/* * HEVC video decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * Copyright (C) 2013 Anand Meher Kotra * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "hevc.h" static const uint8_t l0_l1_cand_idx[12][2] = { { 0, 1, }, { 1, 0, }, { 0, 2, }, { 2, 0, }, { 1, 2, }, { 2, 1, }, { 0, 3, }, { 3, 0, }, { 1, 3, }, { 3, 1, }, { 2, 3, }, { 3, 2, }, }; void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0, int nPbW, int nPbH) { HEVCLocalContext *lc = &s->HEVClc; int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1); int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1); lc->na.cand_up = (lc->ctb_up_flag || y0b); lc->na.cand_left = (lc->ctb_left_flag || x0b); lc->na.cand_up_left = (!x0b && !y0b) ? lc->ctb_up_left_flag : lc->na.cand_left && lc->na.cand_up; lc->na.cand_up_right_sap = ((x0b + nPbW) == (1 << s->sps->log2_ctb_size)) ? lc->ctb_up_right_flag && !y0b : lc->na.cand_up; lc->na.cand_up_right = ((x0b + nPbW) == (1 << s->sps->log2_ctb_size) ? lc->ctb_up_right_flag && !y0b : lc->na.cand_up ) && (x0 + nPbW) < lc->end_of_tiles_x; lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left; } /* * 6.4.1 Derivation process for z-scan order block availability */ static int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr, int xN, int yN) { #define MIN_TB_ADDR_ZS(x, y) \ s->pps->min_tb_addr_zs[(y) * s->sps->min_tb_width + (x)] int Curr = MIN_TB_ADDR_ZS(xCurr >> s->sps->log2_min_tb_size, yCurr >> s->sps->log2_min_tb_size); int N; if (xN < 0 || yN < 0 || xN >= s->sps->width || yN >= s->sps->height) return 0; N = MIN_TB_ADDR_ZS(xN >> s->sps->log2_min_tb_size, yN >> s->sps->log2_min_tb_size); return N <= Curr; } static int same_prediction_block(HEVCLocalContext *lc, int log2_cb_size, int x0, int y0, int nPbW, int nPbH, int xA1, int yA1, int partIdx) { return !(nPbW << 1 == 1 << log2_cb_size && nPbH << 1 == 1 << log2_cb_size && partIdx == 1 && lc->cu.x + nPbW > xA1 && lc->cu.y + nPbH <= yA1); } /* * 6.4.2 Derivation process for prediction block availability */ static int check_prediction_block_available(HEVCContext *s, int log2_cb_size, int x0, int y0, int nPbW, int nPbH, int xA1, int yA1, int partIdx) { HEVCLocalContext *lc = &s->HEVClc; if (lc->cu.x < xA1 && lc->cu.y < yA1 && (lc->cu.x + (1 << log2_cb_size)) > xA1 && (lc->cu.y + (1 << log2_cb_size)) > yA1) return same_prediction_block(lc, log2_cb_size, x0, y0, nPbW, nPbH, xA1, yA1, partIdx); else return z_scan_block_avail(s, x0, y0, xA1, yA1); } //check if the two luma locations belong to the same mostion estimation region static int isDiffMER(HEVCContext *s, int xN, int yN, int xP, int yP) { uint8_t plevel = s->pps->log2_parallel_merge_level; return xN >> plevel == xP >> plevel && yN >> plevel == yP >> plevel; } #define MATCH_MV(x) (AV_RN32A(&A.x) == AV_RN32A(&B.x)) #define MATCH(x) (A.x == B.x) // check if the mv's and refidx are the same between A and B static int compareMVrefidx(struct MvField A, struct MvField B) { if (A.pred_flag[0] && A.pred_flag[1] && B.pred_flag[0] && B.pred_flag[1]) return MATCH(ref_idx[0]) && MATCH_MV(mv[0]) && MATCH(ref_idx[1]) && MATCH_MV(mv[1]); if (A.pred_flag[0] && !A.pred_flag[1] && B.pred_flag[0] && !B.pred_flag[1]) return MATCH(ref_idx[0]) && MATCH_MV(mv[0]); if (!A.pred_flag[0] && A.pred_flag[1] && !B.pred_flag[0] && B.pred_flag[1]) return MATCH(ref_idx[1]) && MATCH_MV(mv[1]); return 0; } static av_always_inline void mv_scale(Mv *dst, Mv *src, int td, int tb) { int tx, scale_factor; td = av_clip_int8_c(td); tb = av_clip_int8_c(tb); tx = (0x4000 + abs(td / 2)) / td; scale_factor = av_clip_c((tb * tx + 32) >> 6, -4096, 4095); dst->x = av_clip_int16_c((scale_factor * src->x + 127 + (scale_factor * src->x < 0)) >> 8); dst->y = av_clip_int16_c((scale_factor * src->y + 127 + (scale_factor * src->y < 0)) >> 8); } static int check_mvset(Mv *mvLXCol, Mv *mvCol, int colPic, int poc, RefPicList *refPicList, int X, int refIdxLx, RefPicList *refPicList_col, int listCol, int refidxCol) { int cur_lt = refPicList[X].isLongTerm[refIdxLx]; int col_lt = refPicList_col[listCol].isLongTerm[refidxCol]; int col_poc_diff, cur_poc_diff; if (cur_lt != col_lt) { mvLXCol->x = 0; mvLXCol->y = 0; return 0; } col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol]; cur_poc_diff = poc - refPicList[X].list[refIdxLx]; if (!col_poc_diff) col_poc_diff = 1; // error resilience if (cur_lt || col_poc_diff == cur_poc_diff) { mvLXCol->x = mvCol->x; mvLXCol->y = mvCol->y; } else { mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff); } return 1; } #define CHECK_MVSET(l) \ check_mvset(mvLXCol, temp_col.mv + l, \ colPic, s->poc, \ refPicList, X, refIdxLx, \ refPicList_col, L ## l, temp_col.ref_idx[l]) // derive the motion vectors section 8.5.3.1.8 static int derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col, int refIdxLx, Mv *mvLXCol, int X, int colPic, RefPicList *refPicList_col) { RefPicList *refPicList = s->ref->refPicList; if (temp_col.is_intra) { mvLXCol->x = 0; mvLXCol->y = 0; return 0; } if (temp_col.pred_flag[0] == 0) return CHECK_MVSET(1); else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 0) return CHECK_MVSET(0); else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 1) { int check_diffpicount = 0; int i = 0; for (i = 0; i < refPicList[0].nb_refs; i++) { if (refPicList[0].list[i] > s->poc) check_diffpicount++; } for (i = 0; i < refPicList[1].nb_refs; i++) { if (refPicList[1].list[i] > s->poc) check_diffpicount++; } if (check_diffpicount == 0 && X == 0) return CHECK_MVSET(0); else if (check_diffpicount == 0 && X == 1) return CHECK_MVSET(1); else { if (s->sh.collocated_list == L1) return CHECK_MVSET(0); else return CHECK_MVSET(1); } } return 0; } #define TAB_MVF(x, y) \ tab_mvf[(y) * min_pu_width + x] #define TAB_MVF_PU(v) \ TAB_MVF(x ## v ## _pu, y ## v ## _pu) #define DERIVE_TEMPORAL_COLOCATED_MVS \ derive_temporal_colocated_mvs(s, temp_col, \ refIdxLx, mvLXCol, X, colPic, \ ff_hevc_get_ref_list(s, ref, x, y)) /* * 8.5.3.1.7 temporal luma motion vector prediction */ static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int refIdxLx, Mv *mvLXCol, int X) { MvField *tab_mvf; MvField temp_col; int x, y, x_pu, y_pu; int min_pu_width = s->sps->min_pu_width; int