify, and/or distribute this software for any
;* purpose with or without fee is hereby granted, provided that the above
;* copyright notice and this permission notice appear in all copies.
;*
;* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
;* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
;* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
;* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
;* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
;* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
;* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
;*****************************************************************************
; This is a header file for the x86inc.asm assembly language, which uses
; NASM/YASM syntax combined with a large number of macros to provide easy
; abstraction between different calling conventions (x86_32, win64, linux64).
; It also has various other useful features to simplify writing the kind of
; DSP functions that are most often used.
%ifndef private_prefix
%error private_prefix not defined
%endif
%ifndef public_prefix
%define public_prefix private_prefix
%endif
%if HAVE_ALIGNED_STACK
%define STACK_ALIGNMENT 16
%endif
%ifndef STACK_ALIGNMENT
%if ARCH_X86_64
%define STACK_ALIGNMENT 16
%else
%define STACK_ALIGNMENT 4
%endif
%endif
%define WIN64 0
%define UNIX64 0
%if ARCH_X86_64
%ifidn __OUTPUT_FORMAT__,win32
%define WIN64 1
%elifidn __OUTPUT_FORMAT__,win64
%define WIN64 1
%elifidn __OUTPUT_FORMAT__,x64
%define WIN64 1
%else
%define UNIX64 1
%endif
%endif
%define FORMAT_ELF 0
%define FORMAT_MACHO 0
%ifidn __OUTPUT_FORMAT__,elf
%define FORMAT_ELF 1
%elifidn __OUTPUT_FORMAT__,elf32
%define FORMAT_ELF 1
%elifidn __OUTPUT_FORMAT__,elf64
%define FORMAT_ELF 1
%elifidn __OUTPUT_FORMAT__,macho
%define FORMAT_MACHO 1
%elifidn __OUTPUT_FORMAT__,macho32
%define FORMAT_MACHO 1
%elifidn __OUTPUT_FORMAT__,macho64
%define FORMAT_MACHO 1
%endif
%ifdef PREFIX
%define mangle(x) _ %+ x
%else
%define mangle(x) x
%endif
; Use VEX-encoding even in non-AVX functions
%ifndef FORCE_VEX_ENCODING
%define FORCE_VEX_ENCODING 0
%endif
; aout does not support align=
; NOTE: This section is out of sync with x264, in order to
; keep supporting OS/2.
%macro SECTION_RODATA 0-1 16
%ifidn __OUTPUT_FORMAT__,aout
SECTION .text
%elifidn __OUTPUT_FORMAT__,coff
SECTION .text
%elifidn __OUTPUT_FORMAT__,win32
SECTION .rdata align=%1
%elif WIN64
SECTION .rdata align=%1
%else
SECTION .rodata align=%1
%endif
%endmacro
%if ARCH_X86_64
%define PIC 1 ; always use PIC on x86-64
default rel
%elifidn __OUTPUT_FORMAT__,win32
%define PIC 0 ; PIC isn't used on 32-bit Windows
%elifndef PIC
%define PIC 0
%endif
%define HAVE_PRIVATE_EXTERN 1
%ifdef __NASM_VERSION_ID__
%use smartalign
%if __NASM_VERSION_ID__ < 0x020e0000 ; 2.14
%define HAVE_PRIVATE_EXTERN 0
%endif
%endif
; Macros to eliminate most code duplication between x86_32 and x86_64:
; Currently this works only for leaf functions which load all their arguments
; into registers at the start, and make no other use of the stack. Luckily that
; covers most use cases.
; PROLOGUE:
; %1 = number of arguments. loads them from stack if needed.
; %2 = number of registers used. pushes callee-saved regs if needed.
; %3 = number of xmm registers used. pushes callee-saved xmm regs if needed.
; %4 = (optional) stack size to be allocated. The stack will be aligned before
; allocating the specified stack size. If the required stack alignment is
; larger than the known stack alignment the stack will be manually aligned
; and an extra register will be allocated to hold the original stack
; pointer (to not invalidate r0m etc.). To prevent the use of an extra
; register as stack pointer, request a negative stack size.
; %4+/%5+ = list of names to define to registers
; PROLOGUE can also be invoked by adding the same options to cglobal
; e.g.
; cglobal foo, 2,3,7,0x40, dst, src, tmp
; declares a function (foo) that automatically loads two arguments (dst and
; src) into registers, uses one additional register (tmp) plus 7 vector
; registers (m0-m6) and allocates 0x40 bytes of stack space.
; TODO Some functions can use some args directly from the stack. If they're the
; last args then you can just not declare them, but if they're in the middle
; we need more flexible macro.
; RET:
; Pops anything that was pushed by PROLOGUE, and returns.
; REP_RET:
; Use this instead of RET if it's a branch target.
; registers:
; rN and rNq are the native-size register holding function argument N
; rNd, rNw, rNb are dword, word, and byte size
; rNh is the high 8 bits of the word size
; rNm is the original location of arg N (a register or on the stack), dword
; rNmp is native size
%macro DECLARE_REG 2-3
%define r%1q %2
%define r%1d %2d
%define r%1w %2w
%define r%1b %2b
%define r%1h %2h
%define %2q %2
%if %0 == 2
%define r%1m %2d
%define r%1mp %2
%elif ARCH_X86_64 ; memory
%define r%1m [rstk + stack_offset + %3]
%define r%1mp qword r %+ %1 %+ m
%else
%define r%1m [rstk + stack_offset + %3]
%define r%1mp dword r %+ %1 %+ m
%endif
%define r%1 %2
%endmacro
%macro DECLARE_REG_SIZE 3
%define r%1q r%1
%define e%1q r%1
%define r%1d e%1
%define e%1d e%1
%define r%1w %1
%define e%1w %1
%define r%1h %3
%define e%1h %3
%define r%1b %2
%define e%1b %2
%if ARCH_X86_64 == 0
%define r%1 e%1
%endif
%endmacro
DECLARE_REG_SIZE ax, al, ah
DECLARE_REG_SIZE bx, bl, bh
DECLARE_REG_SIZE cx, cl, ch
DECLARE_REG_SIZE dx, dl, dh
DECLARE_REG_SIZE si, sil, null
DECLARE_REG_SIZE di, dil, null
DECLARE_REG_SIZE bp, bpl, null
; t# defines for when per-arch register allocation is more complex than just function arguments
%macro DECLARE_REG_TMP 1-*
%assign %%i 0
%rep %0
CAT_XDEFINE t, %%i, r%1
%assign %%i %%i+1
%rotate 1
%endrep
%endmacro
%macro DECLARE_REG_TMP_SIZE 0-*
%rep %0
%define t%1q t%1 %+ q
%define t%1d t%1 %+ d
%define t%1w t%1 %+ w
%define t%1h t%1 %+ h
%define t%1b t%1 %+ b
%rotate 1
%endrep
%endmacro
DECLARE_REG_TMP_SIZE 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14
%if ARCH_X86_64
%define gprsize 8
%else
%define gprsize 4
%endif
%macro LEA 2
%if ARCH_X86_64
lea %1, [%2]
%elif PIC
call $+5 ; special-cased to not affect the RSB on most CPU:s
pop %1
add %1, (%2)-$+1
%else
mov %1, %2
%endif
%endmacro
; Repeats an instruction/operation for multiple arguments.
; Example usage: "REPX {psrlw x, 8}, m0, m1, m2, m3"
%macro REPX 2-* ; operation, args
%xdefine %%f(x) %1
%rep %0 - 1
%rotate 1
%%f(%1)
%endrep
%endmacro
%macro PUSH 1
push %1
%ifidn rstk, rsp
%assign stack_offset stack_offset+gprsize
%endif
%endmacro
%macro POP 1
pop %1
%ifidn rstk, rsp
%assign stack_offset stack_offset-gprsize
%endif
%endmacro
%macro PUSH_IF_USED 1-*
%rep %0
%if %1 < regs_used
PUSH r%1
%endif
%rotate 1
%endrep
%endmacro
%macro POP_IF_USED 1-*
%rep %0
%if %1 < regs_used
pop r%1
%endif
%rotate 1
%endrep
%endmacro
%macro LOAD_IF_USED 1-*
%rep %0
%if %1 < num_args
mov r%1, r %+ %1 %+ mp
%endif
%rotate 1
%endrep
%endmacro
%macro SUB 2
sub %1, %2
%ifidn %1, rstk
%assign stack_offset stack_offset+(%2)
%endif
%endmacro
%macro ADD 2
add %1, %2
%ifidn %1, rstk
%assign stack_offset stack_offset-(%2)
%endif
%endmacro
%macro movifnidn 2
%ifnidn %1, %2
mov %1, %2
%endif
%endmacro
%if ARCH_X86_64 == 0
%define movsxd movifnidn
%endif
%macro movsxdifnidn 2
%ifnidn %1, %2
movsxd %1, %2
%endif
%endmacro
%macro ASSERT 1
%if (%1) == 0
%error assertion ``%1'' failed
%endif
%endmacro
%macro DEFINE_ARGS 0-*
%ifdef n_arg_names
%assign %%i 0
%rep n_arg_names
CAT_UNDEF arg_name %+ %%i, q
CAT_UNDEF arg_name %+ %%i, d
CAT_UNDEF arg_name %+ %%i, w
CAT_UNDEF arg_name %+ %%i, h
CAT_UNDEF arg_name %+ %%i, b
CAT_UNDEF arg_name %+ %%i, m
CAT_UNDEF arg_name %+ %%i, mp
CAT_UNDEF arg_name, %%i
%assign %%i %%i+1
%endrep
%endif
%xdefine %%stack_offset stack_offset
%undef stack_offset ; so that the current value of stack_offset doesn't get baked in by xdefine
%assign %%i 0
%rep %0
%xdefine %1q r %+ %%i %+ q
%xdefine %1d r %+ %%i %+ d
%xdefine %1w r %+ %%i %+ w
%xdefine %1h r %+ %%i %+ h
%xdefine %1b r %+ %%i %+ b
%xdefine %1m r %+ %%i %+ m
%xdefine %1mp r %+ %%i %+ mp
CAT_XDEFINE arg_name, %%i, %1
%assign %%i %%i+1
%rotate 1
%endrep
%xdefine stack_offset %%stack_offset
%assign n_arg_names %0
%endmacro
%define required_stack_alignment ((mmsize + 15) & ~15)
%define vzeroupper_required (mmsize > 16 && (ARCH_X86_64 == 0 || xmm_regs_used > 16 || notcpuflag(avx512)))
%define high_mm_regs (16*cpuflag(avx512))
; Large stack allocations on Windows need to use stack probing in order
; to guarantee that all stack memory is committed before accessing it.
