/* * Copyright (C) 2004 the ffmpeg project * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * @file vp3dsp_mmx.c * MMX-optimized functions cribbed from the original VP3 source code. */ #include "../dsputil.h" #include "mmx.h" #define IdctAdjustBeforeShift 8 /* (12 * 4) 2-byte memory locations ( = 96 bytes total) * idct_constants[0..15] = Mask table (M(I)) * idct_constants[16..43] = Cosine table (C(I)) * idct_constants[44..47] = 8 */ static uint16_t idct_constants[(4 + 7 + 1) * 4]; static uint16_t idct_cosine_table[7] = { 64277, 60547, 54491, 46341, 36410, 25080, 12785 }; #define r0 mm0 #define r1 mm1 #define r2 mm2 #define r3 mm3 #define r4 mm4 #define r5 mm5 #define r6 mm6 #define r7 mm7 /* from original comments: The Macro does IDct on 4 1-D Dcts */ #define BeginIDCT() \ movq_m2r(*I(3), r2); \ movq_m2r(*C(3), r6); \ movq_r2r(r2, r4); \ movq_m2r(*J(5), r7); \ pmulhw_r2r(r6, r4); \ movq_m2r(*C(5), r1); \ pmulhw_r2r(r7, r6); \ movq_r2r(r1, r5); \ pmulhw_r2r(r2, r1); \ movq_m2r(*I(1), r3); \ pmulhw_r2r(r7, r5); \ movq_m2r(*C(1), r0); \ paddw_r2r(r2, r4); \ paddw_r2r(r7, r6); \ paddw_r2r(r1, r2); \ movq_m2r(*J(7), r1); \ paddw_r2r(r5, r7); \ movq_r2r(r0, r5); \ pmulhw_r2r(r3, r0); \ paddsw_r2r(r7, r4); \ pmulhw_r2r(r1, r5); \ movq_m2r(*C(7), r7); \ psubsw_r2r(r2, r6); \ paddw_r2r(r3, r0); \ pmulhw_r2r(r7, r3); \ movq_m2r(*I(2), r2); \ pmulhw_r2r(r1, r7); \ paddw_r2r(r1, r5); \ movq_r2r(r2, r1); \ pmulhw_m2r(*C(2), r2); \ psubsw_r2r(r5, r3); \ movq_m2r(*J(6), r5); \ paddsw_r2r(r7, r0); \ movq_r2r(r5, r7); \ psubsw_r2r(r4, r0); \ pmulhw_m2r(*C(2), r5); \ paddw_r2r(r1, r2); \ pmulhw_m2r(*C(6), r1); \ paddsw_r2r(r4, r4); \ paddsw_r2r(r0, r4); \ psubsw_r2r(r6, r3); \ paddw_r2r(r7, r5); \ paddsw_r2r(r6, r6); \ pmulhw_m2r(*C(6), r7); \ paddsw_r2r(r3, r6); \ movq_r2m(r4, *I(1)); \ psubsw_r2r(r5, r1); \ movq_m2r(*C(4), r4); \ movq_r2r(r3, r5); \ pmulhw_r2r(r4, r3); \ paddsw_r2r(r2, r7); \ movq_r2m(r6, *I(2)); \ movq_r2r(r0, r2); \ movq_m2r(*I(0), r6); \ pmulhw_r2r(r4, r0); \ paddw_r2r(r3, r5); \ movq_m2r(*J(4), r3); \ psubsw_r2r(r1, r5); \ paddw_r2r(r0, r2); \ psubsw_r2r(r3, r6); \ movq_r2r(r6, r0); \ pmulhw_r2r(r4, r6); \ paddsw_r2r(r3, r3); \ paddsw_r2r(r1, r1); \ paddsw_r2r(r0, r3); \ paddsw_r2r(r5, r1); \ pmulhw_r2r(r3, r4); \ paddsw_r2r(r0, r6); \ psubsw_r2r(r2, r6); \ paddsw_r2r(r2, r2); \ movq_m2r(*I(1), r0); \ paddsw_r2r(r6, r2); \ paddw_r2r(r3, r4); \ psubsw_r2r(r1, r2); /* RowIDCT gets ready to transpose */ #define RowIDCT() \ \ BeginIDCT() \ \ movq_m2r(*I(2), r3); \ psubsw_r2r(r7, r4); \ paddsw_r2r(r1, r1); \ paddsw_r2r(r7, r7); \ paddsw_r2r(r2, r1); \ paddsw_r2r(r4, r7); \ psubsw_r2r(r3, r4); \ psubsw_r2r(r5, r6); \ paddsw_r2r(r5, r5); \ paddsw_r2r(r4, r3); \ paddsw_r2r(r6, r5); \ psubsw_r2r(r0, r7); \ paddsw_r2r(r0, r0); \ movq_r2m(r1, *I(1)); \ paddsw_r2r(r7, r0); /* Column IDCT normalizes and stores final results */ #define ColumnIDCT() \ \ BeginIDCT() \ \ paddsw_m2r(*Eight, r2); \ paddsw_r2r(r1, r1); \ paddsw_r2r(r2, r1); \ psraw_i2r(4, r2); \ psubsw_r2r(r7, r4); \ psraw_i2r(4, r1); \ movq_m2r(*I(2), r3); \ paddsw_r2r(r7, r7); \ movq_r2m(r2, *I(2)); \ paddsw_r2r(r4, r7); \ movq_r2m(r1, *I(1)); \ psubsw_r2r(r3, r4); \ paddsw_m2r(*Eight, r4); \ paddsw_r2r(r3, r3); \ paddsw_r2r(r4, r3); \ psraw_i2r(4, r4); \ psubsw_r2r(r5, r6); \ psraw_i2r(4, r3); \ paddsw_m2r(*Eight, r6); \ paddsw_r2r(r5, r5); \ paddsw_r2r(r6, r5); \ psraw_i2r(4, r6); \ movq_r2m(r4, *J(4)); \ psraw_i2r(4, r5); \ movq_r2m(r3, *I(3)); \ psubsw_r2r(r0, r7); \ paddsw_m2r(*Eight, r7); \ paddsw_r2r(r0, r0); \ paddsw_r2r(r7, r0); \ psraw_i2r(4, r7); \ movq_r2m(r6, *J(6)); \ psraw_i2r(4, r0); \ movq_r2m(r5, *J(5)); \ movq_r2m(r7, *J(7)); \ movq_r2m(r0, *I(0)); /* Following macro does two 4x4 transposes in place. At entry (we assume): r0 = a3 a2 a1 a0 I(1) = b3 b2 b1 b0 r2 = c3 c2 c1 c0 r3 = d3 d2 d1 d0 r4 = e3 e2 e1 e0 r5 = f3 f2 f1 f0 r6 = g3 g2 g1 g0 r7 = h3 h2 h1 h0 At exit, we have: I(0) = d0 c0 b0 a0 I(1) = d1 c1 b1 a1 I(2) = d2 c2 b2 a2 I(3) = d3 c3 b3 a3 J(4) = h0 g0 f0 e0 J(5) = h1 g1 f1 e1 J(6) = h2 g2 f2 e2 J(7) = h3 g3 f3 e3 I(0) I(1) I(2) I(3) is the transpose of r0 I(1) r2 r3. J(4) J(5) J(6) J(7) is the transpose of r4 r5 r6 r7. Since r1 is free at entry, we calculate the Js first. */ #define Transpose() \ movq_r2r(r4, r1); \ punpcklwd_r2r(r5, r4); \ movq_r2m(r0, *I(0)); \ punpckhwd_r2r(r5, r1); \ movq_r2r(r6, r0); \ punpcklwd_r2r(r7, r6); \ movq_r2r(r4, r5); \ punpckldq_r2r(r6, r4); \ punpckhdq_r2r(r6, r5); \ movq_r2r(r1, r6); \ movq_r2m(r4, *J(4)); \ punpckhwd_r2r(r7, r0); \ movq_r2m(r5, *J(5)); \ punpckhdq_r2r(r0, r6); \ movq_m2r(*I(0), r4); \ punpckldq_r2r(r0, r1); \ movq_m2r(*I(1), r5); \ movq_r2r(r4, r0); \ movq_r2m(r6, *J(7)); \ punpcklwd_r2r(r5, r0); \ movq_r2m(r1, *J(6)); \ punpckhwd_r2r(r5, r4); \ movq_r2r(r2, r5); \ punpcklwd_r2r(r3, r2); \ movq_r2r(r0, r1); \ punpckldq_r2r(r2, r0); \ punpckhdq_r2r(r2, r1); \ movq_r2r(r4, r2); \ movq_r2m(r0, *I(0)); \ punpckhwd_r2r(r3, r5); \ movq_r2m(r1, *I(1)); \ punpckhdq_r2r(r5, r4); \ punpckldq_r2r(r5, r2); \ movq_r2m(r4, *I(3)); \ movq_r2m(r2, *I(2)); void vp3_dsp_init_mmx(void) { int j = 16; uint16_t *p; do { idct_constants[--j] = 0; } while (j); idct_constants[0] = idct_constants[5] = idct_constants[10] = idct_constants[15] = 65535; j = 1; do { p = idct_constants + ((j + 3) << 2); p[0] = p[1] = p[2] = p[3] = idct_cosine_table[j - 1]; } while (++j <= 7); idct_constants[44] = idct_constants[45] = idct_constants[46] = idct_constants[47] = IdctAdjustBeforeShift; } static void vp3_idct_mmx(int16_t *input_data, int16_t *dequant_matrix, int16_t *output_data) { /* eax = quantized input * ebx = dequantizer matrix * ecx = IDCT constants * M(I) = ecx + MaskOffset(0) + I * 8 * C(I) = ecx + CosineOffset(32) + (I-1) * 8 * edx = output * r0..r7 = mm0..mm7 */ #define M(x) (idct_constants + x * 4) #define C(x) (idct_constants + 16 + (x - 1) * 4) #define Eight (idct_constants + 44) movq_m2r(*input_data, r0); pmullw_m2r(*dequant_matrix, r0); movq_m2r(*(input_data + 8), r1); pmullw_m2r(*(dequant_matrix + 8), r1); movq_m2r(*M(0), r2); movq_r2r(r0, r3); movq_m2r(*(input_data + 4), r4); psrlq_i2r(16, r0); pmullw_m2r(*(dequant_matrix + 4), r4); pand_r2r(r2, r3); movq_r2r(r0, r5); movq_r2r(r1, r6); pand_r2r(r2, r5); psllq_i2r(32, r6); movq_m2r(*M(3), r7); pxor_r2r(r5, r0); pand_r2r(r6, r7); por_r2r(r3, r0); pxor_r2r(r7, r6); por_r2r(r7, r0); movq_m2r(*M(3), r7); movq_r2r(r4, r3); movq_r2m(r0, *output_data); pand_r2r(r2, r3); movq_m2r(*(input_data + 16), r0); psllq_i2r(16, r3); pmullw_m2r(*(dequant_matrix + 16), r0); pand_r2r(r1, r7); por_r2r(r3, r5); por_r2r(r6, r7); movq_m2r(*(input_data + 12), r3); por_r2r(r5, r7); pmullw_m2r(*(dequant_matrix + 12), r3); psrlq_i2r(16, r4); movq_r2m(r7, *(output_data + 8)); movq_r2r(r4, r5); movq_r2r(r0, r7); psrlq_i2r(16, r4); psrlq_i2r(48, r7); movq_r2r(r2, r6); pand_r2r(r2, r5); pand_r2r(r4, r6); movq_r2m(r7, *(output_data + 40)); pxor_r2r(r6, r4); psrlq_i2r(32, r1); por_r2r(r5, r4); movq_m2r(*M(3), r7); pand_r2r(r2, r1); movq_m2r(*(input_data + 24), r5); psllq_i2r(16, r0); pmullw_m2r(*(dequant_matrix + 24), r5); pand_r2r(r0, r7); movq_r2m(r1, *(output_data + 32)); por_r2r(r4, r7); movq_r2r(r3, r4); pand_r2r(r2, r3); movq_m2r(*M(2), r1); psllq_i2r(32, r3); por_r2r(r3, r7); movq_r2r(r5, r3); psllq_i2r(48, r3); pand_r2r(r0, r1); movq_r2m(r7, *(output_data + 16)); por_r2r(r3, r6); movq_m2r(*M(1), r7); por_r2r(r1, r6); movq_m2r(*(input_data + 28), r1); pand_r2r(r4, r7); pmullw_m2r(*(dequant_matrix + 28), r1); por_r2r(r6, r7); pand_m2r(*M(1), r0); psrlq_i2r(32, r4); movq_r2m(r7, *(output_data + 24)); movq_r2r(r4, r6); movq_m2r(*M(3), r7); pand_r2r(r2, r4); movq_m2r(*M(1), r3); pand_r2r(r1, r7); pand_r2r(r5, r3); por_r2r(r4, r0); psllq_i2r(16, r3); por_r2r(r0, r7); movq_m2r(*M(2), r4); por_r2r(r3, r7); movq_m2r(*(input_data + 40), r0); movq_r2r(r4, r3); pmullw_m2r(*(dequant_matrix + 40), r0); pand_r2r(r5, r4); movq_r2m(r7, *(output_data + 4)); por_r2r(r4, r6); movq_r2r(r3, r4); psrlq_i2r(16, r6); movq_r2r(r0, r7); pand_r2r(r1, r4); psllq_i2r(48, r7); por_r2r(r4, r6); movq_m2r(*(input_data + 44), r4); por_r2r(r6, r7); pmullw_m2r(*(dequant_matrix + 44), r4); psrlq_i2r(16, r3); movq_r2m(r7, *(output_data + 12)); pand_r2r(r1, r3); psrlq_i2r(48, r5); pand_r2r(r2, r1); movq_m2r(*(input_data + 52), r6); por_r2r(r3, r5); pmullw_m2r(*(input_data + 52), r6); psrlq_i2r(16, r0); movq_r2r(r4, r7); movq_r2r(r2, r3); psllq_i2r(48, r7); pand_r2r(r0, r3); pxor_r2r(r3, r0); psllq_i2r(32, r3); por_r2r(r5, r7); movq_r2r(r6, r5); pand_m2r(*M(1), r6); por_r2r(r3, r7); psllq_i2r(32, r6); por_r2r(r1, r0); movq_r2m(r7, *(output_data + 20)); por_r2r(r6, r0); movq_m2r(*(input_data + 60), r7); movq_r2r(r5, r6); pmullw_m2r(*(input_data + 60), r7); psrlq_i2r(32, r5); pand_r2r(r2, r6); movq_r2r(r5, r1); movq_r2m(r0, *(output_data + 28)); pand_r2r(r2, r1); movq_m2r(*(input_data + 56), r0); movq_r2r(r7, r3); pmullw_m2r(*(dequant_matrix + 56), r0); psllq_i2r(16, r3); pand_m2r(*M(3), r7); pxor_r2r(r1, r5); por_r2r(r5, r6); movq_r2r(r3, r5); pand_m2r(*M(3), r5); por_r2r(r1, r7); movq_m2r(*(input_data + 48), r1); pxor_r2r(r5, r3); pmullw_m2r(*(dequant_matrix + 48), r1); por_r2r(r3, r7); por_r2r(r5, r6); movq_r2r(r0, r5); movq_r2m(r7, *(output_data + 60)); psrlq_i2r(16, r5); pand_m2r(*M(2), r5); movq_r2r(r0, r7); por_r2r(r5, r6); pand_r2r(r2, r0); pxor_r2r(r0, r7); psllq_i2r(32, r0); movq_r2m(r6, *(output_data + 52)); psrlq_i2r(16, r4); movq_m2r(*(input_data + 36), r5); psllq_i2r(16, r7); pmullw_m2r(*(dequant_matrix + 36), r5); movq_r2r(r7, r6); movq_m2r(*M(2), r3); psllq_i2r(16, r6); pand_m2r(*M(3), r7); pand_r2r(r1, r3); por_r2r(r0, r7); movq_r2r(r1, r0); pand_m2r(*M(3), r1); por_r2r(r3, r6); movq_r2r(r4, r3); psrlq_i2r(32, r1); pand_r2r(r2, r3); por_r2r(r1, r7); por_r2r(r3, r7); movq_r2r(r4, r3); pand_m2r(*M(1), r3); movq_r2r(r5, r1); movq_r2m(r7, *(output_data + 44)); psrlq_i2r(48, r5); movq_m2r(*(input_data + 32), r7); por_r2r(r3, r6); pmullw_m2r(*(dequant_matrix + 32), r7); por_r2r(r5, r6); pand_m2r(*M(2), r4); psllq_i2r(32, r0); movq_r2m(r6, *(output_data + 36)); movq_r2r(r0, r6); pand_m2r(*M(3), r0); psllq_i2r(16, r6); movq_m2r(*(input_data + 20), r5); movq_r2r(r1, r3); pmullw_m2r(*(dequant_matrix + 40), r5); psrlq_i2r(16, r1); pand_m2r(*M(1), r1); por_r2r(r4, r0); pand_r2r(r7, r2); por_r2r(r1, r0); por_r2r(r2, r0); psllq_i2r(16, r3); movq_r2r(r3, r4); movq_r2r(r5, r2); movq_r2m(r0, *(output_data + 56)); psrlq_i2r(48, r2); pand_m2r(*M(2), r4); por_r2r(r2, r6); movq_m2r(*M(1), r2); por_r2r(r4, r6); pand_r2r(r7, r2); psllq_i2r(32, r3); por_m2r(*(output_data + 40), r3); por_r2r(r2, r6); movq_m2r(*M(3), r2); psllq_i2r(16, r5); movq_r2m(r6, *(output_data + 48)); pand_r2r(r5, r2); movq_m2r(*M(2), r6); pxor_r2r(r2, r5); pand_r2r(r7, r6); psrlq_i2r(32, r2); pand_m2r(*M(3), r7); por_r2r(r2, r3); por_m2r(*(output_data + 32), r7); por_r2r(r3, r6); por_r2r(r5, r7); movq_r2m(r6, *(output_data + 40)); movq_r2m(r7, *(output_data + 32)); #undef M /* at this point, function has completed dequantization + dezigzag + * partial transposition; now do the idct itself */ #define I(K) (output_data + K * 8) #define J(K) (output_data + ((K - 4) * 8) + 4) RowIDCT(); Transpose(); #undef I #undef J #define I(K) (output_data + (K * 8) + 32) #define J(K) (output_data + ((K - 4) * 8) + 36) RowIDCT(); Transpose(); #undef I #undef J #define I(K) (output_data + K * 8) #define J(K) (output_data + K * 8) ColumnIDCT(); #undef I #undef J #define I(K) (output_data + (K * 8) + 4) #define J(K) (output_data + (K * 8) + 4) ColumnIDCT(); #undef I #undef J } void vp3_idct_put_mmx(int16_t *input_data, int16_t *dequant_matrix, int coeff_count, uint8_t *dest, int stride) { int16_t transformed_data[64]; int16_t *op; int i, j; uint8_t vector128[8] = { 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 }; vp3_idct_mmx(input_data, dequant_matrix, transformed_data); /* place in final output */ op = transformed_data; movq_m2r(*vector128, mm0); for (i = 0; i < 8; i++) { #if 1 for (j = 0; j < 8; j++) { if (*op < -128) *dest = 0; else if (*op > 127) *dest = 255; else *dest = (uint8_t)(*op + 128); op++; dest++; } dest += (stride - 8); #else /* prototype optimization */ pxor_r2r(mm1, mm1); packsswb_m2r(*(op + 4), mm1); movq_r2r(mm1, mm2); psrlq_i2r(32, mm2); packsswb_m2r(*(op + 0), mm1); op += 8; por_r2r(mm2, mm1); paddb_r2r(mm0, mm1); movq_r2m(mm1, *dest); dest += stride; #endif } /* be a good MMX citizen */ emms(); } void vp3_idct_add_mmx(int16_t *input_data, int16_t *dequant_matrix, int coeff_count, uint8_t *dest, int stride) { int16_t transformed_data[64]; int16_t *op; int i, j; int16_t sample; vp3_idct_mmx(input_data, dequant_matrix, transformed_data); /* place in final output */ op = transformed_data; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { sample = *dest + *op; if (sample < 0) *dest = 0; else if (sample > 255) *dest = 255; else *dest = (uint8_t)(sample & 0xFF); op++; dest++; } dest += (stride - 8); } /* be a good MMX citizen */ emms(); }