/* * parse.c * * Copyright (C) Aaron Holtzman - May 1999 * * This file is part of ac3dec, a free Dolby AC-3 stream decoder. * * ac3dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * ac3dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * */ #include "../common.h" #include "ac3.h" #include "ac3_internal.h" #include "bitstream.h" #include "tables.h" extern stream_samples_t samples; // FIXME static float delay[6][256]; void ac3_init (void) { imdct_init (); } static uint8_t halfrate[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3}; int ac3_syncinfo (uint8_t * buf, int * flags, int * sample_rate, int * bit_rate) { static int rate[] = { 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 576, 640}; static uint8_t lfeon[8] = {0x10, 0x10, 0x04, 0x04, 0x04, 0x01, 0x04, 0x01}; int frmsizecod; int bitrate; int half; int acmod; if ((buf[0] != 0x0b) || (buf[1] != 0x77)) // syncword return 0; if (buf[5] >= 0x60) // bsid >= 12 return 0; half = halfrate[buf[5] >> 3]; // acmod, dsurmod and lfeon acmod = buf[6] >> 5; *flags = (((buf[6] & 0xf8) == 0x50) ? AC3_DOLBY : acmod) | ((buf[6] & lfeon[acmod]) ? AC3_LFE : 0); frmsizecod = buf[4] & 63; if (frmsizecod >= 38) return 0; bitrate = rate [frmsizecod >> 1]; *bit_rate = (bitrate * 1000) >> half; switch (buf[4] & 0xc0) { case 0: // 48 KHz *sample_rate = 48000 >> half; return 4 * bitrate; case 0x40: *sample_rate = 44100 >> half; return 2 * (320 * bitrate / 147 + (frmsizecod & 1)); case 0x80: *sample_rate = 32000 >> half; return 6 * bitrate; default: return 0; } } int ac3_frame (ac3_state_t * state, uint8_t * buf, int * flags, float * level, float bias) { static float clev[4] = {LEVEL_3DB, LEVEL_45DB, LEVEL_6DB, LEVEL_45DB}; static float slev[4] = {LEVEL_3DB, LEVEL_6DB, 0, LEVEL_6DB}; int chaninfo; int acmod; state->fscod = buf[4] >> 6; state->halfrate = halfrate[buf[5] >> 3]; state->acmod = acmod = buf[6] >> 5; bitstream_set_ptr (buf + 6); bitstream_get (3); // skip acmod we already parsed if ((acmod == 2) && (bitstream_get (2) == 2)) // dsurmod acmod = AC3_DOLBY; if ((acmod & 1) && (acmod != 1)) state->clev = clev[bitstream_get (2)]; // cmixlev if (acmod & 4) state->slev = slev[bitstream_get (2)]; // surmixlev state->lfeon = bitstream_get (1); state->output = downmix_init (acmod, *flags, level, state->clev, state->slev); if (state->output < 0) return 1; *flags = state->output; state->level = *level; state->bias = bias; chaninfo = !acmod; do { bitstream_get (5); // dialnorm if (bitstream_get (1)) // compre bitstream_get (8); // compr if (bitstream_get (1)) // langcode bitstream_get (8); // langcod if (bitstream_get (1)) // audprodie bitstream_get (7); // mixlevel + roomtyp } while (chaninfo--); bitstream_get (2); // copyrightb + origbs if (bitstream_get (1)) // timecod1e bitstream_get (14); // timecod1 if (bitstream_get (1)) // timecod2e bitstream_get (14); // timecod2 if (bitstream_get (1)) { // addbsie int addbsil; addbsil = bitstream_get (6); do { bitstream_get (8); // addbsi } while (addbsil--); } return 0; } static int parse_exponents (int expstr, int ngrps, uint8_t exponent, uint8_t * dest) { int exps; while (ngrps--) { exps = bitstream_get (7); exponent += exp_1[exps]; if (exponent > 24) return 1; switch (expstr) { case EXP_D45: *(dest++) = exponent; *(dest++) = exponent; case EXP_D25: *(dest++) = exponent; case EXP_D15: *(dest++) = exponent; } exponent += exp_2[exps]; if (exponent > 24) return 1; switch (expstr) { case EXP_D45: *(dest++) = exponent; *(dest++) = exponent; case