; This is done by ensuring that the guard page(s) at the end of the
; currently committed pages are touched prior to any pages beyond that.
%if WIN64
%assign STACK_PROBE_SIZE 8192
%elifidn __OUTPUT_FORMAT__, win32
%assign STACK_PROBE_SIZE 4096
%else
%assign STACK_PROBE_SIZE 0
%endif
%macro PROBE_STACK 1 ; stack_size
%if STACK_PROBE_SIZE
%assign %%i STACK_PROBE_SIZE
%rep %1 / STACK_PROBE_SIZE
mov eax, [rsp-%%i]
%assign %%i %%i+STACK_PROBE_SIZE
%endrep
%endif
%endmacro
%macro RESET_STACK_STATE 0
%ifidn rstk, rsp
%assign stack_offset stack_offset - stack_size_padded
%else
%xdefine rstk rsp
%endif
%assign stack_size 0
%assign stack_size_padded 0
%assign xmm_regs_used 0
%endmacro
%macro ALLOC_STACK 0-2 0, 0 ; stack_size, n_xmm_regs
RESET_STACK_STATE
%ifnum %2
%if mmsize != 8
%assign xmm_regs_used %2
%endif
%endif
%ifnum %1
%if %1 != 0
%assign %%pad 0
%assign stack_size %1
%if stack_size < 0
%assign stack_size -stack_size
%endif
%if WIN64
%assign %%pad %%pad + 32 ; shadow space
%if xmm_regs_used > 8
%assign %%pad %%pad + (xmm_regs_used-8)*16 ; callee-saved xmm registers
%endif
%endif
%if required_stack_alignment <= STACK_ALIGNMENT
; maintain the current stack alignment
%assign stack_size_padded stack_size + %%pad + ((-%%pad-stack_offset-gprsize) & (STACK_ALIGNMENT-1))
PROBE_STACK stack_size_padded
SUB rsp, stack_size_padded
%else
%assign %%reg_num (regs_used - 1)
%xdefine rstk r %+ %%reg_num
; align stack, and save original stack location directly above
; it, i.e. in [rsp+stack_size_padded], so we can restore the
; stack in a single instruction (i.e. mov rsp, rstk or mov
; rsp, [rsp+stack_size_padded])
%if %1 < 0 ; need to store rsp on stack
%xdefine rstkm [rsp + stack_size + %%pad]
%assign %%pad %%pad + gprsize
%else ; can keep rsp in rstk during whole function
%xdefine rstkm rstk
%endif
%assign stack_size_padded stack_size + ((%%pad + required_stack_alignment-1) & ~(required_stack_alignment-1))
PROBE_STACK stack_size_padded
mov rstk, rsp
and rsp, ~(required_stack_alignment-1)
sub rsp, stack_size_padded
movifnidn rstkm, rstk
%endif
WIN64_PUSH_XMM
%endif
%endif
%endmacro
%macro SETUP_STACK_POINTER 0-1 0
%ifnum %1
%if %1 != 0 && required_stack_alignment > STACK_ALIGNMENT
%if %1 > 0
; Reserve an additional register for storing the original stack pointer, but avoid using
; eax/rax for this purpose since it can potentially get overwritten as a return value.
%assign regs_used (regs_used + 1)
%if ARCH_X86_64 && regs_used == 7
%assign regs_used 8
%elif ARCH_X86_64 == 0 && regs_used == 1
%assign regs_used 2
%endif
%endif
%if ARCH_X86_64 && regs_used < 5 + UNIX64 * 3
; Ensure that we don't clobber any registers containing arguments. For UNIX64 we also preserve r6 (rax)
; since it's used as a hidden argument in vararg functions to specify the number of vector registers used.
%assign regs_used 5 + UNIX64 * 3
%endif
%endif
%endif
%endmacro
%if WIN64 ; Windows x64 ;=================================================
DECLARE_REG 0, rcx
DECLARE_REG 1, rdx
DECLARE_REG 2, R8
DECLARE_REG 3, R9
DECLARE_REG 4, R10, 40
DECLARE_REG 5, R11, 48
DECLARE_REG 6, rax, 56
DECLARE_REG 7, rdi, 64
DECLARE_REG 8, rsi, 72
DECLARE_REG 9, rbx, 80
DECLARE_REG 10, rbp, 88
DECLARE_REG 11, R14, 96
DECLARE_REG 12, R15, 104
DECLARE_REG 13, R12, 112
DECLARE_REG 14, R13, 120
%macro PROLOGUE 2-5+ 0, 0 ; #args, #regs, #xmm_regs, [stack_size,] arg_names...
%assign num_args %1
%assign regs_used %2
ASSERT regs_used >= num_args
SETUP_STACK_POINTER %4
ASSERT regs_used <= 15
PUSH_IF_USED 7, 8, 9, 10, 11, 12, 13, 14
ALLOC_STACK %4, %3
%if mmsize != 8 && stack_size == 0
WIN64_SPILL_XMM %3
%endif
LOAD_IF_USED 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
%if %0 > 4
%ifnum %4
DEFINE_ARGS %5
%else
DEFINE_ARGS %4, %5
%endif
%elifnnum %4
DEFINE_ARGS %4
%endif
%endmacro
; Push XMM registers to the stack. If no argument is specified all used register
; will be pushed, otherwise only push previously unpushed registers.
%macro WIN64_PUSH_XMM 0-2 ; new_xmm_regs_used, xmm_regs_pushed
%if mmsize != 8
%if %0 == 2
%assign %%pushed %2
%assign xmm_regs_used %1
%elif %0 == 1
%assign %%pushed xmm_regs_used
%assign xmm_regs_used %1
%else
%assign %%pushed 0
%endif
; Use the shadow space to store XMM6 and XMM7, the rest needs stack space allocated.
%if %%pushed <= 6 + high_mm_regs && xmm_regs_used > 6 + high_mm_regs
movaps [rstk + stack_offset + 8], xmm6
%endif
%if %%pushed <= 7 + high_mm_regs && xmm_regs_used > 7 + high_mm_regs
movaps [rstk + stack_offset + 24], xmm7
%endif
%assign %%pushed %%pushed - high_mm_regs - 8
%if %%pushed < 0
%assign %%pushed 0
%endif
%assign %%regs_to_push xmm_regs_used - %%pushed - high_mm_regs - 8
%if %%regs_to_push > 0
ASSERT (%%regs_to_push + %%pushed) * 16 <= stack_size_padded - stack_size - 32
%assign %%i %%pushed + 8
%rep %%regs_to_push
movaps [rsp + (%%i-8)*16 + stack_size + 32], xmm %+ %%i
%assign %%i %%i+1
%endrep
%endif
%endif
%endmacro
; Allocated stack space for XMM registers and push all, or a subset, of those
%macro WIN64_SPILL_XMM 1-2 ; xmm_regs_used, xmm_regs_reserved
RESET_STACK_STATE
%if mmsize != 8
%assign xmm_regs_used %1
ASSERT xmm_regs_used <= 16 + high_mm_regs
%if %0 == 2
ASSERT %2 >= %1
%assign %%xmm_regs_on_stack %2 - high_mm_regs - 8
%else
%assign %%xmm_regs_on_stack %1 - high_mm_regs - 8
%endif
%if %%xmm_regs_on_stack > 0
; Allocate stack space for callee-saved xmm registers plus shadow space and align the stack.
