/* * VVC intra prediction DSP * * Copyright (C) 2021-2023 Nuomi * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavcodec/bit_depth_template.c" #include "intra.h" #define POS(x, y) src[(x) + stride * (y)] static av_always_inline void FUNC(cclm_linear_pred)(VVCFrameContext *fc, const int x0, const int y0, const int w, const int h, const pixel* pdsy, const int *a, const int *b, const int *k) { const VVCSPS *sps = fc->ps.sps; for (int i = 0; i < VVC_MAX_SAMPLE_ARRAYS - 1; i++) { const int c_idx = i + 1; const int x = x0 >> sps->hshift[c_idx]; const int y = y0 >> sps->vshift[c_idx]; const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel); pixel *src = (pixel*)fc->frame->data[c_idx] + x + y * stride; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { const int dsy = pdsy[y * w + x]; const int pred = ((dsy * a[i]) >> k[i]) + b[i]; POS(x, y) = CLIP(pred); } } } } #define MAX_PICK_POS 4 #define TOP 0 #define LEFT 1 static av_always_inline void FUNC(cclm_get_params_default)(int *a, int *b, int *k) { for (int i = 0; i < 2; i++) { a[i] = k[i] = 0; b[i] = 1 << (BIT_DEPTH - 1); } } static av_always_inline int FUNC(cclm_get_select_pos)(const VVCLocalContext *lc, const int x, const int y, const int w, const int h, const int avail_t, const int avail_l, int cnt[2], int pos[2][MAX_PICK_POS]) { const enum IntraPredMode mode = lc->cu->intra_pred_mode_c; const int num_is4 = !avail_t || !avail_l || mode != INTRA_LT_CCLM; int num_samp[2]; if (mode == INTRA_LT_CCLM) { num_samp[TOP] = avail_t ? w : 0; num_samp[LEFT] = avail_l ? h : 0; } else { num_samp[TOP] = (avail_t && mode == INTRA_T_CCLM) ? ff_vvc_get_top_available(lc, x, y, w + FFMIN(w, h), 1) : 0; num_samp[LEFT] = (avail_l && mode == INTRA_L_CCLM) ? ff_vvc_get_left_available(lc, x, y, h + FFMIN(w, h), 1) : 0; } if (!num_samp[TOP] && !num_samp[LEFT]) { return 0; } for (int i = TOP; i <= LEFT; i++) { const int start = num_samp[i] >> (2 + num_is4); const int step = FFMAX(1, num_samp[i] >> (1 + num_is4)) ; cnt[i] = FFMIN(num_samp[i], (1 + num_is4) << 1); for (int c = 0; c < cnt[i]; c++) pos[i][c] = start + c * step; } return 1; } static av_always_inline void FUNC(cclm_select_luma_444)(const pixel *src, const int step, const int cnt, const int pos[MAX_PICK_POS], pixel *sel_luma) { for (int i = 0; i < cnt; i++) sel_luma[i] = src[pos[i] * step]; } static av_always_inline void FUNC(cclm_select_luma)(const VVCFrameContext *fc, const int x0, const int y0, const int avail_t, const int avail_l, const int cnt[2], const int pos[2][MAX_PICK_POS], pixel *sel_luma) { const VVCSPS *sps = fc->ps.sps; const int b_ctu_boundary = !av_zero_extend(y0, sps->ctb_log2_size_y); const int hs = sps->hshift[1]; const int vs = sps->vshift[1]; const ptrdiff_t stride = fc->frame->linesize[0] / sizeof(pixel); if (!hs && !vs) { const pixel* src = (pixel*)fc->frame->data[0] + x0 + y0 * stride; FUNC(cclm_select_luma_444)(src - avail_t * stride, 1, cnt[TOP], pos[TOP], sel_luma); FUNC(cclm_select_luma_444)(src - avail_l, stride, cnt[LEFT], pos[LEFT], sel_luma + cnt[TOP]); } else { // top if (vs && !b_ctu_boundary) { const pixel *source = (pixel *)fc->frame->data[0] + x0 + (y0 - 2) * stride; for (int i = 0; i < cnt[TOP]; i++) { const int x = pos[TOP][i] << hs; const pixel *src = source + x; const int has_left = x || avail_l; const pixel l = has_left ? POS(-1, 0) : POS(0, 0); if (sps->r->sps_chroma_vertical_collocated_flag) { sel_luma[i] = (POS(0, -1) + l + 4 * POS(0, 0) + POS(1, 0) + POS(0, 1) + 4) >> 3; } else { const pixel l1 = has_left ? POS(-1, 1) : POS(0, 1); sel_luma[i] = (l + l1 + 2 * (POS(0, 0) + POS(0, 1)) + POS(1, 0) + POS(1, 1) + 4) >> 