/* * Copyright (c) 2011 Nicolas George * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Audio merging filter */ #include "libavutil/avstring.h" #include "libavutil/bprint.h" #include "libavutil/channel_layout.h" #include "libavutil/opt.h" #include "libswresample/swresample.h" // only for SWR_CH_MAX #include "avfilter.h" #include "audio.h" #include "bufferqueue.h" #include "internal.h" typedef struct { const AVClass *class; int nb_inputs; int route[SWR_CH_MAX]; /**< channels routing, see copy_samples */ int bps; struct amerge_input { struct FFBufQueue queue; int nb_ch; /**< number of channels for the input */ int nb_samples; int pos; } *in; } AMergeContext; #define OFFSET(x) offsetof(AMergeContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption amerge_options[] = { { "inputs", "specify the number of inputs", OFFSET(nb_inputs), AV_OPT_TYPE_INT, { .i64 = 2 }, 2, SWR_CH_MAX, FLAGS }, {0} }; AVFILTER_DEFINE_CLASS(amerge); static av_cold void uninit(AVFilterContext *ctx) { AMergeContext *am = ctx->priv; int i; for (i = 0; i < am->nb_inputs; i++) { ff_bufqueue_discard_all(&am->in[i].queue); av_freep(&ctx->input_pads[i].name); } av_freep(&am->in); } static int query_formats(AVFilterContext *ctx) { AMergeContext *am = ctx->priv; int64_t inlayout[SWR_CH_MAX], outlayout = 0; AVFilterFormats *formats; AVFilterChannelLayouts *layouts; int i, overlap = 0, nb_ch = 0; for (i = 0; i < am->nb_inputs; i++) { if (!ctx->inputs[i]->in_channel_layouts || !ctx->inputs[i]->in_channel_layouts->nb_channel_layouts) { av_log(ctx, AV_LOG_ERROR, "No channel layout for input %d\n", i + 1); return AVERROR(EINVAL); } inlayout[i] = ctx->inputs[i]->in_channel_layouts->channel_layouts[0]; if (ctx->inputs[i]->in_channel_layouts->nb_channel_layouts > 1) { char buf[256]; av_get_channel_layout_string(buf, sizeof(buf), 0, inlayout[i]); av_log(ctx, AV_LOG_INFO, "Using \"%s\" for input %d\n", buf, i + 1); } am->in[i].nb_ch = av_get_channel_layout_nb_channels(inlayout[i]); if (outlayout & inlayout[i]) overlap++; outlayout |= inlayout[i]; nb_ch += am->in[i].nb_ch; } if (nb_ch > SWR_CH_MAX) { av_log(ctx, AV_LOG_ERROR, "Too many channels (max %d)\n", SWR_CH_MAX); return AVERROR(EINVAL); } if (overlap) { av_log(ctx, AV_LOG_WARNING, "Input channel layouts overlap: " "output layout will be determined by the number of distinct input channels\n"); for (i = 0; i < nb_ch; i++) am->route[i] = i; outlayout = av_get_default_channel_layout(nb_ch); if (!outlayout) outlayout = ((int64_t)1 << nb_ch) - 1; } else { int *route[SWR_CH_MAX]; int c, out_ch_number = 0; route[0] = am->route; for (i = 1; i < am->nb_inputs; i++) route[i] = route[i - 1] + am->in[i - 1].nb_ch; for (c = 0; c < 64; c++) for (i = 0; i < am->nb_inputs; i++) if ((inlayout[i] >> c) & 1) *(route[i]++) = out_ch_number++; } formats = ff_make_format_list(ff_packed_sample_fmts_array); ff_set_common_formats(ctx, formats); for (i = 0; i < am->nb_inputs; i++) { layouts = NULL; ff_add_channel_layout(&layouts, inlayout[i]); ff_channel_layouts_ref(layouts, &ctx->inputs[i]->out_channel_layouts); } layouts = NULL; ff_add_channel_layout(&layouts, outlayout); ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts); ff_set_common_samplerates(ctx, ff_all_samplerates()); return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AMergeContext *am = ctx->priv; AVBPrint bp; int i; for (i = 1; i < am->nb_inputs; i++) { if (ctx->inputs[i]->sample_rate != ctx->inputs[0]->sample_rate) { av_log(ctx, AV_LOG_ERROR, "Inputs must have the same sample rate " "%d for in%d vs %d\n", ctx->inputs[i]->sample_rate, i, ctx->inputs[0]->sample_rate); return AVERROR(EINVAL); } } am->bps = av_get_bytes_per_sample(ctx->outputs[0]->format); outlink->sample_rate = ctx->inputs[0]->sample_rate; outlink->time_base = ctx->inputs[0]->time_base; av_bprint_init(&bp, 0, 1); for (i = 0; i < am->nb_inputs; i++) { av_bprintf(&bp, "%sin%d:", i ? " + " : "", i); av_bprint_channel_layout(&bp, -1, ctx->inputs[i]->channel_layout); } av_bprintf(&bp, " -> out:"); av_bprint_channel_layout(&bp, -1, ctx->outputs[0]->channel_layout); av_log(ctx, AV_LOG_VERBOSE, "%s\n", bp.str); return 0; } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AMergeContext *am = ctx->priv; int i, ret; for (i = 0; i < am->nb_inputs; i++) if (!am->in[i].nb_samples) if ((ret = ff_request_frame(ctx->inputs[i])) < 0) return ret; return 0; } /** * Copy samples from several input streams to one output stream. * @param nb_inputs number of inputs * @param in inputs; used only for the nb_ch field; * @param route routing values; * input channel i goes to output channel route[i]; * i < in[0].nb_ch are the channels from the first output; * i >= in[0].nb_ch are the channels from the second output * @param ins pointer to the samples of each inputs, in packed format; * will be left at the end of the copied samples * @param outs pointer to the samples of the output, in packet format; * must point to a buffer big enough; * will be left at the end of the copied samples * @param ns number of samples to copy * @param bps bytes per sample */ static inline void copy_samples(int nb_inputs, struct amerge_input in[], int *route, uint8_t *ins[], uint8_t **outs, int ns, int bps) { int *route_cur; int i, c, nb_ch = 0; for (i = 0; i < nb_inputs; i++) nb_ch += in[i].nb_ch; while (ns--) { route_cur = route; for (i = 0; i < nb_inputs; i++) { for (c = 0; c < in[i].nb_ch; c++) { memcpy((*outs) + bps * *(route_cur++), ins[i], bps); ins[i] += bps; } } *outs += nb_ch * bps; } } static int filter_frame(AVFilterLink *inlink, AVFilterBufferRef *insamples) { AVFilterContext *ctx = inlink->dst; AMergeContext *am = ctx->priv; AVFilterLink *const outlink = ctx->outputs[0]; int input_number; int nb_samples, ns, i; AVFilterBufferRef *outbuf, *inbuf[SWR_CH_MAX]; uint8_t *ins[SWR_CH_MAX], *outs; for (input_number = 0; input_number < am->nb_inputs; input_number++) if (inlink == ctx->inputs[input_number]) break; av_assert1(input_number < am->nb_inputs); if (ff_bufqueue_is_full(&am->in[input_number].queue)) { av_log(ctx, AV_LOG_ERROR, "Buffer queue overflow\n"); avfilter_unref_buffer(insamples); return AVERROR(ENOMEM); } ff_bufqueue_add(ctx, &am->in[input_number].queue, insamples); am->in[input_number].nb_samples += insamples->audio->nb_samples; nb_samples = am->in[0].nb_samples; for (i = 1; i < am->nb_inputs; i++) nb_samples = FFMIN(nb_samples, am->in[i].nb_samples); if (!nb_samples) return 0; outbuf = ff_get_audio_buffer(ctx->outputs[0], AV_PERM_WRITE, nb_samples); outs = outbuf->data[0]; for (i = 0; i < am->nb_inputs; i++) { inbuf[i] = ff_bufqueue_peek(&am->in[i].queue, 0); ins[i] = inbuf[i]->data[0] + am->in[i].pos * am->in[i].nb_ch * am->bps; } avfilter_copy_buffer_ref_props(outbuf, inbuf[0]); outbuf->pts = inbuf[0]->pts == AV_NOPTS_VALUE ? AV_NOPTS_VALUE : inbuf[0]->pts + av_rescale_q(am->in[0].pos, (AVRational){ 1, ctx->inputs[0]->sample_rate }, ctx->outputs[0]->time_base); outbuf->audio->nb_samples = nb_samples; outbuf->audio->channel_layout = outlink->channel_layout; outbuf->audio->channels = outlink->channels; while (nb_samples) { ns = nb_samples; for (i = 0; i < am->nb_inputs; i++) ns = FFMIN(ns, inbuf[i]->audio->nb_samples - am->in[i].pos); /* Unroll the most common sample formats: speed +~350% for the loop, +~13% overall (including two common decoders) */ switch (am->bps) { case 1: copy_samples(am->nb_inputs, am->in, am->route, ins, &outs, ns, 1); break; case 2: copy_samples(am->nb_inputs, am->in, am->route, ins, &outs, ns, 2); break; case 4: copy_samples(am->nb_inputs, am->in, am->route, ins, &outs, ns, 4); break; default: copy_samples(am->nb_inputs, am->in, am->route, ins, &outs, ns, am->bps); break; } nb_samples -= ns; for (i = 0; i < am->nb_inputs; i++) { am->in[i].nb_samples -= ns; am->in[i].pos += ns; if (am->in[i].pos == inbuf[i]->audio->nb_samples) { am->in[i].pos = 0; avfilter_unref_buffer(inbuf[i]); ff_bufqueue_get(&am->in[i].queue); inbuf[i] = ff_bufqueue_peek(&am->in[i].queue, 0); ins[i] = inbuf[i] ? inbuf[i]->data[0] : NULL; } } } return ff_filter_frame(ctx->outputs[0], outbuf); } static av_cold int init(AVFilterContext *ctx, const char *args) { AMergeContext *am = ctx->priv; int ret, i; am->class = &amerge_class; av_opt_set_defaults(am); ret = av_set_options_string(am, args, "=", ":"); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Error parsing options: '%s'\n", args); return ret; } am->in = av_calloc(am->nb_inputs, sizeof(*am->in)); if (!am->in) return AVERROR(ENOMEM); for (i = 0; i < am->nb_inputs; i++) { char *name = av_asprintf("in%d", i); AVFilterPad pad = { .name = name, .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, .min_perms = AV_PERM_READ | AV_PERM_PRESERVE, }; if (!name) return AVERROR(ENOMEM); ff_insert_inpad(ctx, i, &pad); } return 0; } static const AVFilterPad amerge_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; AVFilter avfilter_af_amerge = { .name = "amerge", .description = NULL_IF_CONFIG_SMALL("Merge two audio streams into " "a single multi-channel stream."), .priv_size = sizeof(AMergeContext), .init = init, .uninit = uninit, .query_formats = query_formats, .inputs = NULL, .outputs = amerge_outputs, .priv_class = &amerge_class, };