%assign %%pad %%xmm_regs_on_stack*16 + 32
%assign stack_size_padded %%pad + ((-%%pad-stack_offset-gprsize) & (STACK_ALIGNMENT-1))
SUB rsp, stack_size_padded
%endif
WIN64_PUSH_XMM
%endif
%endmacro
%macro WIN64_RESTORE_XMM_INTERNAL 0
%assign %%pad_size 0
%assign %%xmm_regs_on_stack xmm_regs_used - high_mm_regs - 8
%if %%xmm_regs_on_stack > 0
%assign %%i xmm_regs_used - high_mm_regs
%rep %%xmm_regs_on_stack
%assign %%i %%i-1
movaps xmm %+ %%i, [rsp + (%%i-8)*16 + stack_size + 32]
%endrep
%endif
%if stack_size_padded > 0
%if stack_size > 0 && required_stack_alignment > STACK_ALIGNMENT
mov rsp, rstkm
%else
add rsp, stack_size_padded
%assign %%pad_size stack_size_padded
%endif
%endif
%if xmm_regs_used > 7 + high_mm_regs
movaps xmm7, [rsp + stack_offset - %%pad_size + 24]
%endif
%if xmm_regs_used > 6 + high_mm_regs
movaps xmm6, [rsp + stack_offset - %%pad_size + 8]
%endif
%endmacro
%macro WIN64_RESTORE_XMM 0
WIN64_RESTORE_XMM_INTERNAL
RESET_STACK_STATE
%endmacro
%define has_epilogue regs_used > 7 || stack_size > 0 || vzeroupper_required || xmm_regs_used > 6+high_mm_regs
%macro RET 0
WIN64_RESTORE_XMM_INTERNAL
POP_IF_USED 14, 13, 12, 11, 10, 9, 8, 7
%if vzeroupper_required
vzeroupper
%endif
AUTO_REP_RET
%endmacro
%elif ARCH_X86_64 ; *nix x64 ;=============================================
DECLARE_REG 0, rdi
DECLARE_REG 1, rsi
DECLARE_REG 2, rdx
DECLARE_REG 3, rcx
DECLARE_REG 4, R8
DECLARE_REG 5, R9
DECLARE_REG 6, rax, 8
DECLARE_REG 7, R10, 16
DECLARE_REG 8, R11, 24
DECLARE_REG 9, rbx, 32
DECLARE_REG 10, rbp, 40
DECLARE_REG 11, R14, 48
DECLARE_REG 12, R15, 56
DECLARE_REG 13, R12, 64
DECLARE_REG 14, R13, 72
%macro PROLOGUE 2-5+ 0, 0 ; #args, #regs, #xmm_regs, [stack_size,] arg_names...
%assign num_args %1
%assign regs_used %2
ASSERT regs_used >= num_args
SETUP_STACK_POINTER %4
ASSERT regs_used <= 15
PUSH_IF_USED 9, 10, 11, 12, 13, 14
ALLOC_STACK %4, %3
LOAD_IF_USED 6, 7, 8, 9, 10, 11, 12, 13, 14
%if %0 > 4
%ifnum %4
DEFINE_ARGS %5
%else
DEFINE_ARGS %4, %5
%endif
%elifnnum %4
DEFINE_ARGS %4
%endif
%endmacro
%define has_epilogue regs_used > 9 || stack_size > 0 || vzeroupper_required
%macro RET 0
%if stack_size_padded > 0
%if required_stack_alignment > STACK_ALIGNMENT
mov rsp, rstkm
%else
add rsp, stack_size_padded
%endif
%endif
POP_IF_USED 14, 13, 12, 11, 10, 9
%if vzeroupper_required
vzeroupper
%endif
AUTO_REP_RET
%endmacro
%else ; X86_32 ;==============================================================
DECLARE_REG 0, eax, 4
DECLARE_REG 1, ecx, 8
DECLARE_REG 2, edx, 12
DECLARE_REG 3, ebx, 16
DECLARE_REG 4, esi, 20
DECLARE_REG 5, edi, 24
DECLARE_REG 6, ebp, 28
%define rsp esp
%macro DECLARE_ARG 1-*
%rep %0
%define r%1m [rstk + stack_offset + 4*%1 + 4]
%define r%1mp dword r%1m
%rotate 1
%endrep
%endmacro
DECLARE_ARG 7, 8, 9, 10, 11, 12, 13, 14
%macro PROLOGUE 2-5+ 0, 0 ; #args, #regs, #xmm_regs, [stack_size,] arg_names...
%assign num_args %1
%assign regs_used %2
ASSERT regs_used >= num_args
%if num_args > 7
%assign num_args 7
%endif
%if regs_used > 7
%assign regs_used 7
%endif
SETUP_STACK_POINTER %4
ASSERT regs_used <= 7
PUSH_IF_USED 3, 4, 5, 6
ALLOC_STACK %4, %3
LOAD_IF_USED 0, 1, 2, 3, 4, 5, 6
%if %0 > 4
%ifnum %4
DEFINE_ARGS %5
%else
DEFINE_ARGS %4, %5
%endif
%elifnnum %4
DEFINE_ARGS %4
%endif
%endmacro
%define has_epilogue regs_used > 3 || stack_size > 0 || vzeroupper_required
%macro RET 0
%if stack_size_padded > 0
%if required_stack_alignment > STACK_ALIGNMENT
mov rsp, rstkm
%else
add rsp, stack_size_padded
%endif
%endif
POP_IF_USED 6, 5, 4, 3
%if vzeroupper_required
vzeroupper
%endif
AUTO_REP_RET
%endmacro
%endif ;======================================================================
%if WIN64 == 0
%macro WIN64_SPILL_XMM 1-2
RESET_STACK_STATE
%if mmsize != 8
%assign xmm_regs_used %1
%endif
%endmacro
%macro WIN64_RESTORE_XMM 0
RESET_STACK_STATE
%endmacro
%macro WIN64_PUSH_XMM 0-2
%if mmsize != 8 && %0 >= 1
%assign xmm_regs_used %1
%endif
%endmacro
%endif
; On AMD cpus <=K10, an ordinary ret is slow if it immediately follows either
; a branch or a branch target. So switch to a 2-byte form of ret in that case.
; We can automatically detect "follows a branch", but not a branch target.
; (SSSE3 is a sufficient condition to know that your cpu doesn't have this problem.)
%macro REP_RET 0
%if has_epilogue || cpuflag(ssse3)
RET
%else
rep ret
%endif
annotate_function_size
%endmacro
%define last_branch_adr $$
%macro AUTO_REP_RET 0
%if notcpuflag(ssse3)
times ((last_branch_adr-$)>>31)+1 rep ; times 1 iff $ == last_branch_adr.
%endif
ret
annotate_function_size
%endmacro
%macro BRANCH_INSTR 0-*
%rep %0
%macro %1 1-2 %1
%2 %1
%if notcpuflag(ssse3)
%%branch_instr equ $
%xdefine last_branch_adr %%branch_instr
%endif
%endmacro
%rotate 1
%endrep
%endmacro
BRANCH_INSTR jz, je, jnz, jne, jl, jle, jnl, jnle, jg, jge, jng, jnge, ja, jae, jna, jnae, jb, jbe, jnb, jnbe, jc, jnc, js, jns, jo, jno, jp, jnp
%macro TAIL_CALL 1-2 1 ; callee, is_nonadjacent
%if has_epilogue
call %1
RET
%elif %2
jmp %1
%endif
annotate_function_size
%endmacro
;=============================================================================
; arch-independent part
;=============================================================================
%assign function_align 16
; Begin a function.
; Applies any symbol mangling needed for C linkage, and sets up a define such that
; subsequent uses of the function name automatically refer to the mangled version.
; Appends cpuflags to the function name if cpuflags has been specified.
; The "" empty default parameter is a workaround for nasm, which fails if SUFFIX
; is empty and we call cglobal_internal with just %1 %+ SUFFIX (without %2).
%macro cglobal 1-2+ "" ; name, [PROLOGUE args]
cglobal_internal 1, %1 %+ SUFFIX, %2
%endmacro
%macro cvisible 1-2+ "" ; name, [PROLOGUE args]
cglobal_internal 0, %1 %+ SUFFIX, %2
%endmacro
%macro cglobal_internal 2-3+
annotate_function_size
%ifndef cglobaled_%2
%if %1
%xdefine %2 mangle(private_prefix %+ _ %+ %2)
%else
%xdefine %2 mangle(public_prefix %+ _ %+ %2)
%endif
%xdefine %2.skip_prologue %2 %+ .skip_prologue
CAT_XDEFINE cglobaled_, %2, 1
%endif
%xdefine current_function %2
%xdefine current_function_section __SECT__
%if FORMAT_ELF
%if %1
global %2:function hidden
%else
global %2:function
%endif
%elif FORMAT_MACHO && HAVE_PRIVATE_EXTERN && %1
global %2:private_extern
%else
global %2
%endif
align function_align
%2:
RESET_MM_PERMUTATION ; needed for x86-64, also makes disassembly somewhat nicer
%xdefine rstk rsp ; copy of the original stack pointer, used when greater alignment than the known stack alignment is required
%assign stack_offset 0 ; stack pointer offset relative to the return address
%assign stack_size 0 ; amount of stack space that can be freely used inside a function
%assign stack_size_padded 0 ; total amount of allocated stack space, including space for callee-saved xmm registers on WIN64 and alignment padding
%assign xmm_regs_used 0 ; number of XMM registers requested, used for dealing with callee-saved registers on WIN64 and vzeroupper
%ifnidn %3, ""
PROLOGUE %3
%endif
%endmacro
; Create a global symbol from a local label with the correct name mangling and type
%macro cglobal_label 1
%if FORMAT_ELF
global current_function %+ %1:function hidden
%elif FORMAT_MACHO && HAVE_PRIVATE_EXTERN
global current_function %+ %1:private_extern
%else
global current_function %+ %1
%endif
%1:
%endmacro
%macro cextern 1
%xdefine %1 mangle(private_prefix %+ _ %+ %1)
CAT_XDEFINE cglobaled_, %1, 1
extern %1
%endmacro
; like cextern, but without the prefix
%macro cextern_naked 1
%ifdef PREFIX
%xdefine %1 mangle(%1)
%endif
CAT_XDEFINE cglobaled_, %1, 1
extern %1
%endmacro
%macro const 1-2+
%xdefine %1 mangle(private_prefix %+ _ %+ %1)
%if FORMAT_ELF
global %1:data hidden
%elif FORMAT_MACHO && HAVE_PRIVATE_EXTERN
global %1:private_extern
%else
global %1
%endif
%1: %2
%endmacro
%if FORMAT_ELF
; The GNU linker assumes the stack is executable by default.
[SECTION .note.GNU-stack noalloc noexec nowrite progbits]
%ifdef __NASM_VERSION_ID__
%if __NASM_VERSION_ID__ >= 0x020e0300 ; 2.14.03
%if ARCH_X86_64
; Control-flow Enforcement Technology (CET) properties.
[SECTION .note.gnu.property alloc noexec nowrite note align=gprsize]
dd 0x00000004 ; n_namesz
dd gprsize + 8 ; n_descsz
dd 0x00000005 ; n_type = NT_GNU_PROPERTY_TYPE_0
db "GNU",0 ; n_name
dd 0xc0000002 ; pr_type = GNU_PROPERTY_X86_FEATURE_1_AND
dd 0x00000004 ; pr_datasz
dd 0x00000002 ; pr_data = GNU_PROPERTY_X86_FEATURE_1_SHSTK
dd 0x00000000 ; pr_padding
%endif
%endif
%endif
%endif
; Tell debuggers how large the function was.
; This may be invoked multiple times per function; we rely on later instances overriding earlier ones.
; This is invoked by RET and similar macros, and also cglobal does it for the previous function,
; but if the last function in a source file doesn't use any of the standard macros for its epilogue,
; then its size might be unspecified.
%macro annotate_function_size 0
%ifdef __YASM_VER__
%ifdef current_function
%if FORMAT_ELF
current_function_section
%%ecf equ $
size current_function %%ecf - current_function
__SECT__
%endif
%endif
%endif
%endmacro
; cpuflags
%assign cpuflags_mmx (1<<0)
%assign cpuflags_mmx2 (1<<1) | cpuflags_mmx
%assign cpuflags_3dnow (1<<2) | cpuflags_mmx
%assign cpuflags_3dnowext (1<<3) | cpuflags_3dnow
%assign cpuflags_sse (1<<4) | cpuflags_mmx2
%assign cpuflags_sse2 (1<<5) | cpuflags_sse
%assign cpuflags_sse2slow (1<<6) | cpuflags_sse2
%assign cpuflags_lzcnt (1<<7) | cpuflags_sse2
%assign cpuflags_sse3 (1<<8) | cpuflags_sse2
%assign cpuflags_ssse3 (1<<9) | cpuflags_sse3
%assign cpuflags_sse4 (1<<10) | cpuflags_ssse3
%assign cpuflags_sse42 (1<<11) | cpuflags_sse4
%assign cpuflags_aesni (1<<12) | cpuflags_sse42
%assign cpuflags_clmul (1<<13) | cpuflags_sse42
%assign cpuflags_gfni (1<<14) | cpuflags_aesni|cpuflags_clmul
%assign cpuflags_avx (1<<15) | cpuflags_sse42
%assign cpuflags_xop (1<<16) | cpuflags_avx
%assign cpuflags_fma4 (1<<17) | cpuflags_avx
%assign cpuflags_fma3 (1<<18) | cpuflags_avx
%assign cpuflags_bmi1 (1<<19) | cpuflags_avx|cpuflags_lzcnt
%assign cpuflags_bmi2 (1<<20) | cpuflags_bmi1
%assign cpuflags_avx2 (1<<21) | cpuflags_fma3|cpuflags_bmi2
%assign cpuflags_avx512 (1<<22) | cpuflags_avx2 ; F, CD, BW, DQ, VL
%assign cpuflags_avx512icl (1<<23) | cpuflags_avx512|cpuflags_gfni ; VNNI, IFMA, VBMI, VBMI2, VPOPCNTDQ, BITALG, VAES, VPCLMULQDQ
%assign cpuflags_cache32 (1<<24)
%assign cpuflags_cache64 (1<<25)
%assign cpuflags_aligned (1<<26) ; not a cpu feature, but a function variant
%assign cpuflags_atom (1<<27)
; Returns a boolean value expressing whether or not the specified cpuflag is enabled.
%define cpuflag(x) (((((cpuflags & (cpuflags_ %+ x)) ^ (cpuflags_ %+ x)) - 1) >> 31) & 1)
%define notcpuflag(x) (cpuflag(x) ^ 1)
; Takes an arbitrary number of cpuflags from the above list.
; All subsequent functions (up to the next INIT_CPUFLAGS) is built for the specified cpu.
; You shouldn't need to invoke this macro directly, it's a subroutine for INIT_MMX &co.
%macro INIT_CPUFLAGS 0-*
%xdefine SUFFIX
%undef cpuname
%assign cpuflags 0
%if %0 >= 1
%rep %0
%ifdef cpuname
%xdefine cpuname cpuname %+ _%1
%else
%xdefine cpuname %1
%endif
%assign cpuflags cpuflags | cpuflags_%1
%rotate 1
%endrep
%xdefine SUFFIX _ %+ cpuname
%if cpuflag(avx)
%assign avx_enabled 1
%endif
%if (mmsize == 16 && notcpuflag(sse2)) || (mmsize == 32 && notcpuflag(avx2))
%define mova movaps
%define movu movups
%define movnta movntps
%endif
%if cpuflag(aligned)
%define movu mova
%elif cpuflag(sse3) && notcpuflag(ssse3)
%define movu lddqu
%endif
%endif
%if ARCH_X86_64 || cpuflag(sse2)
%ifdef __NASM_VERSION_ID__
ALIGNMODE p6
%else
CPU amdnop
%endif
%else
%ifdef __NASM_VERSION_ID__
ALIGNMODE nop
%else
CPU basicnop
%endif
%endif
%endmacro
; Merge mmx, sse*, and avx*
; m# is a simd register of the currently selected size
; xm# is the corresponding xmm register if mmsize >= 16, otherwise the same as m#
; ym# is the corresponding ymm register if mmsize >= 32, otherwise the same as m#
; zm# is the corresponding zmm register if mmsize >= 64, otherwise the same as m#
; (All 4 remain in sync through SWAP.)