3; } } } else { const pixel *source = (pixel*)fc->frame->data[0] + x0 + (y0 - 1) * stride; for (int i = 0; i < cnt[TOP]; i++) { const int x = pos[TOP][i] << hs; const pixel *src = source + x; const int has_left = x || avail_l; const pixel l = has_left ? POS(-1, 0) : POS(0, 0); sel_luma[i] = (l + 2 * POS(0, 0) + POS(1, 0) + 2) >> 2; } } // left { const pixel *left; const pixel *source = (pixel *)fc->frame->data[0] + x0 + y0 * stride - (1 + hs) * avail_l; left = source - avail_l; for (int i = 0; i < cnt[LEFT]; i++) { const int y = pos[LEFT][i] << vs; const int offset = y * stride; const pixel *l = left + offset; const pixel *src = source + offset; pixel pred; if (!vs) { pred = (*l + 2 * POS(0, 0) + POS(1, 0) + 2) >> 2; } else { if (sps->r->sps_chroma_vertical_collocated_flag) { const int has_top = y || avail_t; const pixel t = has_top ? POS(0, -1) : POS(0, 0); pred = (*l + t + 4 * POS(0, 0) + POS(1, 0) + POS(0, 1) + 4) >> 3; } else { pred = (*l + *(l + stride) + 2 * POS(0, 0) + 2 * POS(0, 1) + POS(1, 0) + POS(1, 1) + 4) >> 3; } } sel_luma[i + cnt[TOP]] = pred; } } } } static av_always_inline void FUNC(cclm_select_chroma)(const VVCFrameContext *fc, const int x, const int y, const int cnt[2], const int pos[2][MAX_PICK_POS], pixel sel[][MAX_PICK_POS * 2]) { for (int c_idx = 1; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) { const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel); //top const pixel *src = (pixel*)fc->frame->data[c_idx] + x + (y - 1)* stride; for (int i = 0; i < cnt[TOP]; i++) { sel[c_idx][i] = src[pos[TOP][i]]; } //left src = (pixel*)fc->frame->data[c_idx] + x - 1 + y * stride; for (int i = 0; i < cnt[LEFT]; i++) { sel[c_idx][i + cnt[TOP]] = src[pos[LEFT][i] * stride]; } } } static av_always_inline int FUNC(cclm_select_samples)(const VVCLocalContext *lc, const int x0, const int y0, const int w, const int h, const int avail_t, const int avail_l, pixel sel[][MAX_PICK_POS * 2]) { const VVCFrameContext *fc = lc->fc; const VVCSPS *sps = fc->ps.sps; const int x = x0 >> sps->hshift[1]; const int y = y0 >> sps->vshift[1]; int cnt[2], pos[2][MAX_PICK_POS]; if (!FUNC(cclm_get_select_pos)(lc, x, y, w, h, avail_t, avail_l, cnt, pos)) return 0; FUNC(cclm_select_luma)(fc, x0, y0, avail_t, avail_l, cnt, pos, sel[LUMA]); FUNC(cclm_select_chroma)(fc, x, y, cnt, pos, sel); if (cnt[TOP] + cnt[LEFT] == 2) { for (int c_idx = 0; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) { sel[c_idx][3] = sel[c_idx][0]; sel[c_idx][2] = sel[c_idx][1]; sel[c_idx][0] = sel[c_idx][1]; sel[c_idx][1] = sel[c_idx][3]; } } return 1; } static av_always_inline void FUNC(cclm_get_min_max)( const pixel sel[][MAX_PICK_POS * 2], int *min, int *max) { int min_grp_idx[] = { 0, 2 }; int max_grp_idx[] = { 1, 3 }; if (sel[LUMA][min_grp_idx[0]] > sel[LUMA][min_grp_idx[1]]) FFSWAP(int, min_grp_idx[0], min_grp_idx[1]); if (sel[LUMA][max_grp_idx[0]] > sel[LUMA][max_grp_idx[1]]) FFSWAP(int, max_grp_idx[0], max_grp_idx[1]); if (sel[LUMA][min_grp_idx[0]] > sel[LUMA][max_grp_idx[1]]) { FFSWAP(int, min_grp_idx[0], max_grp_idx[0]); FFSWAP(int, min_grp_idx[1], max_grp_idx[1]); } if (sel[LUMA][min_grp_idx[1]] > sel[LUMA][max_grp_idx[0]]) FFSWAP(int, min_grp_idx[1], max_grp_idx[0]); for (int c_idx = 0; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) { max[c_idx] = (sel[c_idx][max_grp_idx[0]] + sel[c_idx][max_grp_idx[1]] + 1) >> 1; min[c_idx] = (sel[c_idx][min_grp_idx[0]] + sel[c_idx][min_grp_idx[1]] + 1) >> 1; } } static av_always_inline void FUNC(cclm_get_params)(const VVCLocalContext *lc, const int x0, const int y0, const int w, const int h, const int avail_t, const int avail_l, int *a, int *b, int *k) { pixel sel[VVC_MAX_SAMPLE_ARRAYS][MAX_PICK_POS * 2]; int max[VVC_MAX_SAMPLE_ARRAYS], min[VVC_MAX_SAMPLE_ARRAYS]; int diff; if (!FUNC(cclm_select_samples)(lc, x0, y0, w, h, avail_t, avail_l, sel)) { FUNC(cclm_get_params_default)(a, b, k); return; } FUNC(cclm_get_min_max)(sel, min, max); diff = max[LUMA] - min[LUMA]; if (diff == 0) { for (int i = 0; i < 2; i++) { a[i] = k[i] = 0; b[i] = min[i + 1]; } return; } for (int i = 0; i < 2; i++) { const static int div_sig_table[] = {0, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 0}; const int diffc = max[i + 1] - min[i + 1]; int x = av_log2(diff); int y, v, sign, add; const int norm_diff = ((diff << 4) >> x) & 15; x += (norm_diff) ? 1 : 0; y = abs(diffc) > 0 ? av_log2(abs(diffc)) + 1 : 0; v = div_sig_table[norm_diff] | 8; add = (1 << y >> 1); a[i] = (diffc * v + add) >> y; k[i] = FFMAX(1, 3 + x -y); sign = a[i] < 0 ? -1 : (a[i] > 0); a[i] = ((3 + x - y) < 1) ? sign * 15 : a[i]; b[i] = min[i + 1] - ((a[i] * min[0]) >> k[i]); } } #undef TOP #undef LEFT static av_always_inline void FUNC(cclm_get_luma_rec_pixels)(const VVCFrameContext *fc, const int x0, const int y0, const int w, const int h, const int avail_t, const int avail_l, pixel *pdsy) { const int hs = fc->ps.sps->hshift[1]; const int vs = fc->ps.sps->vshift[1]; const ptrdiff_t stride = fc->frame->linesize[0] / sizeof(pixel); const pixel *source = (pixel*)fc->frame->data[0] + x0 + y0 * stride; const pixel *left = source - avail_l; const pixel *top = source - avail_t * stride; const VVCSPS *sps = fc->ps.sps; if (!hs && !vs) { for (int i = 0; i < h; i++) memcpy(pdsy + i * w, source + i * stride, w * sizeof(pixel)); return; } for (int i = 0; i < h; i++) { const pixel *src = source; const pixel *l = left; const pixel *t = top; if (!vs) { for (int j = 0; j < w; j++) { pixel pred = (*l + 2 * POS(0, 0) + POS(1, 0) + 2) >> 2; pdsy[i * w + j] = pred; src += 2; l = src - 1; } } else { if (sps->r->sps_chroma_vertical_collocated_flag) { for (int j = 0; j < w; j++) { pixel pred = (*l + *t + 4 * POS(0, 0) + POS(1, 0) + POS(0, 1) + 4) >> 3; pdsy[i * w + j] = pred; src += 2; t += 2; l = src - 1; } } else { for (int j = 0; j < w; j++) { pixel pred = (*l + *(l + stride) + 2 * POS(0, 0) + 2 * POS(0, 1) + POS(1, 0) + POS(1, 1) + 4) >> 3; pdsy[i * w + j] = pred; src += 2; l = src - 1; } } } source += (stride << vs); left += (stride << vs); top = source - stride; } } static av_always_inline void FUNC(cclm_pred_default)(VVCFrameContext *fc, const int x, const int y, const int w, const int h, const int avail_t, const int avail_l) { for (int c_idx = 1; c_idx < VVC_MAX_SAMPLE_ARRAYS; c_idx++) { const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel); pixel *dst = (pixel*)fc->frame->data[c_idx] + x + y * stride; for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { dst[j] = 1 << (BIT_DEPTH - 1); } dst += stride; } } } //8.4.5.2.14 Specification of INTRA_LT_CCLM, INTRA_L_CCLM and INTRA_T_CCLM intra prediction mode static void FUNC(intra_cclm_pred)(const VVCLocalContext *lc, const int x0, const int y0, const int width, const int height) { VVCFrameContext *fc = lc->fc; const VVCSPS *sps = fc->ps.sps; const int avail_t = ff_vvc_get_top_available(lc, x0, y0, 1, 0); const int avail_l = ff_vvc_get_left_available(lc, x0, y0, 1, 0); const int hs = sps->hshift[1]; const int vs = sps->vshift[1]; const int x = x0 >> hs; const int y = y0 >> vs; const int w = width >> hs; const int h = height >> vs; int a[2], b[2], k[2]; pixel dsy[MAX_TB_SIZE * MAX_TB_SIZE]; if (!avail_t && !avail_l) { FUNC(cclm_pred_default)(fc, x, y, w, h, avail_t, avail_l); return; } FUNC(cclm_get_luma_rec_pixels)(fc, x0, y0, w, h, avail_t, avail_l, dsy); FUNC(cclm_get_params) (lc, x0, y0, w, h, avail_t, avail_l, a, b, k); FUNC(cclm_linear_pred)(fc, x0, y0, w, h, dsy, a, b, k); } static int FUNC(lmcs_sum_samples)(const pixel *start, ptrdiff_t stride, const int avail, const int target_size) { const int size = FFMIN(avail, target_size); int sum = 0; for (int i = 0; i < size; i++) { sum += *start; start += stride; } sum += *(start - stride) * (target_size - size); return sum; } // 8.7.5.3 Picture reconstruction with luma dependent chroma residual scaling process for chroma samples static int FUNC(lmcs_derive_chroma_scale)(VVCLocalContext *lc, const int x0, const int y0) { VVCFrameContext *fc = lc->fc; const VVCLMCS *lmcs = &fc->ps.lmcs; const int size_y = FFMIN(fc->ps.sps->ctb_size_y, 64); const int x = x0 & ~(size_y - 1); const int y = y0 & ~(size_y - 1); if (lc->lmcs.x_vpdu != x || lc->lmcs.y_vpdu != y) { int cnt = 0, luma = 0, i; const pixel *src = (const pixel *)(fc->frame->data[LUMA] + y * fc->frame->linesize[LUMA] + (x << fc->ps.sps->pixel_shift)); const ptrdiff_t stride = fc->frame->linesize[LUMA] / sizeof(pixel); const int avail_t = ff_vvc_get_top_available (lc, x, y, 1, 0); const int avail_l = ff_vvc_get_left_available(lc, x, y, 1, 0); if (avail_l) { luma += FUNC(lmcs_sum_samples)(src - 1, stride, fc->ps.pps->height - y, size_y); cnt = size_y; } if (avail_t) { luma += FUNC(lmcs_sum_samples)(src - stride, 1, fc->ps.pps->width - x, size_y); cnt += size_y; } if (cnt) luma = (luma + (cnt >> 1)) >> av_log2(cnt); else luma = 1 << (BIT_DEPTH - 1); for (i = lmcs->min_bin_idx; i <= lmcs->max_bin_idx; i++) { if (luma < lmcs->pivot[i + 1]) break; } i = FFMIN(i, LMCS_MAX_BIN_SIZE - 1); lc->lmcs.chroma_scale = lmcs->chroma_scale_coeff[i]; lc->lmcs.x_vpdu = x; lc->lmcs.y_vpdu = y; } return lc->lmcs.chroma_scale; } // 8.7.5.3 Picture reconstruction with luma dependent chroma residual scaling process for chroma samples static void FUNC(lmcs_scale_chroma)(VVCLocalContext *lc, int *dst, const int *coeff, const int width, const int height, const int x0_cu, const int y0_cu) { const int chroma_scale = FUNC(lmcs_derive_chroma_scale)(lc, x0_cu, y0_cu); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { const int c = av_clip_intp2(*coeff, BIT_DEPTH); if (c > 0) *dst = (c * chroma_scale + (1 << 10)) >> 11; else *dst = -((-c * chroma_scale + (1 << 10)) >> 11); coeff++; dst++; } } } static av_always_inline void FUNC(ref_filter)(const pixel *left, const pixel *top, pixel *filtered_left, pixel *filtered_top, const int left_size, const int top_size, const int unfilter_last_one) { filtered_left[-1] = filtered_top[-1] = (left[0] + 2 * left[-1] + top[0] + 2 ) >> 2; for (int i = 0; i < left_size - unfilter_last_one; i++) { filtered_left[i] = (left[i- 1] + 2 * left[i] + left[i + 1] + 2) >> 2; } for (int i = 0; i < top_size - unfilter_last_one; i++) { filtered_top[i] = (top[i-1] + 2 * top[i] + top[i + 1] + 2) >> 2; } if (unfilter_last_one) { filtered_top[top_size - 1] = top[top_size - 1]; filtered_left[left_size - 1] = left[left_size - 1]; } } static av_always_inline void FUNC(prepare_intra_edge_params)(const VVCLocalContext *lc, IntraEdgeParams* edge, const pixel *src, const ptrdiff_t stride, const int x, int y, int w, int h, int c_idx, const int is_intra_mip, const int mode, const int ref_idx, const int need_pdpc) { #define EXTEND(ptr, val, len) \ do { \ for (i = 0; i < (len); i++) \ *(ptr + i) = val; \ } while (0) const CodingUnit *cu = lc->cu; const int ref_filter_flag = is_intra_mip ? 