/* * FFV1 decoder * * Copyright (c) 2003 Michael Niedermayer * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * FF Video Codec 1 (a lossless codec) decoder */ #include "libavutil/avassert.h" #include "avcodec.h" #include "get_bits.h" #include "put_bits.h" #include "dsputil.h" #include "rangecoder.h" #include "golomb.h" #include "mathops.h" #include "ffv1.h" static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed) { if (get_rac(c, state + 0)) return 0; else { int i, e, a; e = 0; while (get_rac(c, state + 1 + FFMIN(e, 9))) // 1..10 e++; a = 1; for (i = e - 1; i >= 0; i--) a += a + get_rac(c, state + 22 + FFMIN(i, 9)); // 22..31 e = -(is_signed && get_rac(c, state + 11 + FFMIN(e, 10))); // 11..21 return (a ^ e) - e; } } static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed) { return get_symbol_inline(c, state, is_signed); } static inline int get_vlc_symbol(GetBitContext *gb, VlcState *const state, int bits) { int k, i, v, ret; i = state->count; k = 0; while (i < state->error_sum) { // FIXME: optimize k++; i += i; } assert(k <= 8); v = get_sr_golomb(gb, k, 12, bits); av_dlog(NULL, "v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k); #if 0 // JPEG LS if (k == 0 && 2 * state->drift <= -state->count) v ^= (-1); #else v ^= ((2 * state->drift + state->count) >> 31); #endif ret = fold(v + state->bias, bits); update_vlc_state(state, v); return ret; } static av_always_inline void decode_line(FFV1Context *s, int w, int16_t *sample[2], int plane_index, int bits) { PlaneContext *const p = &s->plane[plane_index]; RangeCoder *const c = &s->c; int x; int run_count = 0; int run_mode = 0; int run_index = s->run_index; for (x = 0; x < w; x++) { int diff, context, sign; context = get_context(p, sample[1] + x, sample[0] + x, sample[1] + x); if (context < 0) { context = -context; sign = 1; } else sign = 0; av_assert2(context < p->context_count); if (s->ac) { diff = get_symbol_inline(c, p->state[context], 1); } else { if (context == 0 && run_mode == 0) run_mode = 1; if (run_mode) { if (run_count == 0 && run_mode == 1) { if (get_bits1(&s->gb)) { run_count = 1 << ff_log2_run[run_index]; if (x + run_count <= w) run_index++; } else { if (ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]); else run_count = 0; if (run_index) run_index--; run_mode = 2; } } run_count--; if (run_count < 0) { run_mode = 0; run_count = 0; diff = get_vlc_symbol(&s->gb, &p->vlc_state[context], bits); if (diff >= 0) diff++; } else diff = 0; } else diff = get_vlc_symbol(&s->gb, &p->vlc_state[context], bits); av_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n", run_count, run_index, run_mode, x, get_bits_count(&s->gb)); } if (sign) diff = -diff; sample[1][x] = (predict(sample[1] + x, sample[0] + x) + diff) & ((1 << bits) - 1); } s->run_index = run_index; } static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index) { int x, y; int16_t *sample[2]; sample[0] = s->sample_buffer + 3; sample[1] = s->sample_buffer + w + 6 + 3; s->run_index = 0; memset(s->sample_buffer, 0, 2 * (w + 6) * sizeof(*s->sample_buffer)); for (y = 0; y < h; y++) { int16_t *temp = sample[0]; // FIXME: try a normal buffer sample[0] = sample[1]; sample[1] = temp; sample[1][-1] = sample[0][0]; sample[0][w] = sample[0][w - 1]; // { START_TIMER if (s->avctx->bits_per_raw_sample <= 8) { decode_line(s, w, sample, plane_index, 8); for (x = 0; x < w; x++) src[x + stride * y] = sample[1][x]; } else { decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample); for (x = 0; x < w; x++) ((uint16_t *)(src + stride * y))[x] = sample[1][x] << (16 - s->avctx->bits_per_raw_sample); } // STOP_TIMER("decode-line") } } } static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride) { int x, y, p; int16_t *sample[3][2]; for (x = 0; x < 3; x++) { sample[x][0] = s->sample_buffer + x * 2 * (w + 6) + 3; sample[x][1] = s->sample_buffer + (x * 2 + 1) * (w + 6) + 3; } s->run_index = 0; memset(s->sample_buffer, 0, 6 * (w + 6) * sizeof(*s->sample_buffer)); for (y = 0; y < h; y++) { for (p = 0; p < 3; p++) { int16_t *temp = sample[p][0]; // FIXME: try a normal buffer sample[p][0] = sample[p][1]; sample[p][1] = temp; sample[p][1][-1] = sample[p][0][0]; sample[p][0][w] = sample[p][0][w - 1]; decode_line(s, w, sample[p], FFMIN(p, 1), 9); } for (x = 0; x < w; x++) { int g = sample[0][1][x]; int b = sample[1][1][x]; int r = sample[2][1][x]; // assert(g >= 0 && b >= 0 && r >= 0); // assert(g < 256 && b < 512 && r < 512); b -= 0x100; r -= 0x100; g -= (b + r) >> 2; b += g; r += g; src[x + stride * y] = b + (g << 8) + (r << 16) + (0xFF << 24); } } } static int decode_slice(AVCodecContext *c, void *arg) { FFV1Context *fs = *(void **)arg; FFV1Context *f = fs->avctx->priv_data; int width = fs->slice_width; int height = fs->slice_height; int x = fs->slice_x; int y = fs->slice_y; AVFrame *const p = &f->picture; av_assert1(width && height); if (f->colorspace == 0) { const int chroma_width = -((-width) >> f->chroma_h_shift); const int chroma_height = -((-height) >> f->chroma_v_shift); const int cx = x >> f->chroma_h_shift; const int cy = y >> f->chroma_v_shift; decode_plane(fs, p->data[0] + x + y * p->linesize[0], width, height, p->linesize[0], 0); decode_plane(fs, p->data[1] + cx + cy * p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1); decode_plane(fs, p->data[2] + cx + cy * p->linesize[1], chroma_width, chroma_height, p->linesize[2], 1); } else { decode_rgb_frame(fs, (uint32_t *)p->data[0] + x + y * (p->linesize[0] / 4), width, height, p->linesize[0] / 4); } emms_c(); return 0; } static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale) { int v; int i = 0; uint8_t state[CONTEXT_SIZE]; memset(state, 128, sizeof(state)); for (v = 0; i < 128; v++) { int len = get_symbol(c, state, 0) + 1; if (len + i > 128) return AVERROR_INVALIDDATA; while (len--) { quant_table[i] = scale * v; i++; } } for (i = 1; i < 128; i++) quant_table[256 - i] = -quant_table[i]; quant_table[128] = -quant_table[127]; return 2 * v - 1; } static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]) { int i; int context_count = 1; for (i = 0; i < 5; i++) { context_count *= read_quant_table(c, quant_table[i], context_count); if (context_count > 32768U) { return AVERROR_INVALIDDATA; } } return (context_count + 1) / 2; } static int read_extra_header(FFV1Context *f) { RangeCoder *const c = &f->c; uint8_t state[CONTEXT_SIZE]; int i, j, k; uint8_t state2[32][CONTEXT_SIZE]; memset(state2, 128, sizeof(state2)); memset(state, 128, sizeof(state)); ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size); ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8); f->version = get_symbol(c, state, 0); f->ac = f->avctx->coder_type = get_symbol(c, state, 0); if (f->ac > 1) for (i = 1; i < 256; i++) f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i]; f->colorspace = get_symbol(c, state, 0); // YUV cs type f->avctx->bits_per_raw_sample = get_symbol(c, state, 0); get_rac(c, state); // no chroma = false f->chroma_h_shift = get_symbol(c, state, 0); f->chroma_v_shift = get_symbol(c, state, 0); get_rac(c, state); // transparency plane f->plane_count = 2; f->num_h_slices = 1 + get_symbol(c, state, 0); f->num_v_slices = 1 + get_symbol(c, state, 0); if (f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height) { av_log(f->avctx, AV_LOG_ERROR, "too many slices\n"); return AVERROR_INVALIDDATA; } f->quant_table_count = get_symbol(c, state, 0); if (f->quant_table_count > (unsigned)MAX_QUANT_TABLES) return AVERROR_INVALIDDATA; for (i = 0; i < f->quant_table_count; i++) { f->context_count[i] = read_quant_tables(c, f->quant_tables[i]); if (f->context_count[i] < 0) { av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n"); return f->context_count[i]; } } if (ffv1_allocate_initial_states(f) < 0) return AVERROR(ENOMEM); for (i = 0; i < f->quant_table_count; i++) if (get_rac(c, state)) for (j = 0; j < f->context_count[i]; j++) for (k = 0; k < CONTEXT_SIZE; k++) { int pred = j ? f->initial_states[i][j - 1][k] : 128; f->initial_states[i][j][k] = (pred + get_symbol(c, state2[k], 1)) & 0xFF; } return 0; } static int read_header(FFV1Context *f) { uint8_t state[CONTEXT_SIZE]; int i, j, context_count; RangeCoder *const c = &f->slice_context[0]->c; memset(state, 128, sizeof(state)); if (f->version < 2) { f->version = get_symbol(c, state, 0); f->ac = f->avctx->coder_type = get_symbol(c, state, 0); if (f->ac > 1) for (i = 1; i < 256; i++) f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i]; f->colorspace = get_symbol(c, state, 0); // YUV cs type if (f->version > 0) f->avctx->bits_per_raw_sample = get_symbol(c, state, 0); get_rac(c, state); // no chroma = false f->chroma_h_shift = get_symbol(c, state, 0); f->chroma_v_shift = get_symbol(c, state, 0); get_rac(c, state); // transparency plane f->plane_count = 2; } if (f->colorspace == 0) { if (f->avctx->bits_per_raw_sample <= 8) { switch (16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P; break; case 0x20: f->avctx->pix_fmt = AV_PIX_FMT_YUV411P; break; case 0x22: f->avctx->pix_fmt = AV_PIX_FMT_YUV410P; break; default: av_log(f->avctx, AV_LOG_ERROR, "format not supported\n"); return AVERROR(ENOSYS); } } else { switch (16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P16; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P16; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P16; break; default: av_log(f->avctx, AV_LOG_ERROR, "format not supported\n"); return AVERROR(ENOSYS); } } } else if (f->colorspace == 1) { if (f->chroma_h_shift || f->chroma_v_shift) { av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n"); return AVERROR(ENOSYS); } f->avctx->pix_fmt = AV_PIX_FMT_RGB32; } else { av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n"); return AVERROR(ENOSYS); } av_dlog(f->avctx, "%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift, f->avctx->pix_fmt); if (f->version < 2) { context_count = read_quant_tables(c, f->quant_table); if (context_count < 0) { av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n"); return context_count; } } else { f->slice_count = get_symbol(c, state, 0); if (f->slice_count > (unsigned)MAX_SLICES) return AVERROR_INVALIDDATA; } for (j = 0; j < f->slice_count; j++) { FFV1Context *fs = f->slice_context[j]; fs->ac = f->ac; if (f->version >= 2) { fs->slice_x = get_symbol(c, state, 0) * f->width; fs->slice_y = get_symbol(c, state, 0) * f->height; fs->slice_width = (get_symbol(c, state, 0) + 1) * f->width + fs->slice_x; fs->slice_height = (get_symbol(c, state, 0) + 1) * f->height + fs->slice_y; fs->slice_x /= f->num_h_slices; fs->slice_y /= f->num_v_slices; fs->slice_width = fs->slice_width / f->num_h_slices - fs->slice_x; fs->slice_height = fs->slice_height / f->num_v_slices - fs->slice_y; if ((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height) return AVERROR_INVALIDDATA; if ((unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height) return AVERROR_INVALIDDATA; } for (i = 0; i < f->plane_count; i++) { PlaneContext *const p = &fs->plane[i]; if (f->version >= 2) { int idx = get_symbol(c, state, 0); if (idx > (unsigned)f->quant_table_count) { av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n"); return AVERROR_INVALIDDATA; } p->quant_table_index = idx; memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table)); context_count = f->context_count[idx]; } else { memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table)); } if (p->context_count < context_count) { av_freep(&p->state); av_freep(&p->vlc_state); } p->context_count = context_count; } } return 0; } static av_cold int ffv1_decode_init(AVCodecContext *avctx) { FFV1Context *f = avctx->priv_data; int ret; ffv1_common_init(avctx); if (avctx->extradata && (ret = read_extra_header(f)) < 0) return ret; if ((ret = ffv1_init_slice_contexts(f)) < 0) return ret; return 0; } static int ffv1_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; FFV1Context *f = avctx->priv_data; RangeCoder *const c = &f->slice_context[0]->c; AVFrame *const p = &f->picture; int bytes_read, i, ret; uint8_t keystate = 128; const uint8_t *buf_p; AVFrame *picture = data; /* release previously stored data */ if (p->data[0]) avctx->release_buffer(avctx, p); ff_init_range_decoder(c, buf, buf_size); ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8); p->pict_type = AV_PICTURE_TYPE_I; // FIXME: I vs. P if (get_rac(c, &keystate)) { p->key_frame = 1; if ((ret = read_header(f)) < 0) return ret; if ((ret = ffv1_init_slice_state(f)) < 0) return ret; ffv1_clear_state(f); } else { p->key_frame = 0; } if (f->ac > 1) { int i; for (i = 1; i < 256; i++) { c->one_state[i] = f->state_transition[i]; c->zero_state[256 - i] = 256 - c->one_state[i]; } } p->reference = 0; if ((ret = avctx->get_buffer(avctx, p)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; } if (avctx->debug & FF_DEBUG_PICT_INFO) av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac); if (!f->ac) { bytes_read = c->bytestream - c->bytestream_start - 1; if (bytes_read == 0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); // FIXME init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, (buf_size - bytes_read) * 8); } else { bytes_read = 0; /* avoid warning */ } buf_p = buf + buf_size; for (i = f->slice_count - 1; i > 0; i--) { FFV1Context *fs = f->slice_context[i]; int v = AV_RB24(buf_p - 3) + 3; if (buf_p - buf <= v) { av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n"); return AVERROR_INVALIDDATA; } buf_p -= v; if (fs->ac) ff_init_range_decoder(&fs->c, buf_p, v); else init_get_bits(&fs->gb, buf_p, v * 8); } avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void *)); f->picture_number++; *picture = *p; *data_size = sizeof(AVFrame); return buf_size; } AVCodec ff_ffv1_decoder = { .name = "ffv1", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_FFV1, .priv_data_size = sizeof(FFV1Context), .init = ffv1_decode_init, .close = ffv1_close, .decode = ffv1_decode_frame, .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ | CODEC_CAP_SLICE_THREADS, .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"), };