%macro CAT_XDEFINE 3
%xdefine %1%2 %3
%endmacro
%macro CAT_UNDEF 2
%undef %1%2
%endmacro
%macro DEFINE_MMREGS 1 ; mmtype
%assign %%prev_mmregs 0
%ifdef num_mmregs
%assign %%prev_mmregs num_mmregs
%endif
%assign num_mmregs 8
%if ARCH_X86_64 && mmsize >= 16
%assign num_mmregs 16
%if cpuflag(avx512) || mmsize == 64
%assign num_mmregs 32
%endif
%endif
%assign %%i 0
%rep num_mmregs
CAT_XDEFINE m, %%i, %1 %+ %%i
CAT_XDEFINE nn%1, %%i, %%i
%assign %%i %%i+1
%endrep
%if %%prev_mmregs > num_mmregs
%rep %%prev_mmregs - num_mmregs
CAT_UNDEF m, %%i
CAT_UNDEF nn %+ mmtype, %%i
%assign %%i %%i+1
%endrep
%endif
%xdefine mmtype %1
%endmacro
; Prefer registers 16-31 over 0-15 to avoid having to use vzeroupper
%macro AVX512_MM_PERMUTATION 0-1 0 ; start_reg
%if ARCH_X86_64 && cpuflag(avx512)
%assign %%i %1
%rep 16-%1
%assign %%i_high %%i+16
SWAP %%i, %%i_high
%assign %%i %%i+1
%endrep
%endif
%endmacro
%macro INIT_MMX 0-1+
%assign avx_enabled 0
%define RESET_MM_PERMUTATION INIT_MMX %1
%define mmsize 8
%define mova movq
%define movu movq
%define movh movd
%define movnta movntq
INIT_CPUFLAGS %1
DEFINE_MMREGS mm
%endmacro
%macro INIT_XMM 0-1+
%assign avx_enabled FORCE_VEX_ENCODING
%define RESET_MM_PERMUTATION INIT_XMM %1
%define mmsize 16
%define mova movdqa
%define movu movdqu
%define movh movq
%define movnta movntdq
INIT_CPUFLAGS %1
DEFINE_MMREGS xmm
%if WIN64
AVX512_MM_PERMUTATION 6 ; Swap callee-saved registers with volatile registers
%endif
%xdefine bcstw 1to8
%xdefine bcstd 1to4
%xdefine bcstq 1to2
%endmacro
%macro INIT_YMM 0-1+
%assign avx_enabled 1
%define RESET_MM_PERMUTATION INIT_YMM %1
%define mmsize 32
%define mova movdqa
%define movu movdqu
%undef movh
%define movnta movntdq
INIT_CPUFLAGS %1
DEFINE_MMREGS ymm
AVX512_MM_PERMUTATION
%xdefine bcstw 1to16
%xdefine bcstd 1to8
%xdefine bcstq 1to4
%endmacro
%macro INIT_ZMM 0-1+
%assign avx_enabled 1
%define RESET_MM_PERMUTATION INIT_ZMM %1
%define mmsize 64
%define mova movdqa
%define movu movdqu
%undef movh
%define movnta movntdq
INIT_CPUFLAGS %1
DEFINE_MMREGS zmm
AVX512_MM_PERMUTATION
%xdefine bcstw 1to32
%xdefine bcstd 1to16
%xdefine bcstq 1to8
%endmacro
INIT_XMM
%macro DECLARE_MMCAST 1
%define mmmm%1 mm%1
%define mmxmm%1 mm%1
%define mmymm%1 mm%1
%define mmzmm%1 mm%1
%define xmmmm%1 mm%1
%define xmmxmm%1 xmm%1
%define xmmymm%1 xmm%1
%define xmmzmm%1 xmm%1
%define ymmmm%1 mm%1
%define ymmxmm%1 xmm%1
%define ymmymm%1 ymm%1
%define ymmzmm%1 ymm%1
%define zmmmm%1 mm%1
%define zmmxmm%1 xmm%1
%define zmmymm%1 ymm%1
%define zmmzmm%1 zmm%1
%define xm%1 xmm %+ m%1
%define ym%1 ymm %+ m%1
%define zm%1 zmm %+ m%1
%endmacro
%assign i 0
%rep 32
DECLARE_MMCAST i
%assign i i+1
%endrep
; I often want to use macros that permute their arguments. e.g. there's no
; efficient way to implement butterfly or transpose or dct without swapping some
; arguments.
;
; I would like to not have to manually keep track of the permutations:
; If I insert a permutation in the middle of a function, it should automatically
; change everything that follows. For more complex macros I may also have multiple
; implementations, e.g. the SSE2 and SSSE3 versions may have different permutations.
;
; Hence these macros. Insert a PERMUTE or some SWAPs at the end of a macro that
; permutes its arguments. It's equivalent to exchanging the contents of the
; registers, except that this way you exchange the register names instead, so it
; doesn't cost any cycles.
%macro PERMUTE 2-* ; takes a list of pairs to swap
%rep %0/2
%xdefine %%tmp%2 m%2
%rotate 2
%endrep
%rep %0/2
%xdefine m%1 %%tmp%2
CAT_XDEFINE nn, m%1, %1
%rotate 2
%endrep
%endmacro
%macro SWAP 2+ ; swaps a single chain (sometimes more concise than pairs)
%ifnum %1 ; SWAP 0, 1, ...
SWAP_INTERNAL_NUM %1, %2
%else ; SWAP m0, m1, ...
SWAP_INTERNAL_NAME %1, %2
%endif
%endmacro
%macro SWAP_INTERNAL_NUM 2-*
%rep %0-1
%xdefine %%tmp m%1
%xdefine m%1 m%2
%xdefine m%2 %%tmp
CAT_XDEFINE nn, m%1, %1
CAT_XDEFINE nn, m%2, %2
%rotate 1
%endrep
%endmacro
%macro SWAP_INTERNAL_NAME 2-*
%xdefine %%args nn %+ %1
%rep %0-1
%xdefine %%args %%args, nn %+ %2
%rotate 1
%endrep
SWAP_INTERNAL_NUM %%args
%endmacro
; If SAVE_MM_PERMUTATION is placed at the end of a function, then any later
; calls to that function will automatically load the permutation, so values can
; be returned in mmregs.
%macro SAVE_MM_PERMUTATION 0-1
%if %0
%xdefine %%f %1_m
%else
%xdefine %%f current_function %+ _m
%endif
%assign %%i 0
%rep num_mmregs
%xdefine %%tmp m %+ %%i
CAT_XDEFINE %%f, %%i, regnumof %+ %%tmp
%assign %%i %%i+1
%endrep
%endmacro
%macro LOAD_MM_PERMUTATION 0-1 ; name to load from
%if %0
%xdefine %%f %1_m
%else
%xdefine %%f current_function %+ _m
%endif
%xdefine %%tmp %%f %+ 0
%ifnum %%tmp
DEFINE_MMREGS mmtype
%assign %%i 0
%rep num_mmregs
%xdefine %%tmp %%f %+ %%i
CAT_XDEFINE %%m, %%i, m %+ %%tmp
%assign %%i %%i+1
%endrep
%rep num_mmregs
%assign %%i %%i-1
CAT_XDEFINE m, %%i, %%m %+ %%i
CAT_XDEFINE nn, m %+ %%i, %%i
%endrep
%endif
%endmacro
; Append cpuflags to the callee's name iff the appended name is known and the plain name isn't
%macro call 1
%ifid %1
call_internal %1 %+ SUFFIX, %1
%else
call %1
%endif
%endmacro
%macro call_internal 2
%xdefine %%i %2
%ifndef cglobaled_%2
%ifdef cglobaled_%1
%xdefine %%i %1
%endif
%endif
call %%i
LOAD_MM_PERMUTATION %%i
%endmacro
; Substitutions that reduce instruction size but are functionally equivalent
%macro add 2
%ifnum %2
%if %2==128
sub %1, -128
%else
add %1, %2
%endif
%else
add %1, %2
%endif
%endmacro
%macro sub 2
%ifnum %2
%if %2==128
add %1, -128
%else
sub %1, %2
%endif
%else
sub %1, %2
%endif
%endmacro
;=============================================================================
; AVX abstraction layer
;=============================================================================
%assign i 0
%rep 32
%if i < 8
CAT_XDEFINE sizeofmm, i, 8
CAT_XDEFINE regnumofmm, i, i
%endif
CAT_XDEFINE sizeofxmm, i, 16
CAT_XDEFINE sizeofymm, i, 32
CAT_XDEFINE sizeofzmm, i, 64
CAT_XDEFINE regnumofxmm, i, i
CAT_XDEFINE regnumofymm, i, i
CAT_XDEFINE regnumofzmm, i, i
%assign i i+1
%endrep
%undef i
%macro CHECK_AVX_INSTR_EMU 3-*
%xdefine %%opcode %1
%xdefine %%dst %2
%rep %0-2
%ifidn %%dst, %3
%error non-avx emulation of ``%%opcode'' is not supported
%endif
%rotate 1
%endrep
%endmacro
;%1 == instruction
;%2 == minimal instruction set
;%3 == 1 if float, 0 if int
;%4 == 1 if 4-operand emulation, 0 if 3-operand emulation, 255 otherwise (no emulation)
;%5 == 1 if commutative (i.e. doesn't matter which src arg is which), 0 if not
;%6+: operands
%macro RUN_AVX_INSTR 6-9+
%ifnum sizeof%7
%assign __sizeofreg sizeof%7
%elifnum sizeof%6
%assign __sizeofreg sizeof%6
%else
%assign __sizeofreg mmsize
%endif
%assign __emulate_avx 0
%if avx_enabled && __sizeofreg >= 16
%xdefine __instr v%1
%else
%xdefine __instr %1
%if %0 >= 8+%4
%assign __emulate_avx 1
%endif
%endif
%ifnidn %2, fnord
%ifdef cpuname
%if notcpuflag(%2)
%error use of ``%1'' %2 instruction in cpuname function: current_function
%elif %3 == 0 && __sizeofreg == 16 && notcpuflag(sse2)
%error use of ``%1'' sse2 instruction in cpuname function: current_function
%elif %3 == 0 && __sizeofreg == 32 && notcpuflag(avx2)
%error use of ``%1'' avx2 instruction in cpuname function: current_function
%elif __sizeofreg == 16 && notcpuflag(sse)
%error use of ``%1'' sse instruction in cpuname function: current_function
%elif __sizeofreg == 32 && notcpuflag(avx)
%error use of ``%1'' avx instruction in cpuname function: current_function
%elif __sizeofreg == 64 && notcpuflag(avx512)
%error use of ``%1'' avx512 instruction in cpuname function: current_function
%elifidn %1, pextrw ; special case because the base instruction is mmx2,
%ifnid %6 ; but sse4 is required for memory operands
%if notcpuflag(sse4)
%error use of ``%1'' sse4 instruction in cpuname function: current_function
%endif
%endif
%endif
%endif
%endif
%if __emulate_avx
%xdefine __src1 %7
%xdefine __src2 %8
%if %5 && %4 == 0
%ifnidn %6, %7
%ifidn %6, %8
%xdefine __src1 %8
%xdefine __src2 %7
%elifnnum sizeof%8
; 3-operand AVX instructions with a memory arg can only have it in src2,
; whereas SSE emulation prefers to have it in src1 (i.e. the mov).
; So, if the instruction is commutative with a memory arg, swap them.
%xdefine __src1 %8
%xdefine __src2 %7
%endif
%endif
%endif
%ifnidn %6, __src1
%if %0 >= 9
CHECK_AVX_INSTR_EMU {%1 %6, %7, %8, %9}, %6, __src2, %9
%else
CHECK_AVX_INSTR_EMU {%1 %6, %7, %8}, %6, __src2
%endif
%if __sizeofreg == 8
MOVQ %6, __src1
%elif %3
MOVAPS %6, __src1
%else
MOVDQA %6, __src1
%endif
%endif
%if %0 >= 9
%1 %6, __src2, %9
%else
%1 %6, __src2
%endif
%elif %0 >= 9
%if avx_enabled && __sizeofreg >= 16 && %4 == 1
%ifnnum regnumof%7
%if %3
vmovaps %6, %7
%else
vmovdqa %6, %7
%endif
__instr %6, %6, %8, %9
%else
__instr %6, %7, %8, %9
%endif
%else
__instr %6, %7, %8, %9
%endif
%elif %0 == 8
%if avx_enabled && __sizeofreg >= 16 && %4 == 0
%xdefine __src1 %7
%xdefine __src2 %8
%if %5
%ifnum regnumof%7
%ifnum regnumof%8
%if regnumof%7 < 8 && regnumof%8 >= 8 && regnumof%8 < 16 && sizeof%8 <= 32
; Most VEX-encoded instructions require an additional byte to encode when
; src2 is a high register (e.g. m8..15). If the instruction is commutative
; we can swap src1 and src2 when doing so reduces the instruction length.
%xdefine __src1 %8
%xdefine __src2 %7
%endif
%endif
%elifnum regnumof%8 ; put memory operands in src2 when possible
%xdefine __src1 %8
%xdefine __src2 %7
%else
%assign __emulate_avx 1
%endif
%elifnnum regnumof%7
; EVEX allows imm8 shift instructions to be used with memory operands,
; but VEX does not. This handles those special cases.
%ifnnum %8
%assign __emulate_avx 1
%elif notcpuflag(avx512)
%assign __emulate_avx 1
%endif
%endif
%if __emulate_avx ; a separate load is required
%if %3
vmovaps %6, %7
%else
vmovdqa %6, %7
%endif
__instr %6, %6, %8
%else
__instr %6, __src1, __src2
%endif
%else
__instr %6, %7, %8
%endif
%elif %0 == 7
%if avx_enabled && __sizeofreg >= 16 && %5
%xdefine __src1 %6
%xdefine __src2 %7
%ifnum regnumof%6
%ifnum regnumof%7
%if regnumof%6 < 8 && regnumof%7 >= 8 && regnumof%7 < 16 && sizeof%7 <= 32
%xdefine __src1 %7
%xdefine __src2 %6
%endif
%endif
%endif
__instr %6, __src1, __src2
%else
__instr %6, %7
%endif
%else
__instr %6
%endif
%endmacro
;%1 == instruction
;%2 == minimal instruction set
;%3 == 1 if float, 0 if int
;%4 == 1 if 4-operand emulation, 0 if 3-operand emulation, 255 otherwise (no emulation)
;%5 == 1 if commutative (i.e. doesn't matter which src arg is which), 0 if not
%macro AVX_INSTR 1-5 fnord, 0, 255, 0
%macro %1 1-10 fnord, fnord, fnord, fnord, %1, %2, %3, %4, %5
%ifidn %2, fnord
RUN_AVX_INSTR %6, %7, %8, %9, %10, %1
%elifidn %3, fnord
RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2
%elifidn %4, fnord
RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2, %3
%elifidn %5, fnord
RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2, %3, %4
%else
RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2, %3, %4, %5
%endif
%endmacro
%endmacro
; Instructions with both VEX/EVEX and legacy encodings
; Non-destructive instructions are written without parameters
AVX_INSTR addpd, sse2, 1, 0, 1
AVX_INSTR addps, sse, 1, 0, 1
AVX_INSTR addsd, sse2, 1, 0, 0
AVX_INSTR addss, sse, 1, 0, 0
AVX_INSTR addsubpd, sse3, 1, 0, 0
AVX_INSTR addsubps, sse3, 1, 0, 0
AVX_INSTR aesdec, aesni, 0, 0, 0
AVX_INSTR aesdeclast, aesni, 0, 0, 0
AVX_INSTR aesenc, aesni, 0, 0, 0
AVX_INSTR aesenclast, aesni, 0, 0, 0
AVX_INSTR aesimc, aesni
AVX_INSTR aeskeygenassist, aesni
AVX_INSTR andnpd, sse2, 1, 0, 0
AVX_INSTR andnps, sse, 1, 0, 0
AVX_INSTR andpd, sse2, 1, 0, 1
AVX_INSTR andps, sse, 1, 0, 1
AVX_INSTR blendpd, sse4, 1, 1, 0
AVX_INSTR blendps, sse4, 1, 1, 0
AVX_INSTR blendvpd, sse4, 1, 1, 0 ; last operand must be xmm0 with legacy encoding
AVX_INSTR blendvps, sse4, 1, 1, 0 ; last operand must be xmm0 with legacy encoding
AVX_INSTR cmpeqpd, sse2, 1, 0, 1
AVX_INSTR cmpeqps, sse, 1, 0, 1
AVX_INSTR cmpeqsd, sse2, 1, 0, 0
AVX_INSTR cmpeqss, sse, 1, 0, 0
AVX_INSTR cmplepd, sse2, 1, 0, 0
AVX_INSTR cmpleps, sse, 1, 0, 0
AVX_INSTR cmplesd, sse2, 1, 0, 0
AVX_INSTR cmpless, sse, 1, 0, 0
AVX_INSTR cmpltpd, sse2, 1, 0, 0
AVX_INSTR cmpltps, sse, 1, 0, 0
AVX_INSTR cmpltsd, sse2, 1, 0, 0
AVX_INSTR cmpltss, sse, 1, 0, 0
AVX_INSTR cmpneqpd, sse2, 1, 0, 1
AVX_INSTR cmpneqps, sse, 1, 0, 1
AVX_INSTR cmpneqsd, sse2, 1, 0, 0
AVX_INSTR cmpneqss, sse, 1, 0, 0
AVX_INSTR cmpnlepd, sse2, 1, 0, 0
AVX_INSTR cmpnleps, sse, 1, 0, 0
AVX_INSTR cmpnlesd, sse2, 1, 0, 0
AVX_INSTR cmpnless, sse, 1, 0, 0
AVX_INSTR cmpnltpd, sse2, 1, 0, 0
AVX_INSTR cmpnltps, sse, 1, 0, 0
AVX_INSTR cmpnltsd, sse2, 1, 0, 0
AVX_INSTR cmpnltss, sse, 1, 0, 0
AVX_INSTR cmpordpd, sse2 1, 0, 1
AVX_INSTR cmpordps, sse 1, 0, 1
AVX_INSTR cmpordsd, sse2 1, 0, 0
AVX_INSTR cmpordss, sse 1, 0, 0
AVX_INSTR cmppd, sse2, 1, 1, 0
AVX_INSTR cmpps, sse, 1, 1, 0
AVX_INSTR cmpsd, sse2, 1, 1, 0
AVX_INSTR cmpss, sse, 1, 1, 0
AVX_INSTR cmpunordpd, sse2, 1, 0, 1
AVX_INSTR cmpunordps, sse, 1, 0, 1
AVX_INSTR cmpunordsd, sse2, 1, 0, 0
AVX_INSTR cmpunordss, sse, 1, 0, 0
AVX_INSTR comisd, sse2, 1
AVX_INSTR comiss, sse, 1
AVX_INSTR cvtdq2pd, sse2, 1
AVX_INSTR cvtdq2ps, sse2, 1
AVX_INSTR cvtpd2dq, sse2, 1
AVX_INSTR cvtpd2ps, sse2, 1
AVX_INSTR cvtps2dq, sse2, 1
AVX_INSTR cvtps2pd, sse2, 1
AVX_INSTR cvtsd2si, sse2, 1
AVX_INSTR cvtsd2ss, sse2, 1, 0, 0
AVX_INSTR cvtsi2sd, sse2, 1, 0, 0
