/* * Copyright (c) 2012 Andrew D'Addesio * Copyright (c) 2013-2014 Mozilla Corporation * Copyright (c) 2016 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Opus CELT decoder */ #include #include "libavutil/mem.h" #include "opus_celt.h" #include "opustab.h" #include "opus_pvq.h" /* Use the 2D z-transform to apply prediction in both the time domain (alpha) * and the frequency domain (beta) */ static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc) { int i, j; float prev[2] = { 0 }; float alpha = ff_celt_alpha_coef[f->size]; float beta = ff_celt_beta_coef[f->size]; const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0]; /* intra frame */ if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) { alpha = 0.0f; beta = 1.0f - (4915.0f/32768.0f); model = ff_celt_coarse_energy_dist[f->size][1]; } for (i = 0; i < CELT_MAX_BANDS; i++) { for (j = 0; j < f->channels; j++) { CeltBlock *block = &f->block[j]; float value; int available; if (i < f->start_band || i >= f->end_band) { block->energy[i] = 0.0; continue; } available = f->framebits - opus_rc_tell(rc); if (available >= 15) { /* decode using a Laplace distribution */ int k = FFMIN(i, 20) << 1; value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6); } else if (available >= 2) { int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small); value = (x>>1) ^ -(x&1); } else if (available >= 1) { value = -(float)ff_opus_rc_dec_log(rc, 1); } else value = -1; block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value; prev[j] += beta * value; } } } static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc) { int i; for (i = f->start_band; i < f->end_band; i++) { int j; if (!f->fine_bits[i]) continue; for (j = 0; j < f->channels; j++) { CeltBlock *block = &f->block[j]; int q2; float offset; q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]); offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f; block->energy[i] += offset; } } } static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc) { int priority, i, j; int bits_left = f->framebits - opus_rc_tell(rc); for (priority = 0; priority < 2; priority++) { for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) { if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS) continue; for (j = 0; j < f->channels; j++) { int q2; float offset; q2 = ff_opus_rc_get_raw(rc, 1); offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f; f->block[j].energy[i] += offset; bits_left--; } } } } static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc) { int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit; int consumed, bits = f->transient ? 2 : 4; consumed = opus_rc_tell(rc); tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits); for (i = f->start_band; i < f->end_band; i++) { if (consumed+bits+tf_select_bit <= f->framebits) { diff ^= ff_opus_rc_dec_log(rc, bits); consumed = opus_rc_tell(rc); tf_changed |= diff; } f->tf_change[i] = diff; bits = f->transient ? 4 : 5; } if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] != ff_celt_tf_select[f->size][f->transient][1][tf_changed]) tf_select = ff_opus_rc_dec_log(rc, 1); for (i = f->start_band; i < f->end_band; i++) { f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]]; } } static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data) { int i, j; for (i = f->start_band; i < f->end_band; i++) { float *dst = data + (ff_celt_freq_bands[i] << f->size); float log_norm = block->energy[i] + ff_celt_mean_energy[i]; float norm = exp2f(FFMIN(log_norm, 32.0f)); for (j = 0; j < ff_celt_freq_range[i] << f->size; j++) dst[j] *= norm; } } static void celt_postfilter_apply_transition(CeltBlock *block, float *data) { const int T0 = block->pf_period_old; const int T1 = block->pf_period; float g00, g01, g02; float g10, g11, g12; float x0, x1, x2, x3, x4; int i; if (block->pf_gains[0] == 0.0 && block->pf_gains_old[0] == 0.0) return; g00 = block->pf_gains_old[0]; g01 = block->pf_gains_old[1]; g02 = block->pf_gains_old[2]; g10 = block->pf_gains[0]; g11 = block->pf_gains[1]; g12 = block->pf_gains[2]; x1 = data[-T1 + 1]; x2 = data[-T1]; x3 = data[-T1 - 1]; x4 = data[-T1 - 2]; for (i = 0; i < CELT_OVERLAP; i++) { float w = ff_celt_window2[i]; x0 = data[i - T1 + 2]; data[i] += (1.0 - w) * g00 * data[i - T0] + (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) + (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) + w * g10 * x2 + w * g11 * (x1 + x3) + w * g12 * (x0 + x4); x4 = x3; x3 = x2; x2 = x1; x1 = x0; } } static void celt_postfilter(CeltFrame *f, CeltBlock *block) { int len = f->blocksize * f->blocks; const int filter_len = len - 2 * CELT_OVERLAP; celt_postfilter_apply_transition(block, block->buf + 1024); block->pf_period_old = block->pf_period; memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); block->pf_period = block->pf_period_new; memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains)); if (len > CELT_OVERLAP) { celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP); if (block->pf_gains[0] > FLT_EPSILON && filter_len > 0) f->opusdsp.postfilter(block->buf + 1024 + 2 * CELT_OVERLAP, block->pf_period, block->pf_gains, filter_len); block->pf_period_old = block->pf_period; memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); } memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float)); } static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed) { int i; memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new)); memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new)); if (f->start_band == 0 && consumed + 16 <= f->framebits) { int has_postfilter = ff_opus_rc_dec_log(rc, 1); if (has_postfilter) { float gain; int tapset, octave, period; octave = ff_opus_rc_dec_uint(rc, 6); period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1; gain = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1); tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ? ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0; for (i = 0; i < 2; i++) { CeltBlock *block = &f->block[i]; block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD); block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0]; block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1]; block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2]; } } consumed = opus_rc_tell(rc); } return consumed; } static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X) { int i, j, k; for (i = f->start_band; i < f->end_band; i++) { int renormalize = 0; float *xptr; float prev[2]; float Ediff, r; float thresh, sqrt_1; int depth; /* depth in 1/8 bits */ depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size); thresh = exp2f(-1.0 - 0.125f * depth); sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size); xptr = X + (ff_celt_freq_bands[i] << f->size); prev[0] = block->prev_energy[0][i]; prev[1] = block->prev_energy[1][i]; if (f->channels == 1) { CeltBlock *block1 = &f->block[1]; prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]); prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]); } Ediff = block->energy[i] - FFMIN(prev[0], prev[1]); Ediff = FFMAX(0, Ediff); /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because short blocks don't have the same energy as long */ r = exp2f(1 - Ediff); if (f->size == 3) r *= M_SQRT2; r = FFMIN(thresh, r) * sqrt_1; for (k = 0; k < 1 << f->size; k++) { /* Detect collapse */ if (!(block->collapse_masks[i] & 1 << k)) { /* Fill with noise */ for (j = 0; j < ff_celt_freq_range[i]; j++) xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r; renormalize = 1; } } /* We just added some energy, so we need to renormalize */ if (renormalize) celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f); } } int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc, float **output, int channels, int frame_size, int start_band, int end_band) { int i, j, downmix = 0; int consumed; // bits of entropy consumed thus far for this frame AVTXContext *imdct; av_tx_fn imdct_fn; if (channels != 1 && channels != 2) { av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n", channels); return AVERROR_INVALIDDATA; } if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) { av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n", start_band, end_band); return AVERROR_INVALIDDATA; } f->silence = 0; f->transient = 0; f->anticollapse = 0; f->flushed = 0; f->channels = channels; f->start_band = start_band; f->end_band = end_band; f->framebits = rc->rb.bytes * 8; f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE); if (f->size > CELT_MAX_LOG_BLOCKS || frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) { av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n", frame_size); return AVERROR_INVALIDDATA; } if (!f->output_channels) f->output_channels = channels; for (i = 0; i < f->channels; i++) { memset(f->block[i].coeffs, 0, sizeof(f->block[i].coeffs)); memset(f->block[i].collapse_masks, 0, sizeof(f->block[i].collapse_masks)); } consumed = opus_rc_tell(rc); /* obtain silence flag */ if (consumed >= f->framebits) f->silence = 1; else if (consumed == 1) f->silence = ff_opus_rc_dec_log(rc, 15); if (f->silence) { consumed = f->framebits; rc->total_bits += f->framebits - opus_rc_tell(rc); } /* obtain post-filter options */ consumed = parse_postfilter(f, rc, consumed); /* obtain transient flag */ if (f->size != 0 && consumed+3 <= f->framebits) f->transient = ff_opus_rc_dec_log(rc, 3); f->blocks = f->transient ? 