EXP_D25: *(dest++) = exponent; case EXP_D15: *(dest++) = exponent; } exponent += exp_3[exps]; if (exponent > 24) return 1; switch (expstr) { case EXP_D45: *(dest++) = exponent; *(dest++) = exponent; case EXP_D25: *(dest++) = exponent; case EXP_D15: *(dest++) = exponent; } } return 0; } static int parse_deltba (int8_t * deltba) { int deltnseg, deltlen, delta, j; memset (deltba, 0, 50); deltnseg = bitstream_get (3); j = 0; do { j += bitstream_get (5); deltlen = bitstream_get (4); delta = bitstream_get (3); delta -= (delta >= 4) ? 3 : 4; if (!deltlen) continue; if (j + deltlen >= 50) return 1; while (deltlen--) deltba[j++] = delta; } while (deltnseg--); return 0; } static inline int zero_snr_offsets (int nfchans, ac3_state_t * state) { int i; if ((state->csnroffst) || (state->cplinu && state->cplba.fsnroffst) || (state->lfeon && state->lfeba.fsnroffst)) return 0; for (i = 0; i < nfchans; i++) if (state->ba[i].fsnroffst) return 0; return 1; } static float q_1[2]; static float q_2[2]; static float q_4; static int q_1_pointer; static int q_2_pointer; static int q_4_pointer; #define GET_COEFF(COEFF,DITHER) \ switch (bap[i]) { \ case 0: \ DITHER (scale_factor[exp[i]]); \ \ case -1: \ if (q_1_pointer >= 0) { \ COEFF (q_1[q_1_pointer--] * scale_factor[exp[i]]); \ } else { \ int code; \ \ code = bitstream_get (5); \ \ q_1_pointer = 1; \ q_1[0] = q_1_2[code]; \ q_1[1] = q_1_1[code]; \ COEFF (q_1_0[code] * scale_factor[exp[i]]); \ } \ \ case -2: \ if (q_2_pointer >= 0) { \ COEFF (q_2[q_2_pointer--] * scale_factor[exp[i]]); \ } else { \ int code; \ \ code = bitstream_get (7); \ \ q_2_pointer = 1; \ q_2[0] = q_2_2[code]; \ q_2[1] = q_2_1[code]; \ COEFF (q_2_0[code] * scale_factor[exp[i]]); \ } \ \ case 3: \ COEFF (q_3[bitstream_get (3)] * scale_factor[exp[i]]); \ \ case -3: \ if (q_4_pointer == 0) { \ q_4_pointer = -1; \ COEFF (q_4 * scale_factor[exp[i]]); \ } else { \ int code; \ \ code = bitstream_get (7); \ \ q_4_pointer = 0; \ q_4 = q_4_1[code]; \ COEFF (q_4_0[code] * scale_factor[exp[i]]); \ } \ \ case 4: \ COEFF (q_5[bitstream_get (4)] * scale_factor[exp[i]]); \ \ default: \ COEFF (((int16_t)(bitstream_get(bap[i]) << (16 - bap[i]))) * \ scale_factor[exp[i]]); \ } #define CHANNEL_COEFF(val) \ coeff[i++] = val; \ continue; #define CHANNEL_DITHER(val) \ if (dither) { \ coeff[i++] = dither_gen () * val; \ continue; \ } else { \ coeff[i++] = 0; \ continue; \ } static uint16_t lfsr_state = 1; static inline int16_t dither_gen(void) { int16_t state; state = dither_lut[lfsr_state >> 8] ^ (lfsr_state << 8); lfsr_state = (uint16_t) state; return ((state * (int) (LEVEL_3DB * 256)) >> 8); } static void coeff_get (float * coeff, uint8_t * exp, int8_t * bap, int dither, int end) { int i; i = 0; while (i < end) GET_COEFF (CHANNEL_COEFF, CHANNEL_DITHER); } #define COUPLING_COEFF(val) \ cplcoeff = val; \ break; #define COUPLING_DITHER(val) \ cplcoeff = val; \ for (ch = 0; ch < nfchans; ch++) \ if (state->chincpl[ch]) { \ if (dithflag[ch]) \ samples[ch][i] = \ state->cplco[ch][bnd] * dither_gen () * cplcoeff; \ else \ samples[ch][i] = 0; \ } \ i++; \ continue; int ac3_block (ac3_state_t * state) { static const uint8_t nfchans_tbl[8] = {2, 1, 2, 3, 3, 4, 4, 5}; static int rematrix_band[4] = {25, 37, 61, 253}; int i, nfchans, chaninfo; uint8_t cplexpstr, chexpstr[5], lfeexpstr, do_bit_alloc, done_cpl; uint8_t blksw[5], dithflag[5]; nfchans = nfchans_tbl[state->acmod]; for (i = 0; i < nfchans; i++) blksw[i] = bitstream_get (1); for (i = 0; i < nfchans; i++) dithflag[i] = bitstream_get (1); chaninfo = !(state->acmod); do { if (bitstream_get (1)) // dynrnge bitstream_get (8); // dynrng } while (chaninfo--); if (bitstream_get (1)) { // cplstre state->cplinu = bitstream_get (1); if (state->cplinu) { static int bndtab[16] = {31, 35, 37, 39, 41, 42, 43, 44, 45, 45, 46, 46, 47, 47, 48, 48}; int cplbegf; int cplendf; int ncplsubnd; for (i = 0; i < nfchans; i++) state->chincpl[i] = bitstream_get (1); switch (state->acmod) { case 0: case 1: return 1; case 2: state->phsflginu = bitstream_get (1); } cplbegf = bitstream_get (4); cplendf = bitstream_get (4); if (cplendf + 3 - cplbegf < 0) return 1; state->ncplbnd = ncplsubnd = cplendf + 3 - cplbegf; state->cplstrtbnd = bndtab[cplbegf]; state->cplstrtmant = cplbegf * 12 + 37; state->cplendmant = cplendf * 12 + 73; for (i = 0; i < ncplsubnd - 1; i++) { state->cplbndstrc[i] = bitstream_get (1); state->ncplbnd -= state->cplbndstrc[i]; } state->cplbndstrc[i] = 0; // last value is a sentinel } } if (state->cplinu) { int j, cplcoe; cplcoe = 0; for (i = 0; i < nfchans; i++) if (state->chincpl[i]) if (bitstream_get (1)) { // cplcoe int mstrcplco, cplcoexp, cplcomant; cplcoe = 1; mstrcplco = 3 * bitstream_get (2); for (j = 0; j < state->ncplbnd; j++) { cplcoexp = bitstream_get (4); cplcomant = bitstream_get (4); if (cplcoexp == 15) cplcomant <<= 14; else cplcomant = (cplcomant | 0x10) << 13; state->cplco[i][j] = cplcomant * scale_factor[cplcoexp + mstrcplco]; } } if ((state->acmod == 2) && state->phsflginu && cplcoe) for (j = 0; j < state->ncplbnd; j++) if (bitstream_get (1)) // phsflg state->cplco[1][j] = -state->cplco[1][j]; } if ((state->acmod == 2) && (bitstream_get (1))) { // rematstr int end; end = (state->cplinu) ? state->cplstrtmant : 253; i = 0; do state->rematflg[i] = bitstream_get (1); while (rematrix_band[i++] < end); } cplexpstr = EXP_REUSE; lfeexpstr = EXP_REUSE; if (state->cplinu) cplexpstr = bitstream_get (2); for (i = 0; i < nfchans; i++) chexpstr[i] = bitstream_get (2); if (state->lfeon) lfeexpstr = bitstream_get (1); for (i = 0; i < nfchans; i++) if (chexpstr[i] != EXP_REUSE) { if (state->cplinu && state->chincpl[i]) state->endmant[i] = state->cplstrtmant; else { int chbwcod; chbwcod = bitstream_get (6); if (chbwcod > 60) return 1; state->endmant[i] = chbwcod * 3 + 73; } } do_bit_alloc = 0; if (cplexpstr != EXP_REUSE) { int cplabsexp, ncplgrps; do_bit_alloc = 1; ncplgrps = ((state->cplendmant - state->cplstrtmant) / (3 << (cplexpstr - 1))); cplabsexp = bitstream_get (4) << 1; if (parse_exponents (cplexpstr, ncplgrps, cplabsexp, state->cpl_exp + state->cplstrtmant)) return 1; } for (i = 0; i < nfchans; i++) if (chexpstr[i] != EXP_REUSE) { int grp_size, nchgrps; do_bit_alloc = 1; grp_size = 3 << (chexpstr[i] - 1); nchgrps = (state->endmant[i] + grp_size - 4) / grp_size; state->fbw_exp[i][0] = bitstream_get (4); if (parse_exponents (chexpstr[i], nchgrps, state->fbw_exp[i][0], state->fbw_exp[i] + 1)) return 1; bitstream_get (2); // gainrng } if (lfeexpstr != EXP_REUSE) { do_bit_alloc = 1; state->lfe_exp[0] = bitstream_get (4); if (parse_exponents (lfeexpstr, 2, state->lfe_exp[0], state->lfe_exp + 1)) return 1; } if (bitstream_get (1)) { // baie do_bit_alloc = 1; state->sdcycod = bitstream_get (2); state->fdcycod = bitstream_get (2); state->sgaincod = bitstream_get (2); state->dbpbcod = bitstream_get (2); state->floorcod = bitstream_get (3); } if (bitstream_get (1)) { //snroffste do_bit_alloc = 1; state->csnroffst = bitstream_get (6); if (state->cplinu) { state->cplba.fsnroffst = bitstream_get (4); state->cplba.fgaincod = bitstream_get (3); } for (i = 0; i < nfchans; i++) { state->ba[i].fsnroffst = bitstream_get (4); state->ba[i].fgaincod = bitstream_get (3); } if (state->lfeon) { state->lfeba.fsnroffst = bitstream_get (4); state->lfeba.fgaincod = bitstream_get (3); } } if ((state->cplinu) && (bitstream_get (1))) { // cplleake do_bit_alloc = 1; state->cplfleak = 2304 - (bitstream_get (3) << 8); state->cplsleak = 2304 - (bitstream_get (3) << 8); } if (bitstream_get (1)) { // deltbaie do_bit_alloc = 1; if (state->cplinu) state->cplba.deltbae = bitstream_get (2); for (i = 0; i < nfchans; i++) state->ba[i].deltbae = bitstream_get (2); if (state->cplinu && (state->cplba.deltbae == DELTA_BIT_NEW) && parse_deltba (state->cplba.deltba)) return 1; for (i = 0; i < nfchans; i++) if ((state->ba[i].deltbae == DELTA_BIT_NEW) && parse_deltba (state->ba[i].deltba)) return 1; } if (do_bit_alloc) { if (zero_snr_offsets (nfchans, state)) { memset (state->cpl_bap, 0, sizeof (state->cpl_bap)); memset (state->fbw_bap, 0, sizeof (state->fbw_bap)); memset (state->lfe_bap, 0, sizeof (state->lfe_bap)); } else { if (state->cplinu) bit_allocate (state, &state->cplba, state->cplstrtbnd, state->cplstrtmant, state->cplendmant, state->cplfleak, state->cplsleak, state->cpl_exp, state->cpl_bap); for (i = 0; i < nfchans; i++) bit_allocate (state, state->ba + i, 0, 0, state->endmant[i], 0, 0, state->fbw_exp[i], state->fbw_bap[i]); if (state->lfeon) { state->lfeba.deltbae = DELTA_BIT_NONE; bit_allocate (state, &state->lfeba, 0, 0, 7, 0, 0, state->lfe_exp, state->lfe_bap); } } } if (bitstream_get (1)) { // skiple i = bitstream_get (9); // skipl while (i--) bitstream_get (8); } q_1_pointer = q_2_pointer = q_4_pointer = -1; done_cpl = 0; for (i = 0; i < nfchans; i++) { int j; coeff_get (samples[i], state->fbw_exp[i], state->fbw_bap[i], dithflag[i], state->endmant[i]); if (state->cplinu && state->chincpl[i]) { if (!done_cpl) { int i, i_end, bnd, sub_bnd, ch; float cplcoeff; done_cpl = 1; #define bap state->cpl_bap #define exp state->cpl_exp sub_bnd = bnd = 0; i = state->cplstrtmant; while (i < state->cplendmant) { i_end = i + 12; while (state->cplbndstrc[sub_bnd++]) i_end += 12; while (i < i_end) { GET_COEFF (COUPLING_COEFF, COUPLING_DITHER); for (ch = 0; ch < nfchans; ch++) if (state->chincpl[ch]) samples[ch][i] = state->cplco[ch][bnd] * cplcoeff; i++; } bnd++; } #undef bap #undef exp } j = state->cplendmant; } else j = state->endmant[i]; for (; j < 256; j++) samples[i][j] = 0; } if (state->acmod == 2) { int j, end, band; end = ((state->endmant[0] < state->endmant[1]) ? state->endmant[0] : state->endmant[1]); i = 0; j = 13; do { if (!state->rematflg[i]) { j = rematrix_band[i++]; continue; } band = rematrix_band[i++]; if (band > end) band = end; do { float tmp0, tmp1; tmp0 = samples[0][j]; tmp1 = samples[1][j]; samples[0][j] = tmp0 + tmp1; samples[1][j] = tmp0 - tmp1; } while (++j < band); } while (j < end); } if (state->lfeon) { coeff_get (samples[5], state->lfe_exp, state->lfe_bap, 0, 7); #if 0 for (i = 7; i < 256; i++) samples[5][i] = 0; #endif } for (i = 0; i < nfchans; i++) if (blksw[i]) imdct_256 (samples[i], delay[i]); else imdct_512 (samples[i], delay[i]); #if 0 if (state->lfeon) imdct_512 (samples[5], delay[5]); #endif downmix (*samples, state->acmod, state->output, state->level, state->bias, state->clev, state->slev); return 0; }