AVX_INSTR cvtsi2ss, sse, 1, 0, 0
AVX_INSTR cvtss2sd, sse2, 1, 0, 0
AVX_INSTR cvtss2si, sse, 1
AVX_INSTR cvttpd2dq, sse2, 1
AVX_INSTR cvttps2dq, sse2, 1
AVX_INSTR cvttsd2si, sse2, 1
AVX_INSTR cvttss2si, sse, 1
AVX_INSTR divpd, sse2, 1, 0, 0
AVX_INSTR divps, sse, 1, 0, 0
AVX_INSTR divsd, sse2, 1, 0, 0
AVX_INSTR divss, sse, 1, 0, 0
AVX_INSTR dppd, sse4, 1, 1, 0
AVX_INSTR dpps, sse4, 1, 1, 0
AVX_INSTR extractps, sse4, 1
AVX_INSTR gf2p8affineinvqb, gfni, 0, 1, 0
AVX_INSTR gf2p8affineqb, gfni, 0, 1, 0
AVX_INSTR gf2p8mulb, gfni, 0, 0, 0
AVX_INSTR haddpd, sse3, 1, 0, 0
AVX_INSTR haddps, sse3, 1, 0, 0
AVX_INSTR hsubpd, sse3, 1, 0, 0
AVX_INSTR hsubps, sse3, 1, 0, 0
AVX_INSTR insertps, sse4, 1, 1, 0
AVX_INSTR lddqu, sse3
AVX_INSTR ldmxcsr, sse, 1
AVX_INSTR maskmovdqu, sse2
AVX_INSTR maxpd, sse2, 1, 0, 1
AVX_INSTR maxps, sse, 1, 0, 1
AVX_INSTR maxsd, sse2, 1, 0, 0
AVX_INSTR maxss, sse, 1, 0, 0
AVX_INSTR minpd, sse2, 1, 0, 1
AVX_INSTR minps, sse, 1, 0, 1
AVX_INSTR minsd, sse2, 1, 0, 0
AVX_INSTR minss, sse, 1, 0, 0
AVX_INSTR movapd, sse2, 1
AVX_INSTR movaps, sse, 1
AVX_INSTR movd, mmx
AVX_INSTR movddup, sse3, 1
AVX_INSTR movdqa, sse2
AVX_INSTR movdqu, sse2
AVX_INSTR movhlps, sse, 1, 0, 0
AVX_INSTR movhpd, sse2, 1, 0, 0
AVX_INSTR movhps, sse, 1, 0, 0
AVX_INSTR movlhps, sse, 1, 0, 0
AVX_INSTR movlpd, sse2, 1, 0, 0
AVX_INSTR movlps, sse, 1, 0, 0
AVX_INSTR movmskpd, sse2, 1
AVX_INSTR movmskps, sse, 1
AVX_INSTR movntdq, sse2
AVX_INSTR movntdqa, sse4
AVX_INSTR movntpd, sse2, 1
AVX_INSTR movntps, sse, 1
AVX_INSTR movq, mmx
AVX_INSTR movsd, sse2, 1, 0, 0
AVX_INSTR movshdup, sse3, 1
AVX_INSTR movsldup, sse3, 1
AVX_INSTR movss, sse, 1, 0, 0
AVX_INSTR movupd, sse2, 1
AVX_INSTR movups, sse, 1
AVX_INSTR mpsadbw, sse4, 0, 1, 0
AVX_INSTR mulpd, sse2, 1, 0, 1
AVX_INSTR mulps, sse, 1, 0, 1
AVX_INSTR mulsd, sse2, 1, 0, 0
AVX_INSTR mulss, sse, 1, 0, 0
AVX_INSTR orpd, sse2, 1, 0, 1
AVX_INSTR orps, sse, 1, 0, 1
AVX_INSTR pabsb, ssse3
AVX_INSTR pabsd, ssse3
AVX_INSTR pabsw, ssse3
AVX_INSTR packssdw, mmx, 0, 0, 0
AVX_INSTR packsswb, mmx, 0, 0, 0
AVX_INSTR packusdw, sse4, 0, 0, 0
AVX_INSTR packuswb, mmx, 0, 0, 0
AVX_INSTR paddb, mmx, 0, 0, 1
AVX_INSTR paddd, mmx, 0, 0, 1
AVX_INSTR paddq, sse2, 0, 0, 1
AVX_INSTR paddsb, mmx, 0, 0, 1
AVX_INSTR paddsw, mmx, 0, 0, 1
AVX_INSTR paddusb, mmx, 0, 0, 1
AVX_INSTR paddusw, mmx, 0, 0, 1
AVX_INSTR paddw, mmx, 0, 0, 1
AVX_INSTR palignr, ssse3, 0, 1, 0
AVX_INSTR pand, mmx, 0, 0, 1
AVX_INSTR pandn, mmx, 0, 0, 0
AVX_INSTR pavgb, mmx2, 0, 0, 1
AVX_INSTR pavgw, mmx2, 0, 0, 1
AVX_INSTR pblendvb, sse4, 0, 1, 0 ; last operand must be xmm0 with legacy encoding
AVX_INSTR pblendw, sse4, 0, 1, 0
AVX_INSTR pclmulhqhqdq, clmul, 0, 0, 0
AVX_INSTR pclmulhqlqdq, clmul, 0, 0, 0
AVX_INSTR pclmullqhqdq, clmul, 0, 0, 0
AVX_INSTR pclmullqlqdq, clmul, 0, 0, 0
AVX_INSTR pclmulqdq, clmul, 0, 1, 0
AVX_INSTR pcmpeqb, mmx, 0, 0, 1
AVX_INSTR pcmpeqd, mmx, 0, 0, 1
AVX_INSTR pcmpeqq, sse4, 0, 0, 1
AVX_INSTR pcmpeqw, mmx, 0, 0, 1
AVX_INSTR pcmpestri, sse42
AVX_INSTR pcmpestrm, sse42
AVX_INSTR pcmpgtb, mmx, 0, 0, 0
AVX_INSTR pcmpgtd, mmx, 0, 0, 0
AVX_INSTR pcmpgtq, sse42, 0, 0, 0
AVX_INSTR pcmpgtw, mmx, 0, 0, 0
AVX_INSTR pcmpistri, sse42
AVX_INSTR pcmpistrm, sse42
AVX_INSTR pextrb, sse4
AVX_INSTR pextrd, sse4
AVX_INSTR pextrq, sse4
AVX_INSTR pextrw, mmx2
AVX_INSTR phaddd, ssse3, 0, 0, 0
AVX_INSTR phaddsw, ssse3, 0, 0, 0
AVX_INSTR phaddw, ssse3, 0, 0, 0
AVX_INSTR phminposuw, sse4
AVX_INSTR phsubd, ssse3, 0, 0, 0
AVX_INSTR phsubsw, ssse3, 0, 0, 0
AVX_INSTR phsubw, ssse3, 0, 0, 0
AVX_INSTR pinsrb, sse4, 0, 1, 0
AVX_INSTR pinsrd, sse4, 0, 1, 0
AVX_INSTR pinsrq, sse4, 0, 1, 0
AVX_INSTR pinsrw, mmx2, 0, 1, 0
AVX_INSTR pmaddubsw, ssse3, 0, 0, 0
AVX_INSTR pmaddwd, mmx, 0, 0, 1
AVX_INSTR pmaxsb, sse4, 0, 0, 1
AVX_INSTR pmaxsd, sse4, 0, 0, 1
AVX_INSTR pmaxsw, mmx2, 0, 0, 1
AVX_INSTR pmaxub, mmx2, 0, 0, 1
AVX_INSTR pmaxud, sse4, 0, 0, 1
AVX_INSTR pmaxuw, sse4, 0, 0, 1
AVX_INSTR pminsb, sse4, 0, 0, 1
AVX_INSTR pminsd, sse4, 0, 0, 1
AVX_INSTR pminsw, mmx2, 0, 0, 1
AVX_INSTR pminub, mmx2, 0, 0, 1
AVX_INSTR pminud, sse4, 0, 0, 1
AVX_INSTR pminuw, sse4, 0, 0, 1
AVX_INSTR pmovmskb, mmx2
AVX_INSTR pmovsxbd, sse4
AVX_INSTR pmovsxbq, sse4
AVX_INSTR pmovsxbw, sse4
AVX_INSTR pmovsxdq, sse4
AVX_INSTR pmovsxwd, sse4
AVX_INSTR pmovsxwq, sse4
AVX_INSTR pmovzxbd, sse4
AVX_INSTR pmovzxbq, sse4
AVX_INSTR pmovzxbw, sse4
AVX_INSTR pmovzxdq, sse4
AVX_INSTR pmovzxwd, sse4
AVX_INSTR pmovzxwq, sse4
AVX_INSTR pmuldq, sse4, 0, 0, 1
AVX_INSTR pmulhrsw, ssse3, 0, 0, 1
AVX_INSTR pmulhuw, mmx2, 0, 0, 1
AVX_INSTR pmulhw, mmx, 0, 0, 1
AVX_INSTR pmulld, sse4, 0, 0, 1
AVX_INSTR pmullw, mmx, 0, 0, 1
AVX_INSTR pmuludq, sse2, 0, 0, 1
AVX_INSTR por, mmx, 0, 0, 1
AVX_INSTR psadbw, mmx2, 0, 0, 1
AVX_INSTR pshufb, ssse3, 0, 0, 0
AVX_INSTR pshufd, sse2
AVX_INSTR pshufhw, sse2
AVX_INSTR pshuflw, sse2
AVX_INSTR psignb, ssse3, 0, 0, 0
AVX_INSTR psignd, ssse3, 0, 0, 0
AVX_INSTR psignw, ssse3, 0, 0, 0
AVX_INSTR pslld, mmx, 0, 0, 0
AVX_INSTR pslldq, sse2, 0, 0, 0
AVX_INSTR psllq, mmx, 0, 0, 0
AVX_INSTR psllw, mmx, 0, 0, 0
AVX_INSTR psrad, mmx, 0, 0, 0
AVX_INSTR psraw, mmx, 0, 0, 0
AVX_INSTR psrld, mmx, 0, 0, 0
AVX_INSTR psrldq, sse2, 0, 0, 0
AVX_INSTR psrlq, mmx, 0, 0, 0
AVX_INSTR psrlw, mmx, 0, 0, 0
AVX_INSTR psubb, mmx, 0, 0, 0
AVX_INSTR psubd, mmx, 0, 0, 0
AVX_INSTR psubq, sse2, 0, 0, 0
AVX_INSTR psubsb, mmx, 0, 0, 0
AVX_INSTR psubsw, mmx, 0, 0, 0
AVX_INSTR psubusb, mmx, 0, 0, 0
AVX_INSTR psubusw, mmx, 0, 0, 0
AVX_INSTR psubw, mmx, 0, 0, 0
AVX_INSTR ptest, sse4
AVX_INSTR punpckhbw, mmx, 0, 0, 0
AVX_INSTR punpckhdq, mmx, 0, 0, 0
AVX_INSTR punpckhqdq, sse2, 0, 0, 0
AVX_INSTR punpckhwd, mmx, 0, 0, 0
AVX_INSTR punpcklbw, mmx, 0, 0, 0
AVX_INSTR punpckldq, mmx, 0, 0, 0
AVX_INSTR punpcklqdq, sse2, 0, 0, 0
AVX_INSTR punpcklwd, mmx, 0, 0, 0
AVX_INSTR pxor, mmx, 0, 0, 1
AVX_INSTR rcpps, sse, 1
AVX_INSTR rcpss, sse, 1, 0, 0
AVX_INSTR roundpd, sse4, 1
AVX_INSTR roundps, sse4, 1
AVX_INSTR roundsd, sse4, 1, 1, 0
AVX_INSTR roundss, sse4, 1, 1, 0
AVX_INSTR rsqrtps, sse, 1
AVX_INSTR rsqrtss, sse, 1, 0, 0
AVX_INSTR shufpd, sse2, 1, 1, 0
AVX_INSTR shufps, sse, 1, 1, 0
AVX_INSTR sqrtpd, sse2, 1
AVX_INSTR sqrtps, sse, 1
AVX_INSTR sqrtsd, sse2, 1, 0, 0
AVX_INSTR sqrtss, sse, 1, 0, 0
AVX_INSTR stmxcsr, sse, 1
AVX_INSTR subpd, sse2, 1, 0, 0
AVX_INSTR subps, sse, 1, 0, 0
AVX_INSTR subsd, sse2, 1, 0, 0
AVX_INSTR subss, sse, 1, 0, 0
AVX_INSTR ucomisd, sse2, 1
AVX_INSTR ucomiss, sse, 1
AVX_INSTR unpckhpd, sse2, 1, 0, 0
AVX_INSTR unpckhps, sse, 1, 0, 0
AVX_INSTR unpcklpd, sse2, 1, 0, 0
AVX_INSTR unpcklps, sse, 1, 0, 0
AVX_INSTR xorpd, sse2, 1, 0, 1
AVX_INSTR xorps, sse, 1, 0, 1
; 3DNow instructions, for sharing code between AVX, SSE and 3DN
AVX_INSTR pfadd, 3dnow, 1, 0, 1
AVX_INSTR pfmul, 3dnow, 1, 0, 1
AVX_INSTR pfsub, 3dnow, 1, 0, 0
;%1 == instruction
;%2 == minimal instruction set
%macro GPR_INSTR 2
%macro %1 2-5 fnord, %1, %2
%ifdef cpuname
%if notcpuflag(%5)
%error use of ``%4'' %5 instruction in cpuname function: current_function
%endif
%endif
%ifidn %3, fnord
%4 %1, %2
%else
%4 %1, %2, %3
%endif
%endmacro
%endmacro
GPR_INSTR andn, bmi1
GPR_INSTR bextr, bmi1
GPR_INSTR blsi, bmi1
GPR_INSTR blsmsk, bmi1
GPR_INSTR blsr, bmi1
GPR_INSTR bzhi, bmi2
GPR_INSTR crc32, sse42
GPR_INSTR mulx, bmi2
GPR_INSTR pdep, bmi2
GPR_INSTR pext, bmi2
GPR_INSTR popcnt, sse42
GPR_INSTR rorx, bmi2
GPR_INSTR sarx, bmi2
GPR_INSTR shlx, bmi2
GPR_INSTR shrx, bmi2
; base-4 constants for shuffles
%assign i 0
%rep 256
%assign j ((i>>6)&3)*1000 + ((i>>4)&3)*100 + ((i>>2)&3)*10 + (i&3)
%if j < 10
CAT_XDEFINE q000, j, i
%elif j < 100
CAT_XDEFINE q00, j, i
%elif j < 1000
CAT_XDEFINE q0, j, i
%else
CAT_XDEFINE q, j, i
%endif
%assign i i+1
%endrep
%undef i
%undef j
%macro FMA_INSTR 3
%macro %1 4-7 %1, %2, %3
%if cpuflag(xop)
v%5 %1, %2, %3, %4
%elifnidn %1, %4
%6 %1, %2, %3
%7 %1, %4
%else
%error non-xop emulation of ``%5 %1, %2, %3, %4'' is not supported
%endif
%endmacro
%endmacro
FMA_INSTR pmacsdd, pmulld, paddd ; sse4 emulation
FMA_INSTR pmacsdql, pmuldq, paddq ; sse4 emulation
FMA_INSTR pmacsww, pmullw, paddw
FMA_INSTR pmadcswd, pmaddwd, paddd
; Macros for consolidating FMA3 and FMA4 using 4-operand (dst, src1, src2, src3) syntax.
; FMA3 is only possible if dst is the same as one of the src registers.
; Either src2 or src3 can be a memory operand.
%macro FMA4_INSTR 2-*
%push fma4_instr
%xdefine %$prefix %1
%rep %0 - 1
%macro %$prefix%2 4-6 %$prefix, %2
%if notcpuflag(fma3) && notcpuflag(fma4)
%error use of ``%5%6'' fma instruction in cpuname function: current_function
%elif cpuflag(fma4)
v%5%6 %1, %2, %3, %4
%elifidn %1, %2
; If %3 or %4 is a memory operand it needs to be encoded as the last operand.
%ifnum sizeof%3
v%{5}213%6 %2, %3, %4
%else
v%{5}132%6 %2, %4, %3
%endif
%elifidn %1, %3
v%{5}213%6 %3, %2, %4
%elifidn %1, %4
v%{5}231%6 %4, %2, %3
%else
%error fma3 emulation of ``%5%6 %1, %2, %3, %4'' is not supported
%endif
%endmacro
%rotate 1
%endrep
%pop
%endmacro
FMA4_INSTR fmadd, pd, ps, sd, ss
FMA4_INSTR fmaddsub, pd, ps
FMA4_INSTR fmsub, pd, ps, sd, ss
FMA4_INSTR fmsubadd, pd, ps
FMA4_INSTR fnmadd, pd, ps, sd, ss
FMA4_INSTR fnmsub, pd, ps, sd, ss
; Macros for converting VEX instructions to equivalent EVEX ones.
%macro EVEX_INSTR 2-3 0 ; vex, evex, prefer_evex
%macro %1 2-7 fnord, fnord, %1, %2, %3
%ifidn %3, fnord
%define %%args %1, %2
%elifidn %4, fnord
%define %%args %1, %2, %3
%else
%define %%args %1, %2, %3, %4
%endif
%assign %%evex_required cpuflag(avx512) & %7
%ifnum regnumof%1
%if regnumof%1 >= 16 || sizeof%1 > 32
%assign %%evex_required 1
%endif
%endif
%ifnum regnumof%2
%if regnumof%2 >= 16 || sizeof%2 > 32
%assign %%evex_required 1
%endif
%endif
%ifnum regnumof%3
%if regnumof%3 >= 16 || sizeof%3 > 32
%assign %%evex_required 1
%endif
%endif
%if %%evex_required
%6 %%args
%else
%5 %%args ; Prefer VEX over EVEX due to shorter instruction length
%endif
%endmacro
%endmacro
EVEX_INSTR vbroadcastf128, vbroadcastf32x4
EVEX_INSTR vbroadcasti128, vbroadcasti32x4
EVEX_INSTR vextractf128, vextractf32x4
EVEX_INSTR vextracti128, vextracti32x4
EVEX_INSTR vinsertf128, vinsertf32x4
EVEX_INSTR vinserti128, vinserti32x4
EVEX_INSTR vmovdqa, vmovdqa32
EVEX_INSTR vmovdqu, vmovdqu32
EVEX_INSTR vpand, vpandd
EVEX_INSTR vpandn, vpandnd
EVEX_INSTR vpor, vpord
EVEX_INSTR vpxor, vpxord
EVEX_INSTR vrcpps, vrcp14ps, 1 ; EVEX versions have higher precision
EVEX_INSTR vrcpss, vrcp14ss, 1
EVEX_INSTR vrsqrtps, vrsqrt14ps, 1
EVEX_INSTR vrsqrtss, vrsqrt14ss, 1