/* * HEVC video Decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * Copyright (C) 2013 Anand Meher Kotra * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "hevc.h" static const uint8_t l0_l1_cand_idx[12][2] = { { 0, 1, }, { 1, 0, }, { 0, 2, }, { 2, 0, }, { 1, 2, }, { 2, 1, }, { 0, 3, }, { 3, 0, }, { 1, 3, }, { 3, 1, }, { 2, 3, }, { 3, 2, }, }; void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0, int nPbW, int nPbH) { HEVCLocalContext *lc = s->HEVClc; int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1); int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1); lc->na.cand_up = (lc->ctb_up_flag || y0b); lc->na.cand_left = (lc->ctb_left_flag || x0b); lc->na.cand_up_left = (!x0b && !y0b) ? lc->ctb_up_left_flag : lc->na.cand_left && lc->na.cand_up; lc->na.cand_up_right_sap = ((x0b + nPbW) == (1 << s->sps->log2_ctb_size)) ? lc->ctb_up_right_flag && !y0b : lc->na.cand_up; lc->na.cand_up_right = ((x0b + nPbW) == (1 << s->sps->log2_ctb_size) ? lc->ctb_up_right_flag && !y0b : lc->na.cand_up ) && (x0 + nPbW) < lc->end_of_tiles_x; lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left; } /* * 6.4.1 Derivation process for z-scan order block availability */ static int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr, int xN, int yN) { #define MIN_TB_ADDR_ZS(x, y) \ s->pps->min_tb_addr_zs[(y) * s->sps->min_tb_width + (x)] int Curr = MIN_TB_ADDR_ZS(xCurr >> s->sps->log2_min_tb_size, yCurr >> s->sps->log2_min_tb_size); int N; if ((xN < 0) || (yN < 0) || (xN >= s->sps->width) || (yN >= s->sps->height)) return 0; N = MIN_TB_ADDR_ZS(xN >> s->sps->log2_min_tb_size, yN >> s->sps->log2_min_tb_size); return N <= Curr; } static int same_prediction_block(HEVCLocalContext *lc, int log2_cb_size, int x0, int y0, int nPbW, int nPbH, int xA1, int yA1, int partIdx) { return !(nPbW << 1 == 1 << log2_cb_size && nPbH << 1 == 1 << log2_cb_size && partIdx == 1 && lc->cu.x + nPbW > xA1 && lc->cu.y + nPbH <= yA1); } /* * 6.4.2 Derivation process for prediction block availability */ static int check_prediction_block_available(HEVCContext *s, int log2_cb_size, int x0, int y0, int nPbW, int nPbH, int xA1, int yA1, int partIdx) { HEVCLocalContext *lc = s->HEVClc; if (lc->cu.x < xA1 && lc->cu.y < yA1 && (lc->cu.x + (1 << log2_cb_size)) > xA1 && (lc->cu.y + (1 << log2_cb_size)) > yA1) return same_prediction_block(lc, log2_cb_size, x0, y0, nPbW, nPbH, xA1, yA1, partIdx); else return z_scan_block_avail(s, x0, y0, xA1, yA1); } //check if the two luma locations belong to the same mostion estimation region static int isDiffMER(HEVCContext *s, int xN, int yN, int xP, int yP) { uint8_t plevel = s->pps->log2_parallel_merge_level; return xN >> plevel == xP >> plevel && yN >> plevel == yP >> plevel; } #define MATCH(x) (A.x == B.x) // check if the mv's and refidx are the same between A and B static int compareMVrefidx(struct MvField A, struct MvField B) { if (A.pred_flag[0] && A.pred_flag[1] && B.pred_flag[0] && B.pred_flag[1]) return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y) && MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y); if (A.pred_flag[0] && !A.pred_flag[1] && B.pred_flag[0] && !B.pred_flag[1]) return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y); if (!A.pred_flag[0] && A.pred_flag[1] && !B.pred_flag[0] && B.pred_flag[1]) return MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y); return 0; } static av_always_inline void mv_scale(Mv *dst, Mv *src, int td, int tb) { int tx, scale_factor; td = av_clip_int8_c(td); tb = av_clip_int8_c(tb); tx = (0x4000 + abs(td / 2)) / td; scale_factor = av_clip_c((tb * tx + 32) >> 6, -4096, 4095); dst->x = av_clip_int16_c((scale_factor * src->x + 127 + (scale_factor * src->x < 0)) >> 8); dst->y = av_clip_int16_c((scale_factor * src->y + 127 + (scale_factor * src->y < 0)) >> 8); } static int check_mvset(Mv *mvLXCol, Mv *mvCol, int colPic, int poc, RefPicList *refPicList, int X, int refIdxLx, RefPicList *refPicList_col, int listCol, int refidxCol) { int cur_lt = refPicList[X].isLongTerm[refIdxLx]; int col_lt = refPicList_col[listCol].isLongTerm[refidxCol]; int col_poc_diff, cur_poc_diff; if (cur_lt != col_lt) { mvLXCol->x = 0; mvLXCol->y = 0; return 0; } col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol]; cur_poc_diff = poc - refPicList[X].list[refIdxLx]; if (!col_poc_diff) col_poc_diff = 1; // error resilience if (cur_lt || col_poc_diff == cur_poc_diff) { mvLXCol->x = mvCol->x; mvLXCol->y = mvCol->y; } else { mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff); } return 1; } #define CHECK_MVSET(l) \ check_mvset(mvLXCol, temp_col.mv + l, \ colPic, s->poc, \ refPicList, X, refIdxLx, \ refPicList_col, L##l, temp_col.ref_idx[l]) // derive the motion vectors section 8.5.3.1.8 static int derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col, int refIdxLx, Mv* mvLXCol, int X, int colPic, RefPicList* refPicList_col) { RefPicList *refPicList = s->ref->refPicList; if (temp_col.is_intra) { mvLXCol->x = 0; mvLXCol->y = 0; return 0; } if (temp_col.pred_flag[0] == 0) return CHECK_MVSET(1); else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 0) return CHECK_MVSET(0); else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 1) { int check_diffpicount = 0; int i = 0; for (i = 0; i < refPicList[0].nb_refs; i++) { if (refPicList[0].list[i] > s->poc) check_diffpicount++; } for (i = 0; i < refPicList[1].nb_refs; i++) { if (refPicList[1].list[i] > s->poc) check_diffpicount++; } if (check_diffpicount == 0 && X == 0) return CHECK_MVSET(0); else if (check_diffpicount == 0 && X == 1) return CHECK_MVSET(1); else { if (s->sh.collocated_list == L1) return CHECK_MVSET(0); else return CHECK_MVSET(1); } } return 0; } #define TAB_MVF(x, y) \ tab_mvf[(y) * min_pu_width + x] #define TAB_MVF_PU(v) \ TAB_MVF(x##v##_pu, y##v##_pu) #define DERIVE_TEMPORAL_COLOCATED_MVS(v) \ derive_temporal_colocated_mvs(s, temp_col, \ refIdxLx, mvLXCol, X, colPic, \ ff_hevc_get_ref_list(s, ref, \ x##v, y##v)) /* * 8.5.3.1.7 temporal luma motion vector prediction */ static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int refIdxLx, Mv* mvLXCol, int X) { MvField *tab_mvf; MvField temp_col; int xPRb, yPRb; int xPRb_pu; int yPRb_pu; int xPCtr, yPCtr; int xPCtr_pu; int yPCtr_pu; int min_pu_width = s->sps->width >> s->sps->log2_min_pu_size; int availableFlagLXCol = 0; int colPic; HEVCFrame *ref = s->ref->collocated_ref; if (!ref) return 0; tab_mvf = ref->tab_mvf; colPic = ref->poc; //bottom right collocated motion vector xPRb = x0 + nPbW; yPRb = y0 + nPbH; if (s->threads_type == FF_THREAD_FRAME ) ff_thread_await_progress(&ref->tf, INT_MAX, 0); if (tab_mvf && y0 >> s->sps->log2_ctb_size == yPRb >> s->sps->log2_ctb_size && yPRb < s->sps->height && xPRb < s->sps->width) { xPRb = ((xPRb >> 4) << 4); yPRb = ((yPRb >> 4) << 4); xPRb_pu = xPRb >> s->sps->log2_min_pu_size; yPRb_pu = yPRb >> s->sps->log2_min_pu_size; temp_col = TAB_MVF_PU(PRb); availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(PRb); } else { mvLXCol->x = 0; mvLXCol->y = 0; availableFlagLXCol = 0; } // derive center collocated motion vector if (tab_mvf && availableFlagLXCol == 0) { xPCtr = x0 + (nPbW >> 1); yPCtr = y0 + (nPbH >> 1); xPCtr = ((xPCtr >> 4) << 4); yPCtr = ((yPCtr >> 4) << 4); xPCtr_pu = xPCtr >> s->sps->log2_min_pu_size; yPCtr_pu = yPCtr >> s->sps->log2_min_pu_size; temp_col = TAB_MVF_PU(PCtr); availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(PCtr); } return availableFlagLXCol; } #define AVAILABLE(cand, v) \ (cand && !TAB_MVF_PU(v).is_intra) #define PRED_BLOCK_AVAILABLE(v) \ check_prediction_block_available(s, log2_cb_size, \ x0, y0, nPbW, nPbH, \ x##v, y##v, part_idx) #define COMPARE_MV_REFIDX(a, b) \ compareMVrefidx(TAB_MVF_PU(a), TAB_MVF_PU(b)) /* * 8.5.3.1.2 Derivation process for spatial merging candidates */ static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int singleMCLFlag, int part_idx, struct MvField mergecandlist[]) { HEVCLocalContext *lc = s->HEVClc; RefPicList *refPicList = s->ref->refPicList; MvField *tab_mvf = s->ref->tab_mvf; int available_a1_flag = 0; int available_b1_flag = 0; int available_b0_flag = 0; int available_a0_flag = 0; int available_b2_flag = 0; struct MvField spatialCMVS[MRG_MAX_NUM_CANDS]; struct MvField combCand = { { { 0 } } }; struct MvField TMVPCand = { { { 0 } } }; struct Mv mvL0Col = { 0 }; struct Mv mvL1Col = { 0 }; //first left spatial merge candidate int xA1 = x0 - 1; int yA1 = y0 + nPbH - 1; int is_available_a1; int min_pu_width = s->sps->width >> s->sps->log2_min_pu_size; int check_MER = 1; int check_MER_1 = 1; int xB1, yB1; int is_available_b1; int xB1_pu; int yB1_pu; int check_B0; int xB0, yB0; int isAvailableB0; int xB0_pu; int yB0_pu; int check_A0; int xA0, yA0; int is_available_a0; int xA0_pu; int yA0_pu; int xB2, yB2; int isAvailableB2; int xB2_pu; int yB2_pu; int mergearray_index = 0; struct MvField zerovector; int numRefIdx = 0; int zeroIdx = 0; int numMergeCand = 0; int numOrigMergeCand = 0; int sumcandidates = 0; int combIdx = 0; int combStop = 0; int l0CandIdx = 0; int l1CandIdx = 0; int refIdxL0Col = 0; int refIdxL1Col = 0; int availableFlagLXCol = 0; int cand_bottom_left = lc->na.cand_bottom_left; int cand_left = lc->na.cand_left; int cand_up_left = lc->na.cand_up_left; int cand_up = lc->na.cand_up; int cand_up_right = lc->na.cand_up_right_sap; int xA1_pu = xA1 >> s->sps->log2_min_pu_size; int yA1_pu = yA1 >> s->sps->log2_min_pu_size; int availableFlagL0Col = 0; int availableFlagL1Col = 0; is_available_a1 = AVAILABLE(cand_left, A1); if (!singleMCLFlag && part_idx == 1 && (lc->cu.part_mode == PART_Nx2N || lc->cu.part_mode == PART_nLx2N || lc->cu.part_mode == PART_nRx2N) || isDiffMER(s, xA1, yA1, x0, y0)) { is_available_a1 = 0; } if (is_available_a1) { available_a1_flag = 1; spatialCMVS[0] = TAB_MVF_PU(A1); } else { available_a1_flag = 0; spatialCMVS[0].ref_idx[0] = -1; spatialCMVS[0].ref_idx[1] = -1; spatialCMVS[0].mv[0].x = 0; spatialCMVS[0].mv[0].y = 0; spatialCMVS[0].mv[1].x = 0; spatialCMVS[0].mv[1].y = 0; spatialCMVS[0].pred_flag[0] = 0; spatialCMVS[0].pred_flag[1] = 0; spatialCMVS[0].is_intra = 0; } // above spatial merge candidate xB1 = x0 + nPbW - 1; yB1 = y0 - 1; xB1_pu = xB1 >> s->sps->log2_min_pu_size; yB1_pu = yB1 >> s->sps->log2_min_pu_size; is_available_b1 = AVAILABLE(cand_up, B1); if (!singleMCLFlag && part_idx == 1 && (lc->cu.part_mode == PART_2NxN || lc->cu.part_mode == PART_2NxnU || lc->cu.part_mode == PART_2NxnD) || isDiffMER(s, xB1, yB1, x0, y0)) { is_available_b1 = 0; } if (is_available_a1 && is_available_b1) check_MER = !COMPARE_MV_REFIDX(B1, A1); if (is_available_b1 && check_MER) { available_b1_flag = 1; spatialCMVS[1] = TAB_MVF_PU(B1); } else { available_b1_flag = 0; spatialCMVS[1].ref_idx[0] = -1; spatialCMVS[1].ref_idx[1] = -1; spatialCMVS[1].mv[0].x = 0; spatialCMVS[1].mv[0].y = 0; spatialCMVS[1].mv[1].x = 0; spatialCMVS[1].mv[1].y = 0; spatialCMVS[1].pred_flag[0] = 0; spatialCMVS[1].pred_flag[1] = 0; spatialCMVS[1].is_intra = 0; } // above right spatial merge candidate xB0 = x0 + nPbW; yB0 = y0 - 1; check_MER = 1; xB0_pu = xB0 >> s->sps->log2_min_pu_size; yB0_pu = yB0 >> s->sps->log2_min_pu_size; check_B0 = PRED_BLOCK_AVAILABLE(B0); isAvailableB0 = check_B0 && AVAILABLE(cand_up_right, B0); if (isDiffMER(s, xB0, yB0, x0, y0)) isAvailableB0 = 0; if (is_available_b1 && isAvailableB0) check_MER = !COMPARE_MV_REFIDX(B0, B1); if (isAvailableB0 && check_MER) { available_b0_flag = 1; spatialCMVS[2] = TAB_MVF_PU(B0); } else { available_b0_flag = 0; spatialCMVS[2].ref_idx[0] = -1; spatialCMVS[2].ref_idx[1] = -1; spatialCMVS[2].mv[0].x = 0; spatialCMVS[2].mv[0].y = 0; spatialCMVS[2].mv[1].x = 0; spatialCMVS[2].mv[1].y = 0; spatialCMVS[2].pred_flag[0] = 0; spatialCMVS[2].pred_flag[1] = 0; spatialCMVS[2].is_intra = 0; } // left bottom spatial merge candidate xA0 = x0 - 1; yA0 = y0 + nPbH; check_MER = 1; xA0_pu = xA0 >> s->sps->log2_min_pu_size; yA0_pu = yA0 >> s->sps->log2_min_pu_size; check_A0 = PRED_BLOCK_AVAILABLE(A0); is_available_a0 = check_A0 && AVAILABLE(cand_bottom_left, A0); if (isDiffMER(s, xA0, yA0, x0, y0)) is_available_a0 = 0; if (is_available_a1 && is_available_a0) check_MER = !COMPARE_MV_REFIDX(A0, A1); if (is_available_a0 && check_MER) { available_a0_flag = 1; spatialCMVS[3] = TAB_MVF_PU(A0); } else { available_a0_flag = 0; spatialCMVS[3].ref_idx[0] = -1; spatialCMVS[3].ref_idx[1] = -1; spatialCMVS[3].mv[0].x = 0; spatialCMVS[3].mv[0].y = 0; spatialCMVS[3].mv[1].x = 0; spatialCMVS[3].mv[1].y = 0; spatialCMVS[3].pred_flag[0] = 