availableFlagLXCol = 0; int colPic; HEVCFrame *ref = s->ref->collocated_ref; if (!ref) { memset(mvLXCol, 0, sizeof(*mvLXCol)); return 0; } tab_mvf = ref->tab_mvf; colPic = ref->poc; //bottom right collocated motion vector x = x0 + nPbW; y = y0 + nPbH; if (tab_mvf && (y0 >> s->sps->log2_ctb_size) == (y >> s->sps->log2_ctb_size) && y < s->sps->height && x < s->sps->width) { x &= ~15; y &= ~15; ff_thread_await_progress(&ref->tf, y, 0); x_pu = x >> s->sps->log2_min_pu_size; y_pu = y >> s->sps->log2_min_pu_size; temp_col = TAB_MVF(x_pu, y_pu); availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS; } // derive center collocated motion vector if (tab_mvf && !availableFlagLXCol) { x = x0 + (nPbW >> 1); y = y0 + (nPbH >> 1); x &= ~15; y &= ~15; ff_thread_await_progress(&ref->tf, y, 0); x_pu = x >> s->sps->log2_min_pu_size; y_pu = y >> s->sps->log2_min_pu_size; temp_col = TAB_MVF(x_pu, y_pu); availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS; } return availableFlagLXCol; } #define AVAILABLE(cand, v) \ (cand && !TAB_MVF_PU(v).is_intra) #define PRED_BLOCK_AVAILABLE(v) \ check_prediction_block_available(s, log2_cb_size, \ x0, y0, nPbW, nPbH, \ x ## v, y ## v, part_idx) #define COMPARE_MV_REFIDX(a, b) \ compareMVrefidx(TAB_MVF_PU(a), TAB_MVF_PU(b)) /* * 8.5.3.1.2 Derivation process for spatial merging candidates */ static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int singleMCLFlag, int part_idx, int merge_idx, struct MvField mergecandlist[]) { HEVCLocalContext *lc = &s->HEVClc; RefPicList *refPicList = s->ref->refPicList; MvField *tab_mvf = s->ref->tab_mvf; const int min_pu_width = s->sps->min_pu_width; const int cand_bottom_left = lc->na.cand_bottom_left; const int cand_left = lc->na.cand_left; const int cand_up_left = lc->na.cand_up_left; const int cand_up = lc->na.cand_up; const int cand_up_right = lc->na.cand_up_right_sap; const int xA1 = x0 - 1; const int yA1 = y0 + nPbH - 1; const int xA1_pu = xA1 >> s->sps->log2_min_pu_size; const int yA1_pu = yA1 >> s->sps->log2_min_pu_size; const int xB1 = x0 + nPbW - 1; const int yB1 = y0 - 1; const int xB1_pu = xB1 >> s->sps->log2_min_pu_size; const int yB1_pu = yB1 >> s->sps->log2_min_pu_size; const int xB0 = x0 + nPbW; const int yB0 = y0 - 1; const int xB0_pu = xB0 >> s->sps->log2_min_pu_size; const int yB0_pu = yB0 >> s->sps->log2_min_pu_size; const int xA0 = x0 - 1; const int yA0 = y0 + nPbH; const int xA0_pu = xA0 >> s->sps->log2_min_pu_size; const int yA0_pu = yA0 >> s->sps->log2_min_pu_size; const int xB2 = x0 - 1; const int yB2 = y0 - 1; const int xB2_pu = xB2 >> s->sps->log2_min_pu_size; const int yB2_pu = yB2 >> s->sps->log2_min_pu_size; const int nb_refs = (s->sh.slice_type == P_SLICE) ? s->sh.nb_refs[0] : FFMIN(s->sh.nb_refs[0], s->sh.nb_refs[1]); int check_MER = 1; int check_MER_1 = 1; int zero_idx = 0; int nb_merge_cand = 0; int nb_orig_merge_cand = 0; int is_available_a0; int is_available_a1; int is_available_b0; int is_available_b1; int is_available_b2; int check_B0; int check_A0; //first left spatial merge candidate is_available_a1 = AVAILABLE(cand_left, A1); if (!singleMCLFlag && part_idx == 1 && (lc->cu.part_mode == PART_Nx2N || lc->cu.part_mode == PART_nLx2N || lc->cu.part_mode == PART_nRx2N) || isDiffMER(s, xA1, yA1, x0, y0)) { is_available_a1 = 0; } if (is_available_a1) { mergecandlist[0] = TAB_MVF_PU(A1); if (merge_idx == 0) return; nb_merge_cand++; } // above spatial merge candidate is_available_b1 = AVAILABLE(cand_up, B1); if (!singleMCLFlag && part_idx == 1 && (lc->cu.part_mode == PART_2NxN || lc->cu.part_mode == PART_2NxnU || lc->cu.part_mode == PART_2NxnD) || isDiffMER(s, xB1, yB1, x0, y0)) { is_available_b1 = 0; } if (is_available_a1 && is_available_b1) check_MER = !COMPARE_MV_REFIDX(B1, A1); if (is_available_b1 && check_MER) mergecandlist[nb_merge_cand++] = TAB_MVF_PU(B1); // above right spatial merge candidate check_MER = 1; check_B0 = PRED_BLOCK_AVAILABLE(B0); is_available_b0 = check_B0 && AVAILABLE(cand_up_right, B0); if (isDiffMER(s, xB0, yB0, x0, y0)) is_available_b0 = 0; if (is_available_b1 && is_available_b0) check_MER = !COMPARE_MV_REFIDX(B0, B1); if (is_available_b0 && check_MER) { mergecandlist[nb_merge_cand] = TAB_MVF_PU(B0); if (merge_idx == nb_merge_cand) return; nb_merge_cand++; } // left bottom spatial merge candidate check_MER = 1; check_A0 = PRED_BLOCK_AVAILABLE(A0); is_available_a0 = check_A0 && AVAILABLE(cand_bottom_left, A0); if (isDiffMER(s, xA0, yA0, x0, y0)) is_available_a0 = 0; if (is_available_a1 && is_available_a0) check_MER = !COMPARE_MV_REFIDX(A0, A1); if (is_available_a0 && check_MER) { mergecandlist[nb_merge_cand] = TAB_MVF_PU(A0); if (merge_idx == nb_merge_cand) return; nb_merge_cand++; } // above left spatial merge candidate check_MER = 1; is_available_b2 = AVAILABLE(cand_up_left, B2); if (isDiffMER(s, xB2, yB2, x0, y0)) is_available_b2 = 0; if (is_available_a1 && is_available_b2) check_MER = !COMPARE_MV_REFIDX(B2, A1); if (is_available_b1 && is_available_b2) check_MER_1 = !COMPARE_MV_REFIDX(B2, B1); if (is_available_b2 && check_MER && check_MER_1 && nb_merge_cand != 4) { mergecandlist[nb_merge_cand] = TAB_MVF_PU(B2); if (merge_idx == nb_merge_cand) return; nb_merge_cand++; } // temporal motion vector candidate if (s->sh.slice_temporal_mvp_enabled_flag && nb_merge_cand < s->sh.max_num_merge_cand) { Mv mv_l0_col, mv_l1_col; int available_l0 = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH, 0, &mv_l0_col, 0); int available_l1 = (s->sh.slice_type == B_SLICE) ? temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH, 0, &mv_l1_col, 1) : 0; if (available_l0 || available_l1) { mergecandlist[nb_merge_cand].is_intra = 0; mergecandlist[nb_merge_cand].pred_flag[0] = available_l0; mergecandlist[nb_merge_cand].pred_flag[1] = available_l1; AV_ZERO16(mergecandlist[nb_merge_cand].ref_idx); mergecandlist[nb_merge_cand].mv[0] = mv_l0_col; mergecandlist[nb_merge_cand].mv[1] = mv_l1_col; if (merge_idx == nb_merge_cand) return; nb_merge_cand++; } } nb_orig_merge_cand = nb_merge_cand; // combined bi-predictive merge candidates (applies for B slices) if (s->sh.slice_type == B_SLICE && nb_orig_merge_cand > 1 && nb_orig_merge_cand < s->sh.max_num_merge_cand) { int comb_idx; for (comb_idx = 0; nb_merge_cand < s->sh.max_num_merge_cand && comb_idx < nb_orig_merge_cand * (nb_orig_merge_cand - 1); comb_idx++) { int l0_cand_idx = l0_l1_cand_idx[comb_idx][0]; int l1_cand_idx = l0_l1_cand_idx[comb_idx][1]; MvField l0_cand = mergecandlist[l0_cand_idx]; MvField l1_cand = mergecandlist[l1_cand_idx]; if (l0_cand.pred_flag[0] && l1_cand.pred_flag[1] && (refPicList[0].list[l0_cand.ref_idx[0]] != refPicList[1].list[l1_cand.ref_idx[1]] || AV_RN32A(&l0_cand.mv[0]) != AV_RN32A(&l1_cand.mv[1]))) { mergecandlist[nb_merge_cand].ref_idx[0] = l0_cand.ref_idx[0]; mergecandlist[nb_merge_cand].ref_idx[1] = l1_cand.ref_idx[1]; mergecandlist[nb_merge_cand].pred_flag[0] = 1; mergecandlist[nb_merge_cand].pred_flag[1] = 1; AV_COPY32(&mergecandlist[nb_merge_cand].mv[0], &l0_cand.mv[0]); AV_COPY32(&mergecandlist[nb_merge_cand].mv[1], &l1_cand.mv[1]); mergecandlist[nb_merge_cand].is_intra = 0; if (merge_idx == nb_merge_cand) return; nb_merge_cand++; } } } // append Zero motion vector candidates while (nb_merge_cand < s->sh.max_num_merge_cand) { mergecandlist[nb_merge_cand].pred_flag[0] = 1; mergecandlist[nb_merge_cand].pred_flag[1] = s->sh.slice_type == B_SLICE; AV_ZERO32(mergecandlist[nb_merge_cand].mv + 0); AV_ZERO32(mergecandlist[nb_merge_cand].mv + 1); mergecandlist[nb_merge_cand].is_intra = 0; mergecandlist[nb_merge_cand].ref_idx[0] = zero_idx < nb_refs ? zero_idx : 0; mergecandlist[nb_merge_cand].ref_idx[1] = zero_idx < nb_refs ? zero_idx : 0; if (merge_idx == nb_merge_cand) return; nb_merge_cand++; zero_idx++; } } /* * 8.5.3.1.1 Derivation process of luma Mvs for merge mode */ void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv) { int singleMCLFlag = 0; int nCS = 1 << log2_cb_size; LOCAL_ALIGNED(4, MvField, mergecand_list, [MRG_MAX_NUM_CANDS]); int nPbW2 = nPbW; int nPbH2 = nPbH; HEVCLocalContext *lc = &s->HEVClc; if (s->pps->log2_parallel_merge_level > 2 && nCS == 8) { singleMCLFlag = 1; x0 = lc->cu.x; y0 = lc->cu.y; nPbW = nCS; nPbH = nCS; part_idx = 0; } ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH); derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size, singleMCLFlag, part_idx, merge_idx, mergecand_list); if (mergecand_list[merge_idx].pred_flag[0] == 1 && mergecand_list[merge_idx].pred_flag[1] == 1 && (nPbW2 + nPbH2) == 12) { mergecand_list[merge_idx].ref_idx[1] = -1; mergecand_list[merge_idx].pred_flag[1] = 0; } *mv = mergecand_list[merge_idx]; } static av_always_inline void dist_scale(HEVCContext *s, Mv *mv, int min_pu_width, int x, int y, int elist, int ref_idx_curr, int ref_idx) { RefPicList *refPicList = s->ref->refPicList; MvField *tab_mvf = s->ref->tab_mvf; int ref_pic_elist = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]]; int ref_pic_curr = refPicList[ref_idx_curr].list[ref_idx]; if (ref_pic_elist != ref_pic_curr) { int poc_diff = s->poc - ref_pic_elist; if (!poc_diff) poc_diff = 1; mv_scale(mv, mv, poc_diff, s->poc - ref_pic_curr); } } static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index, Mv *mv, int ref_idx_curr, int ref_idx) { MvField *tab_mvf = s->ref->tab_mvf; int min_pu_width = s->sps->min_pu_width; RefPicList *refPicList = s->ref->refPicList; if (TAB_MVF(x, y).pred_flag[pred_flag_index] == 1 && refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) { *mv = TAB_MVF(x, y).mv[pred_flag_index]; return 1; } return 0; } static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index, Mv *mv, int ref_idx_curr, int ref_idx) { MvField *tab_mvf = s->ref->tab_mvf; int min_pu_width = s->sps->min_pu_width; RefPicList *refPicList = s->ref->refPicList; int currIsLongTerm = refPicList[ref_idx_curr].isLongTerm[ref_idx]; int colIsLongTerm = refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])]; if (TAB_MVF(x, y).pred_flag[pred_flag_index] && colIsLongTerm == currIsLongTerm) { *mv = TAB_MVF(x, y).mv[pred_flag_index]; if (!currIsLongTerm) dist_scale(s, mv, min_pu_width, x, y, pred_flag_index, ref_idx_curr, ref_idx); return 1; } return 0; } #define MP_MX(v, pred, mx) \ mv_mp_mode_mx(s, x ## v ## _pu, y ## v ## _pu, pred, \ &mx, ref_idx_curr, ref_idx) #define MP_MX_LT(v, pred, mx) \ mv_mp_mode_mx_lt(s, x ## v ## _pu, y ## v ## _pu, pred, \ &mx, ref_idx_curr, ref_idx) void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv, int mvp_lx_flag, int LX) { HEVCLocalContext *lc = &s->HEVClc; MvField *tab_mvf = s->ref->tab_mvf; int isScaledFlag_L0 = 0; int availableFlagLXA0 = 0; int availableFlagLXB0 = 0; int numMVPCandLX = 0; int min_pu_width = s->sps->min_pu_width; int xA0, yA0; int xA0_pu, yA0_pu; int is_available_a0; int xA1, yA1; int xA1_pu, yA1_pu; int is_available_a1; int xB0, yB0; int xB0_pu, yB0_pu; int is_available_b0; int xB1, yB1; int xB1_pu = 0, yB1_pu = 0; int is_available_b1 = 0; int xB2, yB2; int xB2_pu = 0, yB2_pu = 0; int is_available_b2 = 0; Mv mvpcand_list[2] = { { 0 } }; Mv mxA = { 0 }; Mv mxB = { 0 }; int ref_idx_curr = 0; int ref_idx = 0; int pred_flag_index_l0; int pred_flag_index_l1; int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1); int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1); int cand_up = (lc->ctb_up_flag || y0b); int cand_left = (lc->ctb_left_flag || x0b); int cand_up_left = (!x0b && !y0b) ? lc->ctb_up_left_flag : cand_left && cand_up; int cand_up_right = (x0b + nPbW == (1 << s->sps->log2_ctb_size) || x0 + nPbW >= lc->end_of_tiles_x) ? lc->ctb_up_right_flag && !y0b : cand_up; int cand_bottom_left = (y0 + nPbH >= lc->end_of_tiles_y) ? 0 : cand_left; ref_idx_curr = LX; ref_idx = mv->ref_idx[LX]; pred_flag_index_l0 = LX; pred_flag_index_l1 = !LX; // left bottom spatial candidate xA0 = x0 - 1; yA0 = y0 + nPbH; xA0_pu = xA0 >> s->sps->log2_min_pu_size; yA0_pu = yA0 >> s->sps->log2_min_pu_size; is_available_a0 = PRED_BLOCK_AVAILABLE(A0) && AVAILABLE(cand_bottom_left, A0); //left spatial merge candidate xA1 = x0 - 1; yA1 = y0 + nPbH - 1; xA1_pu = xA1 >> s->sps->log2_min_pu_size; yA1_pu = yA1 >> s->sps->log2_min_pu_size; is_available_a1 = AVAILABLE(cand_left, A1); if (is_available_a0 || is_available_a1) isScaledFlag_L0 = 1; if (is_available_a0) { availableFlagLXA0 = MP_MX(A0, pred_flag_index_l0, mxA); if (!availableFlagLXA0) availableFlagLXA0 = MP_MX(A0, pred_flag_index_l1, mxA); } if (is_available_a1 && !availableFlagLXA0) { availableFlagLXA0 = MP_MX(A1, pred_flag_index_l0, mxA); if (!availableFlagLXA0) availableFlagLXA0 = MP_MX(A1, pred_flag_index_l1, mxA); } if (is_available_a0 && !availableFlagLXA0) { availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l0, mxA); if (!availableFlagLXA0) availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l1, mxA); } if (is_available_a1 && !availableFlagLXA0) { availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l0, mxA); if (!availableFlagLXA0) availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l1, mxA); } if (availableFlagLXA0 && !mvp_lx_flag) { mv->mv[LX] = mxA; return; } // B candidates // above right spatial merge candidate xB0 = x0 + nPbW; yB0 = y0 - 1; xB0_pu = xB0 >> s->sps->log2_min_pu_size; yB0_pu = yB0 >> s->sps->log2_min_pu_size; is_available_b0 = PRED_BLOCK_AVAILABLE(B0) && AVAILABLE(cand_up_right, B0); if (is_available_b0) { availableFlagLXB0 = MP_MX(B0, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX(B0, pred_flag_index_l1, mxB); } if (!availableFlagLXB0) { // above spatial merge candidate xB1 = x0 + nPbW - 1; yB1 = y0 - 1; xB1_pu = xB1 >> s->sps->log2_min_pu_size; yB1_pu = yB1 >> s->sps->log2_min_pu_size; is_available_b1 = AVAILABLE(cand_up, B1); if (is_available_b1) { availableFlagLXB0 = MP_MX(B1, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX(B1, pred_flag_index_l1, mxB); } } if (!availableFlagLXB0) { // above left spatial merge candidate xB2 = x0 - 1; yB2 = y0 - 1; xB2_pu = xB2 >> s->sps->log2_min_pu_size; yB2_pu = yB2 >> s->sps->log2_min_pu_size; is_available_b2 = AVAILABLE(cand_up_left, B2); if (is_available_b2) { availableFlagLXB0 = MP_MX(B2, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX(B2, pred_flag_index_l1, mxB); } } if (isScaledFlag_L0 == 0) { if (availableFlagLXB0) { availableFlagLXA0 = 1; mxA = mxB; } availableFlagLXB0 = 0; // XB0 and L1 if (is_available_b0) { availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB); } if (is_available_b1 && !availableFlagLXB0) { availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB); } if (is_available_b2 && !availableFlagLXB0) { availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB); if (!availableFlagLXB0) availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB); } } if (availableFlagLXA0) mvpcand_list[numMVPCandLX++] = mxA; if (availableFlagLXB0 && (!availableFlagLXA0 || mxA.x != mxB.x || mxA.y != mxB.y)) mvpcand_list[numMVPCandLX++] = mxB; //temporal motion vector prediction candidate if (numMVPCandLX < 2 && s->sh.slice_temporal_mvp_enabled_flag && mvp_lx_flag == numMVPCandLX) { Mv mv_col; int available_col = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH, ref_idx, &mv_col, LX); if (available_col) mvpcand_list[numMVPCandLX++] = mv_col; } // insert zero motion vectors when the number of available candidates are less than 2 while (numMVPCandLX < 2) mvpcand_list[numMVPCandLX++] = (Mv){ 0, 0 }; mv->mv[LX].x = mvpcand_list[mvp_lx_flag].x; mv->mv[LX].y = mvpcand_list[mvp_lx_flag].y; }