1 << f->size : 1; f->blocksize = frame_size / f->blocks; imdct = f->tx[f->transient ? 0 : f->size]; imdct_fn = f->tx_fn[f->transient ? 0 : f->size]; if (channels == 1) { for (i = 0; i < CELT_MAX_BANDS; i++) f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]); } celt_decode_coarse_energy(f, rc); celt_decode_tf_changes (f, rc); ff_celt_bitalloc (f, rc, 0); celt_decode_fine_energy (f, rc); ff_celt_quant_bands (f, rc); if (f->anticollapse_needed) f->anticollapse = ff_opus_rc_get_raw(rc, 1); celt_decode_final_energy(f, rc); /* apply anti-collapse processing and denormalization to * each coded channel */ for (i = 0; i < f->channels; i++) { CeltBlock *block = &f->block[i]; if (f->anticollapse) process_anticollapse(f, block, f->block[i].coeffs); celt_denormalize(f, block, f->block[i].coeffs); } /* stereo -> mono downmix */ if (f->output_channels < f->channels) { f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16)); downmix = 1; } else if (f->output_channels > f->channels) memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float)); if (f->silence) { for (i = 0; i < 2; i++) { CeltBlock *block = &f->block[i]; for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++) block->energy[j] = CELT_ENERGY_SILENCE; } memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs)); memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs)); } /* transform and output for each output channel */ for (i = 0; i < f->output_channels; i++) { CeltBlock *block = &f->block[i]; /* iMDCT and overlap-add */ for (j = 0; j < f->blocks; j++) { float *dst = block->buf + 1024 + j * f->blocksize; imdct_fn(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j, sizeof(float)*f->blocks); f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2, ff_celt_window, CELT_OVERLAP / 2); } if (downmix) f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size); /* postfilter */ celt_postfilter(f, block); /* deemphasis */ block->emph_coeff = f->opusdsp.deemphasis(output[i], &block->buf[1024 - frame_size], block->emph_coeff, frame_size); } if (channels == 1) memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy)); for (i = 0; i < 2; i++ ) { CeltBlock *block = &f->block[i]; if (!f->transient) { memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0])); memcpy(block->prev_energy[0], block->energy, sizeof(block->prev_energy[0])); } else { for (j = 0; j < CELT_MAX_BANDS; j++) block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]); } for (j = 0; j < f->start_band; j++) { block->prev_energy[0][j] = CELT_ENERGY_SILENCE; block->energy[j] = 0.0; } for (j = f->end_band; j < CELT_MAX_BANDS; j++) { block->prev_energy[0][j] = CELT_ENERGY_SILENCE; block->energy[j] = 0.0; } } f->seed = rc->range; return 0; } void ff_celt_flush(CeltFrame *f) { int i, j; if (f->flushed) return; for (i = 0; i < 2; i++) { CeltBlock *block = &f->block[i]; for (j = 0; j < CELT_MAX_BANDS; j++) block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE; memset(block->energy, 0, sizeof(block->energy)); memset(block->buf, 0, sizeof(block->buf)); memset(block->pf_gains, 0, sizeof(block->pf_gains)); memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old)); memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new)); /* libopus uses CELT_EMPH_COEFF on init, but 0 is better since there's * a lesser discontinuity when seeking. * The deemphasis functions differ from libopus in that they require * an initial state divided by the coefficient. */ block->emph_coeff = 0.0f / CELT_EMPH_COEFF; } f->seed = 0; f->flushed = 1; } void ff_celt_free(CeltFrame **f) { CeltFrame *frm = *f; int i; if (!frm) return; for (i = 0; i < FF_ARRAY_ELEMS(frm->tx); i++) av_tx_uninit(&frm->tx[i]); ff_celt_pvq_uninit(&frm->pvq); av_freep(&frm->dsp); av_freep(f); } int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels, int apply_phase_inv) { CeltFrame *frm; int i, ret; if (output_channels != 1 && output_channels != 2) { av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n", output_channels); return AVERROR(EINVAL); } frm = av_mallocz(sizeof(*frm)); if (!frm) return AVERROR(ENOMEM); frm->avctx = avctx; frm->output_channels = output_channels; frm->apply_phase_inv = apply_phase_inv; for (i = 0; i < FF_ARRAY_ELEMS(frm->tx); i++) { const float scale = -1.0f/32768; if ((ret = av_tx_init(&frm->tx[i], &frm->tx_fn[i], AV_TX_FLOAT_MDCT, 1, 15 << (i + 3), &scale, 0)) < 0) goto fail; } if ((ret = ff_celt_pvq_init(&frm->pvq, 0)) < 0) goto fail; frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!frm->dsp) { ret = AVERROR(ENOMEM); goto fail; } ff_opus_dsp_init(&frm->opusdsp); ff_celt_flush(frm); *f = frm; return 0; fail: ff_celt_free(&frm); return ret; }