/* * RTMP Diffie-Hellmann utilities * Copyright (c) 2009 Andrej Stepanchuk * Copyright (c) 2009-2010 Howard Chu * Copyright (c) 2012 Samuel Pitoiset * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * RTMP Diffie-Hellmann utilities */ #include "config.h" #include "rtmpdh.h" #include "libavutil/random_seed.h" #define P1024 \ "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \ "FFFFFFFFFFFFFFFF" #define Q1024 \ "7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \ "948127044533E63A0105DF531D89CD9128A5043CC71A026E" \ "F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \ "F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \ "F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \ "FFFFFFFFFFFFFFFF" #if CONFIG_NETTLE || CONFIG_GCRYPT #if CONFIG_NETTLE #define bn_new(bn) \ do { \ bn = av_malloc(sizeof(*bn)); \ if (bn) \ mpz_init2(bn, 1); \ } while (0) #define bn_free(bn) \ do { \ mpz_clear(bn); \ av_free(bn); \ } while (0) #define bn_set_word(bn, w) mpz_set_ui(bn, w) #define bn_cmp(a, b) mpz_cmp(a, b) #define bn_copy(to, from) mpz_set(to, from) #define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w) #define bn_cmp_1(bn) mpz_cmp_ui(bn, 1) #define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8 #define bn_bn2bin(bn, buf, len) nettle_mpz_get_str_256(len, buf, bn) #define bn_bin2bn(bn, buf, len) \ do { \ bn_new(bn); \ if (bn) \ nettle_mpz_set_str_256_u(bn, len, buf); \ } while (0) #define bn_hex2bn(bn, buf, ret) \ do { \ bn_new(bn); \ if (bn) \ ret = (mpz_set_str(bn, buf, 16) == 0); \ else \ ret = 1; \ } while (0) #define bn_modexp(bn, y, q, p) mpz_powm(bn, y, q, p) #define bn_random(bn, num_bytes) \ do { \ gmp_randstate_t rs; \ gmp_randinit_mt(rs); \ gmp_randseed_ui(rs, av_get_random_seed()); \ mpz_urandomb(bn, rs, num_bytes); \ gmp_randclear(rs); \ } while (0) #elif CONFIG_GCRYPT #define bn_new(bn) bn = gcry_mpi_new(1) #define bn_free(bn) gcry_mpi_release(bn) #define bn_set_word(bn, w) gcry_mpi_set_ui(bn, w) #define bn_cmp(a, b) gcry_mpi_cmp(a, b) #define bn_copy(to, from) gcry_mpi_set(to, from) #define bn_sub_word(bn, w) gcry_mpi_sub_ui(bn, bn, w) #define bn_cmp_1(bn) gcry_mpi_cmp_ui(bn, 1) #define bn_num_bytes(bn) (gcry_mpi_get_nbits(bn) + 7) / 8 #define bn_bn2bin(bn, buf, len) gcry_mpi_print(GCRYMPI_FMT_USG, buf, len, NULL, bn) #define bn_bin2bn(bn, buf, len) gcry_mpi_scan(&bn, GCRYMPI_FMT_USG, buf, len, NULL) #define bn_hex2bn(bn, buf, ret) ret = (gcry_mpi_scan(&bn, GCRYMPI_FMT_HEX, buf, 0, 0) == 0) #define bn_modexp(bn, y, q, p) gcry_mpi_powm(bn, y, q, p) #define bn_random(bn, num_bytes) gcry_mpi_randomize(bn, num_bytes, GCRY_WEAK_RANDOM) #endif #define MAX_BYTES 18000 #define dh_new() av_malloc(sizeof(FF_DH)) static FFBigNum dh_generate_key(FF_DH *dh) { int num_bytes; num_bytes = bn_num_bytes(dh->p) - 1; if (num_bytes <= 0 || num_bytes > MAX_BYTES) return NULL; bn_new(dh->priv_key); if (!dh->priv_key) return NULL; bn_random(dh->priv_key, num_bytes); bn_new(dh->pub_key); if (!dh->pub_key) { bn_free(dh->priv_key); return NULL; } bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p); return dh->pub_key; } static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn, uint32_t secret_key_len, uint8_t *secret_key) { FFBigNum k; int num_bytes; num_bytes = bn_num_bytes(dh->p); if (num_bytes <= 0 || num_bytes > MAX_BYTES) return -1; bn_new(k); if (!k) return -1; bn_modexp(k, pub_key_bn, dh->priv_key, dh->p); bn_bn2bin(k, secret_key, secret_key_len); bn_free(k); /* return the length of the shared secret key like DH_compute_key */ return secret_key_len; } void ff_dh_free(FF_DH *dh) { bn_free(dh->p); bn_free(dh->g); bn_free(dh->pub_key); bn_free(dh->priv_key); av_free(dh); } #elif CONFIG_OPENSSL #define bn_new(bn) bn = BN_new() #define bn_free(bn) BN_free(bn) #define bn_set_word(bn, w) BN_set_word(bn, w) #define bn_cmp(a, b) BN_cmp(a, b) #define bn_copy(to, from) BN_copy(to, from) #define bn_sub_word(bn, w) BN_sub_word(bn, w) #define bn_cmp_1(bn) BN_cmp(bn, BN_value_one()) #define bn_num_bytes(bn) BN_num_bytes(bn) #define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf) #define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0) #define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf) #define bn_modexp(bn, y, q, p) \ do { \ BN_CTX *ctx = BN_CTX_new(); \ if (!ctx) \ return AVERROR(ENOMEM); \ if (!BN_mod_exp(bn, y, q, p, ctx)) { \ BN_CTX_free(ctx); \ return AVERROR(EINVAL); \ } \ BN_CTX_free(ctx); \ } while (0) #define dh_new() DH_new() #define dh_generate_key(dh) DH_generate_key(dh) #define dh_compute_key(dh, pub, len, secret) DH_compute_key(secret, pub, dh) void ff_dh_free(FF_DH *dh) { DH_free(dh); } #endif static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q) { FFBigNum bn = NULL; int ret = AVERROR(EINVAL); bn_new(bn); if (!bn) return AVERROR(ENOMEM); /* y must lie in [2, p - 1] */ bn_set_word(bn, 1); if (!bn_cmp(y, bn)) goto fail; /* bn = p - 2 */ bn_copy(bn, p); bn_sub_word(bn, 1); if (!bn_cmp(y, bn)) goto fail; /* Verify with Sophie-Germain prime * * This is a nice test to make sure the public key position is calculated * correctly. This test will fail in about 50% of the cases if applied to * random data. */ /* y must fulfill y^q mod p = 1 */ bn_modexp(bn, y, q, p); if (bn_cmp_1(bn)) goto fail; ret = 0; fail: bn_free(bn); return ret; } av_cold FF_DH *ff_dh_init(int key_len) { FF_DH *dh; int ret; if (!(dh = dh_new())) return NULL; bn_new(dh->g); if (!dh->g) goto fail; bn_hex2bn(dh->p, P1024, ret); if (!ret) goto fail; bn_set_word(dh->g, 2); dh->length = key_len; return dh; fail: ff_dh_free(dh); return NULL; } int ff_dh_generate_public_key(FF_DH *dh) { int ret = 0; while (!ret) { FFBigNum q1 = NULL; if (!dh_generate_key(dh)) return AVERROR(EINVAL); bn_hex2bn(q1, Q1024, ret); if (!ret) return AVERROR(ENOMEM); ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1); bn_free(q1); if (!ret) { /* the public key is valid */ break; } } return ret; } int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len) { int len; /* compute the length of the public key */ len = bn_num_bytes(dh->pub_key); if (len <= 0 || len > pub_key_len) return AVERROR(EINVAL); /* convert the public key value into big-endian form */ memset(pub_key, 0, pub_key_len); bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len); return 0; } int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key, int pub_key_len, uint8_t *secret_key) { FFBigNum q1 = NULL, pub_key_bn = NULL; int ret; /* convert the big-endian form of the public key into a bignum */ bn_bin2bn(pub_key_bn, pub_key, pub_key_len); if (!pub_key_bn) return AVERROR(ENOMEM); /* convert the string containing a hexadecimal number into a bignum */ bn_hex2bn(q1, Q1024, ret); if (!ret) { ret = AVERROR(ENOMEM); goto fail; } /* when the public key is valid we have to compute the shared secret key */ if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) { goto fail; } else if ((ret = dh_compute_key(dh, pub_key_bn, pub_key_len, secret_key)) < 0) { ret = AVERROR(EINVAL); goto fail; } fail: bn_free(pub_key_bn); bn_free(q1); return ret; }