/* * Copyright (C) 2016 foo86 * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/opt.h" #include "libavutil/channel_layout.h" #include "dcadec.h" #include "dcahuff.h" #include "dca_syncwords.h" #include "profiles.h" #define MIN_PACKET_SIZE 16 #define MAX_PACKET_SIZE 0x104000 int ff_dca_set_channel_layout(AVCodecContext *avctx, int *ch_remap, int dca_mask) { static const uint8_t dca2wav_norm[28] = { 2, 0, 1, 9, 10, 3, 8, 4, 5, 9, 10, 6, 7, 12, 13, 14, 3, 6, 7, 11, 12, 14, 16, 15, 17, 8, 4, 5, }; static const uint8_t dca2wav_wide[28] = { 2, 0, 1, 4, 5, 3, 8, 4, 5, 9, 10, 6, 7, 12, 13, 14, 3, 9, 10, 11, 12, 14, 16, 15, 17, 8, 4, 5, }; int dca_ch, wav_ch, nchannels = 0; if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) { for (dca_ch = 0; dca_ch < DCA_SPEAKER_COUNT; dca_ch++) if (dca_mask & (1U << dca_ch)) ch_remap[nchannels++] = dca_ch; avctx->channel_layout = dca_mask; } else { int wav_mask = 0; int wav_map[18]; const uint8_t *dca2wav; if (dca_mask == DCA_SPEAKER_LAYOUT_7POINT0_WIDE || dca_mask == DCA_SPEAKER_LAYOUT_7POINT1_WIDE) dca2wav = dca2wav_wide; else dca2wav = dca2wav_norm; for (dca_ch = 0; dca_ch < 28; dca_ch++) { if (dca_mask & (1 << dca_ch)) { wav_ch = dca2wav[dca_ch]; if (!(wav_mask & (1 << wav_ch))) { wav_map[wav_ch] = dca_ch; wav_mask |= 1 << wav_ch; } } } for (wav_ch = 0; wav_ch < 18; wav_ch++) if (wav_mask & (1 << wav_ch)) ch_remap[nchannels++] = wav_map[wav_ch]; avctx->channel_layout = wav_mask; } avctx->channels = nchannels; return nchannels; } static uint16_t crc16(const uint8_t *data, int size) { static const uint16_t crctab[16] = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, }; uint16_t res = 0xffff; int i; for (i = 0; i < size; i++) { res = (res << 4) ^ crctab[(data[i] >> 4) ^ (res >> 12)]; res = (res << 4) ^ crctab[(data[i] & 15) ^ (res >> 12)]; } return res; } int ff_dca_check_crc(GetBitContext *s, int p1, int p2) { if (((p1 | p2) & 7) || p1 < 0 || p2 > s->size_in_bits || p2 - p1 < 16) return -1; if (crc16(s->buffer + p1 / 8, (p2 - p1) / 8)) return -1; return 0; } void ff_dca_downmix_to_stereo_fixed(DCADSPContext *dcadsp, int32_t **samples, int *coeff_l, int nsamples, int ch_mask) { int pos, spkr, max_spkr = av_log2(ch_mask); int *coeff_r = coeff_l + av_popcount(ch_mask); av_assert0(DCA_HAS_STEREO(ch_mask)); // Scale left and right channels pos = (ch_mask & DCA_SPEAKER_MASK_C); dcadsp->dmix_scale(samples[DCA_SPEAKER_L], coeff_l[pos ], nsamples); dcadsp->dmix_scale(samples[DCA_SPEAKER_R], coeff_r[pos + 1], nsamples); // Downmix remaining channels for (spkr = 0; spkr <= max_spkr; spkr++) { if (!(ch_mask & (1U << spkr))) continue; if (*coeff_l && spkr != DCA_SPEAKER_L) dcadsp->dmix_add(samples[DCA_SPEAKER_L], samples[spkr], *coeff_l, nsamples); if (*coeff_r && spkr != DCA_SPEAKER_R) dcadsp->dmix_add(samples[DCA_SPEAKER_R], samples[spkr], *coeff_r, nsamples); coeff_l++; coeff_r++; } } void ff_dca_downmix_to_stereo_float(AVFloatDSPContext *fdsp, float **samples, int *coeff_l, int nsamples, int ch_mask) { int pos, spkr, max_spkr = av_log2(ch_mask); int *coeff_r = coeff_l + av_popcount(ch_mask); const float scale = 1.0f / (1 << 15); av_assert0(DCA_HAS_STEREO(ch_mask)); // Scale left and right channels pos = (ch_mask & DCA_SPEAKER_MASK_C); fdsp->vector_fmul_scalar(samples[DCA_SPEAKER_L], samples[DCA_SPEAKER_L], coeff_l[pos ] * scale, nsamples); fdsp->vector_fmul_scalar(samples[DCA_SPEAKER_R], samples[DCA_SPEAKER_R], coeff_r[pos + 1] * scale, nsamples); // Downmix remaining channels for (spkr = 0; spkr <= max_spkr; spkr++) { if (!