0 : ff_vvc_ref_filter_flag_derive(mode); const int filter_flag = !ref_idx && w * h > 32 && !c_idx && cu->isp_split_type == ISP_NO_SPLIT && ref_filter_flag; int cand_up_left = lc->na.cand_up_left; pixel *left = (pixel*)edge->left_array + MAX_TB_SIZE + 3; pixel *top = (pixel*)edge->top_array + MAX_TB_SIZE + 3; pixel *filtered_left = (pixel*)edge->filtered_left_array + MAX_TB_SIZE + 3; pixel *filtered_top = (pixel*)edge->filtered_top_array + MAX_TB_SIZE + 3; const int ref_line = ref_idx == 3 ? -4 : (-1 - ref_idx); int left_size, top_size, unfilter_left_size, unfilter_top_size; int left_available, top_available; int refw, refh; int intra_pred_angle, inv_angle; int i; if (is_intra_mip || mode == INTRA_PLANAR) { left_size = h + 1; top_size = w + 1; unfilter_left_size = left_size + filter_flag; unfilter_top_size = top_size + filter_flag; } else if (mode == INTRA_DC) { unfilter_left_size = left_size = h; unfilter_top_size = top_size = w; } else if (mode == INTRA_VERT) { //we may need 1 pixel to predict the top left. unfilter_left_size = left_size = need_pdpc ? h : 1; unfilter_top_size = top_size = w; } else if (mode == INTRA_HORZ) { unfilter_left_size = left_size = h; //even need_pdpc == 0, we may need 1 pixel to predict the top left. unfilter_top_size = top_size = need_pdpc ? w : 1; } else { if (cu->isp_split_type == ISP_NO_SPLIT || c_idx) { refw = w * 2; refh = h * 2; } else { refw = cu->cb_width + w; refh = cu->cb_height + h; } intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode); inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle); unfilter_top_size = top_size = refw; unfilter_left_size = left_size = refh; } left_available = ff_vvc_get_left_available(lc, x, y, unfilter_left_size, c_idx); for (i = 0; i < left_available; i++) left[i] = POS(ref_line, i); top_available = ff_vvc_get_top_available(lc, x, y, unfilter_top_size, c_idx); memcpy(top, src + ref_line * stride, top_available * sizeof(pixel)); for (int i = -1; i >= ref_line; i--) { if (cand_up_left) { left[i] = POS(ref_line, i); top[i] = POS(i, ref_line); } else if (left_available) { left[i] = top[i] = left[0]; } else if (top_available) { left[i] = top[i] = top[0]; } else { left[i] = top[i] = 1 << (BIT_DEPTH - 1); } } EXTEND(top + top_available, top[top_available-1], unfilter_top_size - top_available); EXTEND(left + left_available, left[left_available-1], unfilter_left_size - left_available); if (ref_filter_flag) { if (!ref_idx && w * h > 32 && !c_idx && cu->isp_split_type == ISP_NO_SPLIT ) { const int unfilter_last_one = left_size == unfilter_left_size; FUNC(ref_filter)(left, top, filtered_left, filtered_top, unfilter_left_size, unfilter_top_size, unfilter_last_one); left = filtered_left; top = filtered_top; } } if (!is_intra_mip && mode != INTRA_PLANAR && mode != INTRA_DC) { if (ref_filter_flag || ref_idx || cu->isp_split_type != ISP_NO_SPLIT) { edge->filter_flag = 0; } else { const int min_dist_ver_hor = FFMIN(abs(mode - 50), abs(mode - 18)); const int intra_hor_ver_dist_thres[] = {24, 14, 2, 0, 0}; const int ntbs = (av_log2(w) + av_log2(h)) >> 1; edge->filter_flag = min_dist_ver_hor > intra_hor_ver_dist_thres[ntbs - 2]; } if (mode != INTRA_VERT && mode != INTRA_HORZ) { if (mode >= INTRA_DIAG) { if (intra_pred_angle < 0) { pixel *p = top - (ref_idx + 1); for (int x = -h; x < 0; x++) { const int idx = -1 - ref_idx + FFMIN((x*inv_angle + 256) >> 9, h); p[x] = left[idx]; } } else { for (int i = refw; i <= refw + FFMAX(1, w/h) * ref_idx + 1; i++) top[i] = top[refw - 1]; } } else { if (intra_pred_angle < 0) { pixel *p = left - (ref_idx + 1); for (int x = -w; x < 0; x++) { const int idx = -1 - ref_idx + FFMIN((x*inv_angle + 256) >> 9, w); p[x] = top[idx]; } } else { for (int i = refh; i <= refh + FFMAX(1, h/w) * ref_idx + 1; i++) left[i] = left[refh - 1]; } } } } edge->left = (uint8_t*)left; edge->top = (uint8_t*)top; } //8.4.1 General decoding process for coding units coded in intra prediction mode static void FUNC(intra_pred)(const VVCLocalContext *lc, int x0, int y0, const int width, const int height, int c_idx) { VVCFrameContext *fc = lc->fc; const VVCSPS *sps = fc->ps.sps; const VVCPPS *pps = fc->ps.pps; const CodingUnit *cu = lc->cu; const int log2_min_cb_size = sps->min_cb_log2_size_y; const int min_cb_width = pps->min_cb_width; const int x_cb = x0 >> log2_min_cb_size; const int y_cb = y0 >> log2_min_cb_size; const int hshift = fc->ps.sps->hshift[c_idx]; const int vshift = fc->ps.sps->vshift[c_idx]; const int x = x0 >> hshift; const int y = y0 >> vshift; const int w = width >> hshift; const int h = height >> vshift; const ptrdiff_t stride = fc->frame->linesize[c_idx] / sizeof(pixel); const int pred_mode = c_idx ? cu->intra_pred_mode_c : cu->intra_pred_mode_y; const int mode = ff_vvc_wide_angle_mode_mapping(cu, w, h, c_idx, pred_mode); const int intra_mip_flag = SAMPLE_CTB(fc->tab.imf, x_cb, y_cb); const int is_intra_mip = intra_mip_flag && (!c_idx || cu->mip_chroma_direct_flag); const int ref_idx = c_idx ? 0 : cu->intra_luma_ref_idx; const int need_pdpc = ff_vvc_need_pdpc(w, h, cu->bdpcm_flag[c_idx], mode, ref_idx); pixel *src = (pixel*)fc->frame->data[c_idx] + x + y * stride; IntraEdgeParams edge; FUNC(prepare_intra_edge_params)(lc, &edge, src, stride, x, y, w, h, c_idx, is_intra_mip, mode, ref_idx, need_pdpc); if (is_intra_mip) { int intra_mip_transposed_flag = SAMPLE_CTB(fc->tab.imtf, x_cb, y_cb); int intra_mip_mode = SAMPLE_CTB(fc->tab.imm, x_cb, y_cb); fc->vvcdsp.intra.pred_mip((uint8_t *)src, edge.top, edge.left, w, h, stride, intra_mip_mode, intra_mip_transposed_flag); } else if (mode == INTRA_PLANAR) { fc->vvcdsp.intra.pred_planar((uint8_t *)src, edge.top, edge.left, w, h, stride); } else if (mode == INTRA_DC) { fc->vvcdsp.intra.pred_dc((uint8_t *)src, edge.top, edge.left, w, h, stride); } else if (mode == INTRA_VERT) { fc->vvcdsp.intra.pred_v((uint8_t *)src, edge.top, w, h, stride); } else if (mode == INTRA_HORZ) { fc->vvcdsp.intra.pred_h((uint8_t *)src, edge.left, w, h, stride); } else { if (mode >= INTRA_DIAG) { fc->vvcdsp.intra.pred_angular_v((uint8_t *)src, edge.top, edge.left, w, h, stride, c_idx, mode, ref_idx, edge.filter_flag, need_pdpc); } else { fc->vvcdsp.intra.pred_angular_h((uint8_t *)src, edge.top, edge.left, w, h, stride, c_idx, mode, ref_idx, edge.filter_flag, need_pdpc); } } if (need_pdpc) { //8.4.5.2.15 Position-dependent intra prediction sample filtering process if (!is_intra_mip && (mode == INTRA_PLANAR || mode == INTRA_DC || mode == INTRA_VERT || mode == INTRA_HORZ)) { const int scale = (av_log2(w) + av_log2(h) - 2) >> 2; const pixel *left = (pixel*)edge.left; const pixel *top = (pixel*)edge.top; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { int l, t, wl, wt, pred; pixel val; if (mode == INTRA_PLANAR || mode == INTRA_DC) { l = left[y]; t = top[x]; wl = 32 >> FFMIN((x << 1) >> scale, 31); wt = 32 >> FFMIN((y << 1) >> scale, 31); } else { l = left[y] - left[-1] + POS(x,y); t = top[x] - top[-1] + POS(x,y); wl = (mode == INTRA_VERT) ? (32 >> FFMIN((x << 1) >> scale, 31)) : 0; wt = (mode == INTRA_HORZ) ? (32 >> FFMIN((y << 1) >> scale, 31)) : 0; } val = POS(x, y); pred = val + ((wl * (l - val) + wt * (t - val) + 32) >> 6); POS(x, y) = CLIP(pred); } } } } } //8.4.5.2.11 Specification of INTRA_PLANAR intra prediction mode static av_always_inline void FUNC(pred_planar)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, const int w, const int h, const ptrdiff_t stride) { int x, y; pixel *src = (pixel *)_src; const pixel *top = (const pixel *)_top; const pixel *left = (const pixel *)_left; const int logw = av_log2(w); const int logh = av_log2(h); const int size = w * h; const int shift = (logw + logh + 1); for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { const int pred_v = ((h - 1 - y) * top[x] + (y + 1) * left[h]) << logw; const int pred_h = ((w - 1 - x) * left[y] + (x + 1) * top[w]) << logh; const int pred = (pred_v + pred_h + size) >> shift; POS(x, y) = pred; } } } //8.4.5.2.3 MIP boundary sample downsampling process static av_always_inline void FUNC(mip_downsampling)(int *reduced, const int boundary_size, const pixel *ref, const int n_tb_s) { const int b_dwn = n_tb_s / boundary_size; const int log2 = av_log2(b_dwn); if (boundary_size == n_tb_s) { for (int i = 0; i < n_tb_s; i++) reduced[i] = ref[i]; return; } for (int i = 0; i < boundary_size; i++) { int r; r = *ref++; for (int j = 1; j < b_dwn; j++) r += *ref++; reduced[i] = (r + (1 << (log2 - 1))) >> log2; } } static av_always_inline void FUNC(mip_reduced_pred)(pixel *src, const ptrdiff_t stride, const int up_hor, const int up_ver, const int pred_size, const int *reduced, const int reduced_size, const int ow, const int temp0, const uint8_t *matrix, int is_transposed) { src = &POS(up_hor - 1, up_ver - 1); for (int y = 0; y < pred_size; y++) { for (int x = 0; x < pred_size; x++) { int pred = 0; for (int i = 0; i < reduced_size; i++) pred += reduced[i] * matrix[i]; matrix += reduced_size; pred = ((pred + ow) >> 6) + temp0; pred = av_clip(pred, 0, (1< 1 || up_ver > 1) { if (up_hor > 1) FUNC(mip_upsampling_1d)(&POS(0, up_ver - 1), 1, up_ver * stride, pred_size, up_hor, left + up_ver - 1, up_ver, pred_size); if (up_ver > 1) FUNC(mip_upsampling_1d)(src, stride, 1, w, up_ver, top, 1, pred_size); } } static av_always_inline pixel FUNC(pred_dc_val)(const pixel *top, const pixel *left, const int w, const int h) { pixel dc_val; int sum = 0; unsigned int offset = (w == h) ? (w << 1) : FFMAX(w, h); const int shift = av_log2(offset); offset >>= 1; if (w >= h) { for (int i = 0; i < w; i++) sum += top[i]; } if (w <= h) { for (int i = 0; i < h; i++) sum += left[i]; } dc_val = (sum + offset) >> shift; return dc_val; } //8.4.5.2.12 Specification of INTRA_DC intra prediction mode static av_always_inline void FUNC(pred_dc)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, const int w, const int h, const ptrdiff_t stride) { int x, y; pixel *src = (pixel *)_src; const pixel *top = (const pixel *)_top; const pixel *left = (const pixel *)_left; const pixel dc = FUNC(pred_dc_val)(top, left, w, h); const pixel4 a = PIXEL_SPLAT_X4(dc); for (y = 0; y < h; y++) { pixel *s = src; for (x = 0; x < w; x += 4) { AV_WN4P(s, a); s += 4; } src += stride; } } static av_always_inline void FUNC(pred_v)(uint8_t *_src, const uint8_t *_top, const int w, const int h, const ptrdiff_t stride) { pixel *src = (pixel *)_src; const pixel *top = (const pixel *)_top; for (int y = 0; y < h; y++) { memcpy(src, top, sizeof(pixel) * w); src += stride; } } static void FUNC(pred_h)(uint8_t *_src, const uint8_t *_left, const int w, const int h, const ptrdiff_t stride) { pixel *src = (pixel *)_src; const pixel *left = (const pixel *)_left; for (int y = 0; y < h; y++) { const pixel4 a = PIXEL_SPLAT_X4(left[y]); for (int x = 0; x < w; x += 4) { AV_WN4P(&POS(x, y), a); } } } #define INTRA_LUMA_FILTER(p) CLIP((p[0] * f[0] + p[1] * f[1] + p[2] * f[2] + p[3] * f[3] + 32) >> 6) #define INTRA_CHROMA_FILTER(p) (((32 - fact) * p[1] + fact * p[2] + 16) >> 5) //8.4.5.2.13 Specification of INTRA_ANGULAR2..INTRA_ANGULAR66 intra prediction modes static void FUNC(pred_angular_v)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, const int w, const int h, const ptrdiff_t stride, const int c_idx, const int mode, const int ref_idx, const int filter_flag, const int need_pdpc) { pixel *src = (pixel *)_src; const pixel *left = (const pixel *)_left; const pixel *top = (const pixel *)_top - (1 + ref_idx); const int intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode); int pos = (1 + ref_idx) * intra_pred_angle; const int dp = intra_pred_angle; const int is_luma = !c_idx; int nscale, inv_angle; if (need_pdpc) { inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle); nscale = ff_vvc_nscale_derive(w, h, mode); } for (int y = 0; y < h; y++) { const int idx = (pos >> 5) + ref_idx; const int fact = pos & 31; if (!fact && (!is_luma || !filter_flag)) { for (int x = 0; x < w; x++) { const pixel *p = top + x + idx + 1; POS(x, y) = *p; } } else { if (!c_idx) { const int8_t *f = ff_vvc_intra_luma_filter[filter_flag][fact]; for (int x = 0; x < w; x++) { const pixel *p = top + x + idx; POS(x, y) = INTRA_LUMA_FILTER(p); } } else { for (int x = 0; x < w; x++) { const pixel *p = top + x + idx; POS(x, y) = INTRA_CHROMA_FILTER(p); } } } if (need_pdpc) { int inv_angle_sum = 256 + inv_angle; for (int x = 0; x < FFMIN(w, 3 << nscale); x++) { const pixel l = left[y + (inv_angle_sum >> 9)]; const pixel val = POS(x, y); const int wl = 32 >> ((x << 1) >> nscale); const int pred = val + (((l - val) * wl + 32) >> 6); POS(x, y) = CLIP(pred); inv_angle_sum += inv_angle; } } pos += dp; } } //8.4.5.2.13 Specification of INTRA_ANGULAR2..INTRA_ANGULAR66 intra prediction modes static void FUNC(pred_angular_h)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, const int w, const int h, const ptrdiff_t stride, const int c_idx, const int mode, const int ref_idx, const int filter_flag, const int need_pdpc) { pixel *src = (pixel *)_src; const pixel *left = (const pixel *)_left - (1 + ref_idx); const pixel *top = (const pixel *)_top; const int is_luma = !c_idx; const int intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode); const int dp = intra_pred_angle; int nscale = 0, inv_angle, inv_angle_sum; if (need_pdpc) { inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle); inv_angle_sum = 256 + inv_angle; nscale = ff_vvc_nscale_derive(w, h, mode); } for (int y = 0; y < h; y++) { int pos = (1 + ref_idx) * intra_pred_angle; int wt; if (need_pdpc) wt = (32 >> FFMIN(31, (y * 2) >> nscale)); for (int x = 0; x < w; x++) { const int idx = (pos >> 5) + ref_idx; const int fact = pos & 31; const pixel *p = left + y + idx; int pred; if (!fact && (!is_luma || !filter_flag)) { pred = p[1]; } else { if (!c_idx) { const int8_t *f = ff_vvc_intra_luma_filter[filter_flag][fact]; pred = INTRA_LUMA_FILTER(p); } else { pred = INTRA_CHROMA_FILTER(p); } } if (need_pdpc) { if (y < (3 << nscale)) { const pixel t = top[x + (inv_angle_sum >> 9)]; pred = CLIP(pred + (((t - pred) * wt + 32) >> 6)); } } POS(x, y) = pred; pos += dp; } if (need_pdpc) inv_angle_sum += inv_angle; } } static void FUNC(ff_vvc_intra_dsp_init)(VVCIntraDSPContext *const intra) { intra->lmcs_scale_chroma = FUNC(lmcs_scale_chroma); intra->intra_cclm_pred = FUNC(intra_cclm_pred); intra->intra_pred = FUNC(intra_pred); intra->pred_planar = FUNC(pred_planar); intra->pred_mip = FUNC(pred_mip); intra->pred_dc = FUNC(pred_dc); intra->pred_v = FUNC(pred_v); intra->pred_h = FUNC(pred_h); intra->pred_angular_v = FUNC(pred_angular_v); intra->pred_angular_h = FUNC(pred_angular_h); }