0; spatialCMVS[3].pred_flag[1] = 0; spatialCMVS[3].is_intra = 0; } // above left spatial merge candidate xB2 = x0 - 1; yB2 = y0 - 1; check_MER = 1; xB2_pu = xB2 >> s->sps->log2_min_pu_size; yB2_pu = yB2 >> s->sps->log2_min_pu_size; isAvailableB2 = AVAILABLE(cand_up_left, B2); if (isDiffMER(s, xB2, yB2, x0, y0)) isAvailableB2 = 0; if (is_available_a1 && isAvailableB2) check_MER = !COMPARE_MV_REFIDX(B2, A1); if (is_available_b1 && isAvailableB2) check_MER_1 = !COMPARE_MV_REFIDX(B2, B1); sumcandidates = available_a1_flag + available_b1_flag + available_b0_flag + available_a0_flag; if (isAvailableB2 && check_MER && check_MER_1 && sumcandidates != 4) { available_b2_flag = 1; spatialCMVS[4] = TAB_MVF_PU(B2); } else { available_b2_flag = 0; spatialCMVS[4].ref_idx[0] = -1; spatialCMVS[4].ref_idx[1] = -1; spatialCMVS[4].mv[0].x = 0; spatialCMVS[4].mv[0].y = 0; spatialCMVS[4].mv[1].x = 0; spatialCMVS[4].mv[1].y = 0; spatialCMVS[4].pred_flag[0] = 0; spatialCMVS[4].pred_flag[1] = 0; spatialCMVS[4].is_intra = 0; } // temporal motion vector candidate // one optimization is that do temporal checking only if the number of // available candidates < MRG_MAX_NUM_CANDS if (s->sh.slice_temporal_mvp_enabled_flag == 0) { availableFlagLXCol = 0; } else { availableFlagL0Col = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH, refIdxL0Col, &mvL0Col, 0); // one optimization is that l1 check can be done only when the current slice type is B_SLICE if (s->sh.slice_type == B_SLICE) { availableFlagL1Col = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH, refIdxL1Col, &mvL1Col, 1); } availableFlagLXCol = availableFlagL0Col || availableFlagL1Col; if (availableFlagLXCol) { TMVPCand.is_intra = 0; TMVPCand.pred_flag[0] = availableFlagL0Col; TMVPCand.pred_flag[1] = availableFlagL1Col; if (TMVPCand.pred_flag[0]) { TMVPCand.mv[0] = mvL0Col; TMVPCand.ref_idx[0] = refIdxL0Col; } if (TMVPCand.pred_flag[1]) { TMVPCand.mv[1] = mvL1Col; TMVPCand.ref_idx[1] = refIdxL1Col; } } } if (available_a1_flag) { mergecandlist[mergearray_index] = spatialCMVS[0]; mergearray_index++; } if (available_b1_flag) { mergecandlist[mergearray_index] = spatialCMVS[1]; mergearray_index++; } if (available_b0_flag) { mergecandlist[mergearray_index] = spatialCMVS[2]; mergearray_index++; } if (available_a0_flag) { mergecandlist[mergearray_index] = spatialCMVS[3]; mergearray_index++; } if (available_b2_flag) { mergecandlist[mergearray_index] = spatialCMVS[4]; mergearray_index++; } if (availableFlagLXCol && mergearray_index < s->sh.max_num_merge_cand) { mergecandlist[mergearray_index] = TMVPCand; mergearray_index++; } numMergeCand = mergearray_index; numOrigMergeCand = mergearray_index; // combined bi-predictive merge candidates (applies for B slices) if (s->sh.slice_type == B_SLICE) { if (numOrigMergeCand > 1 && numOrigMergeCand < s->sh.max_num_merge_cand) { combIdx = 0; combStop = 0; while (combStop != 1) { MvField l0Cand; MvField l1Cand; l0CandIdx = l0_l1_cand_idx[combIdx][0]; l1CandIdx = l0_l1_cand_idx[combIdx][1]; l0Cand = mergecandlist[l0CandIdx]; l1Cand = mergecandlist[l1CandIdx]; if (l0Cand.pred_flag[0] == 1 && l1Cand.pred_flag[1] == 1 && (refPicList[0].list[l0Cand.ref_idx[0]] != refPicList[1].list[l1Cand.ref_idx[1]] || l0Cand.mv[0].x != l1Cand.mv[1].x || l0Cand.mv[0].y != l1Cand.mv[1].y)) { combCand.ref_idx[0] = l0Cand.ref_idx[0]; combCand.ref_idx[1] = l1Cand.ref_idx[1]; combCand.pred_flag[0] = 1; combCand.pred_flag[1] = 1; combCand.mv[0].x = l0Cand.mv[0].x; combCand.mv[0].y = l0Cand.mv[0].y; combCand.mv[1].x = l1Cand.mv[1].x; combCand.mv[1].y = l1Cand.mv[1].y; combCand.is_intra = 0; mergecandlist[numMergeCand] = combCand; numMergeCand++; } combIdx++; if (combIdx == numOrigMergeCand * (numOrigMergeCand - 1) || numMergeCand == s->sh.max_num_merge_cand) combStop = 1; } } } /* * append Zero motion vector candidates */ if (s->sh.slice_type == P_SLICE) { numRefIdx = s->sh.nb_refs[0]; } else if (s->sh.slice_type == B_SLICE) { numRefIdx = FFMIN(s->sh.nb_refs[0], s->sh.nb_refs[1]); } while (numMergeCand < s->sh.max_num_merge_cand) { if (s->sh.slice_type == P_SLICE) { zerovector.ref_idx[0] = (zeroIdx < numRefIdx) ? zeroIdx : 0; zerovector.ref_idx[1] = -1; zerovector.pred_flag[0] = 1; zerovector.pred_flag[1] = 0; zerovector.mv[0].x = 0; zerovector.mv[0].y = 0; zerovector.mv[1].x = 0; zerovector.mv[1].y = 0; zerovector.is_intra = 0; } else { zerovector.ref_idx[0] = (zeroIdx < numRefIdx) ? zeroIdx : 0; zerovector.ref_idx[1] = (zeroIdx < numRefIdx) ? zeroIdx : 0; zerovector.pred_flag[0] = 1; zerovector.pred_flag[1] = 1; zerovector.mv[0].x = 0; zerovector.mv[0].y = 0; zerovector.mv[1].x = 0; zerovector.mv[1].y = 0; zerovector.is_intra = 0; } mergecandlist[numMergeCand] = zerovector; numMergeCand++; zeroIdx++; } } /* * 8.5.3.1.1 Derivation process of luma Mvs for merge mode */ void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv) { int singleMCLFlag = 0; int nCS = 1 << log2_cb_size; struct MvField mergecand_list[MRG_MAX_NUM_CANDS] = { { { { 0 } } } }; int nPbW2 = nPbW; int nPbH2 = nPbH; HEVCLocalContext *lc = s->HEVClc; if (s->pps->log2_parallel_merge_level > 2 && nCS == 8) { singleMCLFlag = 1; x0 = lc->cu.x; y0 = lc->cu.y; nPbW = nCS; nPbH = nCS; part_idx = 0; } ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH); derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size, singleMCLFlag, part_idx, mergecand_list); if (mergecand_list[merge_idx].pred_flag[0] == 1 && mergecand_list[merge_idx].pred_flag[1] == 1 && (nPbW2 + nPbH2) == 12) { mergecand_list[merge_idx].ref_idx[1] = -1; mergecand_list[merge_idx].pred_flag[1] = 0; } *mv = mergecand_list[merge_idx]; } static av_always_inline void dist_scale(HEVCContext *s, Mv * mv, int min_pu_width, int x, int y, int elist, int ref_idx_curr, int ref_idx) { RefPicList *refPicList = s->ref->refPicList; MvField *tab_mvf = s->ref->tab_mvf; int ref_pic_elist = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]]; int ref_pic_curr = refPicList[ref_idx_curr].list[ref_idx]; if (ref_pic_elist != ref_pic_curr) mv_scale(mv, mv, s->poc - ref_pic_elist, s->poc - ref_pic_curr); } static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index, Mv *mv, int ref_idx_curr, int ref_idx) { MvField *tab_mvf = s->ref->tab_mvf; int min_pu_width = s->sps->min_pu_width; RefPicList *refPicList = s->ref->refPicList; if (TAB_MVF(x, y).pred_flag[pred_flag_index] == 1 && refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) { *mv = TAB_MVF(x, y).mv[pred_flag_index]; return 1; } return 0; } static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index, Mv *mv, int ref_idx_curr, int ref_idx) { MvField *tab_mvf = s->ref->tab_mvf; int min_pu_width = s->sps->min_pu_width; RefPicList *refPicList = s->ref->refPicList; int currIsLongTerm = refPicList[ref_idx_curr].isLongTerm[ref_idx]; int colIsLongTerm = refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])]; if (TAB_MVF(x, y).pred_flag[pred_flag_index] && colIsLongTerm == currIsLongTerm) { *mv = TAB_MVF(x, y).mv[pred_flag_index]; if (!currIsLongTerm) dist_scale(s, mv, min_pu_width, x, y, pred_flag_index, ref_idx_curr, ref_idx); return 1; } return 0; } #define MP_MX(v, pred, mx) \ mv_mp_mode_mx(s, x##v##_pu, y##v##_pu, pred, &mx, ref_idx_curr, ref_idx) #define MP_MX_LT(v, pred, mx) \ mv_mp_mode_mx_lt(s, x##v##_pu, y##v##_pu, pred, &mx, ref_idx_curr, ref_idx) void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv, int mvp_lx_flag, int LX) { HEVCLocalContext *lc = s->HEVClc; MvField *tab_mvf = s->ref->tab_mvf; int isScaledFlag_L0 = 0; int availableFlagLXA0 = 0; int availableFlagLXB0 = 0; int availableFlagLXCol = 0; int numMVPCandLX = 0; int min_pu_width = s->sps->min_pu_width; int xA0, yA0; int xA0_pu, yA0_pu; int is_available_a0; int xA1, yA1; int xA1_pu, yA1_pu; int is_available_a1; int xB0, yB0; int xB0_pu, yB0_pu; int is_available_b0; int xB1, yB1; int xB1_pu = 0, yB1_pu = 0; int is_available_b1 = 0; int xB2, yB2; int xB2_pu = 0, yB2_pu = 0; int is_available_b2 = 0; Mv mvpcand_list[2] = { { 0 } }; Mv mxA = { 0 }; Mv mxB = { 0 }; Mv mvLXCol = { 0 }; int ref_idx_curr = 0; int ref_idx = 0; int pred_flag_index_l0; int pred_flag_index_l1; int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1); int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1); int cand_up = (lc->ctb_up_flag || y0b); int cand_left = (lc->ctb_left_flag || x0b); int cand_up_left = (!x0b && !y0b) ? lc->ctb_up_left_flag : cand_left && cand_up; int cand_up_right = (x0b + nPbW == (1 << s->sps->log2_ctb_size) || x0 + nPbW >= lc->end_of_tiles_x) ? lc->ctb_up_right_flag && !y0b : cand_up; int cand_bottom_left = (y0 + nPbH >= lc->end_of_tiles_y) ? 0 : cand_left; ref_idx_curr = LX; ref_idx = mv->ref_idx[LX]; pred_flag_index_l0 = LX; pred_flag_index_l1 = !LX; // left bottom spatial candidate xA0 = x0 - 1; yA0 = y0 + nPbH; xA0_pu = xA0 >> s->sps->log2_min_pu_size; yA0_pu = yA0 >> s->sps->log2_min_pu_size; is_available_a0 = PRED_BLOCK_AVAILABLE(A0) && AVAILABLE(cand_bottom_left, A0); //left spatial merge candidate xA1 = x0 - 1; yA1 = y0 + nPbH - 1; xA1_pu = xA1 >> s->sps->log2_min_pu_size; yA1_pu = yA1 >> s->sps->log2_min_pu_size; is_available_a1 = AVAILABLE(cand_left, A1); if (is_available_a0 || is_available_a1) { isScaledFlag_L0 = 1; } if (is_available_a0) { availableFlagLXA0 = MP_MX(A0, pred_flag_index_l0, mxA); if (!availableFlagLXA0) availableFlagLXA0 = MP_MX(A0, pred_flag_index_l1, mxA); } if (is_available_a1 && !availableFlagLXA0) { availableFlagLXA0 = MP_MX(A1, pred_flag_index_l0, mxA); if (!availableFlagLXA0) availableFlagLXA0 = MP_MX(A1, pred_flag_index_l1, mxA); } if (is_available_a0 && !availableFlagLXA0) { availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l0, mxA); if (!availableFlagLXA0) availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l1, mxA); } if (is_available_a1 && !availableFlagLXA0) { availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l0, mxA); if (!availableFlagLXA0) availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l1, mxA); } // B candidates // above right spatial merge candidate xB0 = x0 + nPbW; yB0 = y0 - 1; xB0_pu = xB0 >> s->sps->log2_min_pu_size; yB0_pu = yB0 >> s->sps->log2_min_pu_size; is_available_b0 = PRED_BLOCK_AVAILABLE(B0) && AVAILABLE(cand_up_right, B0); if (is_available_b0) { availableFlagLXB0 = MP_MX(B0, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX(B0, pred_flag_index_l1, mxB); } if (!availableFlagLXB0) { // above spatial merge candidate xB1 = x0 + nPbW - 1; yB1 = y0 - 1; xB1_pu = xB1 >> s->sps->log2_min_pu_size; yB1_pu = yB1 >> s->sps->log2_min_pu_size; is_available_b1 = AVAILABLE(cand_up, B1); if (is_available_b1) { availableFlagLXB0 = MP_MX(B1, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX(B1, pred_flag_index_l1, mxB); } } if (!availableFlagLXB0) { // above left spatial merge candidate xB2 = x0 - 1; yB2 = y0 - 1; xB2_pu = xB2 >> s->sps->log2_min_pu_size; yB2_pu = yB2 >> s->sps->log2_min_pu_size; is_available_b2 = AVAILABLE(cand_up_left, B2); if (is_available_b2) { availableFlagLXB0 = MP_MX(B2, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX(B2, pred_flag_index_l1, mxB); } } if (isScaledFlag_L0 == 0) { if (availableFlagLXB0) { availableFlagLXA0 = 1; mxA = mxB; } availableFlagLXB0 = 0; // XB0 and L1 if (is_available_b0) { availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB); } if (is_available_b1 && !availableFlagLXB0) { availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB); } if (is_available_b2 && !availableFlagLXB0) { availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB); } } if (availableFlagLXA0 && availableFlagLXB0 && (mxA.x != mxB.x || mxA.y != mxB.y)) { availableFlagLXCol = 0; } else { //temporal motion vector prediction candidate if (s->sh.slice_temporal_mvp_enabled_flag == 0) { availableFlagLXCol = 0; } else { availableFlagLXCol = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH, ref_idx, &mvLXCol, LX); } } if (availableFlagLXA0) { mvpcand_list[numMVPCandLX] = mxA; numMVPCandLX++; } if (availableFlagLXB0) { mvpcand_list[numMVPCandLX] = mxB; numMVPCandLX++; } if (availableFlagLXA0 && availableFlagLXB0 && mxA.x == mxB.x && mxA.y == mxB.y) { numMVPCandLX--; } if (availableFlagLXCol && numMVPCandLX < 2) { mvpcand_list[numMVPCandLX] = mvLXCol; numMVPCandLX++; } while (numMVPCandLX < 2) { // insert zero motion vectors when the number of available candidates are less than 2 mvpcand_list[numMVPCandLX].x = 0; mvpcand_list[numMVPCandLX].y = 0; numMVPCandLX++; } mv->mv[LX].x = mvpcand_list[mvp_lx_flag].x; mv->mv[LX].y = mvpcand_list[mvp_lx_flag].y; }