(ch_mask & (1U << spkr))) continue; if (*coeff_l && spkr != DCA_SPEAKER_L) fdsp->vector_fmac_scalar(samples[DCA_SPEAKER_L], samples[spkr], *coeff_l * scale, nsamples); if (*coeff_r && spkr != DCA_SPEAKER_R) fdsp->vector_fmac_scalar(samples[DCA_SPEAKER_R], samples[spkr], *coeff_r * scale, nsamples); coeff_l++; coeff_r++; } } static int convert_bitstream(const uint8_t *src, int src_size, uint8_t *dst, int max_size) { switch (AV_RB32(src)) { case DCA_SYNCWORD_CORE_BE: case DCA_SYNCWORD_SUBSTREAM: memcpy(dst, src, src_size); return src_size; case DCA_SYNCWORD_CORE_LE: case DCA_SYNCWORD_CORE_14B_BE: case DCA_SYNCWORD_CORE_14B_LE: return avpriv_dca_convert_bitstream(src, src_size, dst, max_size); default: return AVERROR_INVALIDDATA; } } static int dcadec_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { DCAContext *s = avctx->priv_data; AVFrame *frame = data; uint8_t *input = avpkt->data; int input_size = avpkt->size; int i, ret, prev_packet = s->packet; if (input_size < MIN_PACKET_SIZE || input_size > MAX_PACKET_SIZE) { av_log(avctx, AV_LOG_ERROR, "Invalid packet size\n"); return AVERROR_INVALIDDATA; } av_fast_malloc(&s->buffer, &s->buffer_size, FFALIGN(input_size, 4096) + DCA_BUFFER_PADDING_SIZE); if (!s->buffer) return AVERROR(ENOMEM); for (i = 0, ret = AVERROR_INVALIDDATA; i < input_size - MIN_PACKET_SIZE + 1 && ret < 0; i++) ret = convert_bitstream(input + i, input_size - i, s->buffer, s->buffer_size); if (ret < 0) return ret; input = s->buffer; input_size = ret; s->packet = 0; // Parse backward compatible core sub-stream if (AV_RB32(input) == DCA_SYNCWORD_CORE_BE) { int frame_size; if ((ret = ff_dca_core_parse(&s->core, input, input_size)) < 0) { s->core_residual_valid = 0; return ret; } s->packet |= DCA_PACKET_CORE; // EXXS data must be aligned on 4-byte boundary frame_size = FFALIGN(s->core.frame_size, 4); if (input_size - 4 > frame_size) { input += frame_size; input_size -= frame_size; } } if (!s->core_only) { DCAExssAsset *asset = NULL; // Parse extension sub-stream (EXSS) if (AV_RB32(input) == DCA_SYNCWORD_SUBSTREAM) { if ((ret = ff_dca_exss_parse(&s->exss, input, input_size)) < 0) { if (avctx->err_recognition & AV_EF_EXPLODE) return ret; } else { s->packet |= DCA_PACKET_EXSS; asset = &s->exss.assets[0]; } } // Parse XLL component in EXSS if (asset && (asset->extension_mask & DCA_EXSS_XLL)) { if ((ret = ff_dca_xll_parse(&s->xll, input, asset)) < 0) { // Conceal XLL synchronization error if (ret == AVERROR(EAGAIN) && (prev_packet & DCA_PACKET_XLL) && (s->packet & DCA_PACKET_CORE)) s->packet |= DCA_PACKET_XLL | DCA_PACKET_RECOVERY; else if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE)) return ret; } else { s->packet |= DCA_PACKET_XLL; } } // Parse core extensions in EXSS or backward compatible core sub-stream if ((s->packet & DCA_PACKET_CORE) && (ret = ff_dca_core_parse_exss(&s->core, input, asset)) < 0) return ret; } // Filter the frame if (s->packet & DCA_PACKET_XLL) { if (s->packet & DCA_PACKET_CORE) { int x96_synth = -1; // Enable X96 synthesis if needed if (s->xll.chset[0].freq == 96000 && s->core.sample_rate == 48000) x96_synth = 1; if ((ret = ff_dca_core_filter_fixed(&s->core, x96_synth)) < 0) { s->core_residual_valid = 0; return ret; } // Force lossy downmixed output on the first core frame filtered. // This prevents audible clicks when seeking and is consistent with // what reference decoder does when there are multiple channel sets. if (!s->core_residual_valid) { if (s->xll.nreschsets > 0 && s->xll.nchsets > 1) s->packet |= DCA_PACKET_RECOVERY; s->core_residual_valid = 1; } } if ((ret = ff_dca_xll_filter_frame(&s->xll, frame)) < 0) { // Fall back to core unless hard error if (!(s->packet & DCA_PACKET_CORE)) return ret; if (ret != AVERROR_INVALIDDATA || (avctx->err_recognition & AV_EF_EXPLODE)) return ret; if ((ret = ff_dca_core_filter_frame(&s->core, frame)) < 0) { s->core_residual_valid = 0; return ret; } } } else if (s->packet & DCA_PACKET_CORE) { if ((ret = ff_dca_core_filter_frame(&s->core, frame)) < 0) { s->core_residual_valid = 0; return ret; } s->core_residual_valid = !!(s->core.filter_mode & DCA_FILTER_MODE_FIXED); } else { return AVERROR_INVALIDDATA; } *got_frame_ptr = 1; return avpkt->size; } static av_cold void dcadec_flush(AVCodecContext *avctx) { DCAContext *s = avctx->priv_data; ff_dca_core_flush(&s->core); ff_dca_xll_flush(&s->xll); s->core_residual_valid = 0; } static av_cold int dcadec_close(AVCodecContext *avctx) { DCAContext *s = avctx->priv_data; ff_dca_core_close(&s->core); ff_dca_xll_close(&s->xll); av_freep(&s->buffer); s->buffer_size = 0; return 0; } static av_cold int dcadec_init(AVCodecContext *avctx) { DCAContext *s = avctx->priv_data; s->avctx = avctx; s->core.avctx = avctx; s->exss.avctx = avctx; s->xll.avctx = avctx; ff_dca_init_vlcs(); if (ff_dca_core_init(&s->core) < 0) return AVERROR(ENOMEM); ff_dcadsp_init(&s->dcadsp); s->core.dcadsp = &s->dcadsp; s->xll.dcadsp = &s->dcadsp; switch (avctx->request_channel_layout & ~AV_CH_LAYOUT_NATIVE) { case 0: s->request_channel_layout = 0; break; case AV_CH_LAYOUT_STEREO: case AV_CH_LAYOUT_STEREO_DOWNMIX: s->request_channel_layout = DCA_SPEAKER_LAYOUT_STEREO; break; case AV_CH_LAYOUT_5POINT0: s->request_channel_layout = DCA_SPEAKER_LAYOUT_5POINT0; break; case AV_CH_LAYOUT_5POINT1: s->request_channel_layout = DCA_SPEAKER_LAYOUT_5POINT1; break; default: av_log(avctx, AV_LOG_WARNING, "Invalid request_channel_layout\n"); break; } avctx->sample_fmt = AV_SAMPLE_FMT_S32P; avctx->bits_per_raw_sample = 24; return 0; } #define OFFSET(x) offsetof(DCAContext, x) #define PARAM AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM static const AVOption dcadec_options[] = { { "core_only", "Decode core only without extensions", OFFSET(core_only), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, PARAM }, { NULL } }; static const AVClass dcadec_class = { .class_name = "DCA decoder", .item_name = av_default_item_name, .option = dcadec_options, .version = LIBAVUTIL_VERSION_INT, .category = AV_CLASS_CATEGORY_DECODER, }; AVCodec ff_dca_decoder = { .name = "dca", .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_DTS, .priv_data_size = sizeof(DCAContext), .init = dcadec_init, .decode = dcadec_decode_frame, .close = dcadec_close, .flush = dcadec_flush, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }, .priv_class = &dcadec_class, .profiles = NULL_IF_CONFIG_SMALL(ff_dca_profiles), .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };