alac: cosmetics: rename some variables and function names

This commit is contained in:
Justin Ruggles 2012-07-09 16:52:19 -04:00
parent 1b3ef155d7
commit 2aebac6918
1 changed files with 77 additions and 93 deletions

View File

@ -112,14 +112,13 @@ static const uint16_t alac_channel_layouts[8] = {
AV_CH_LAYOUT_7POINT1_WIDE_BACK
};
static inline unsigned int decode_scalar(GetBitContext *gb, int k,
int readsamplesize)
static inline unsigned int decode_scalar(GetBitContext *gb, int k, int bps)
{
unsigned int x = get_unary_0_9(gb);
if (x > 8) { /* RICE THRESHOLD */
/* use alternative encoding */
x = get_bits_long(gb, readsamplesize);
x = get_bits_long(gb, bps);
} else if (k != 1) {
int extrabits = show_bits(gb, k);
@ -135,28 +134,25 @@ static inline unsigned int decode_scalar(GetBitContext *gb, int k,
return x;
}
static void bastardized_rice_decompress(ALACContext *alac,
int32_t *output_buffer,
int output_size,
int readsamplesize,
int rice_history_mult)
static void rice_decompress(ALACContext *alac, int32_t *output_buffer,
int nb_samples, int bps, int rice_history_mult)
{
int output_count;
int i;
unsigned int history = alac->rice_initial_history;
int sign_modifier = 0;
for (output_count = 0; output_count < output_size; output_count++) {
for (i = 0; i < nb_samples; i++) {
int k;
unsigned int x;
/* read k, that is bits as is */
k = av_log2((history >> 9) + 3);
k = FFMIN(k, alac->rice_limit);
x = decode_scalar(&alac->gb, k, readsamplesize);
x = decode_scalar(&alac->gb, k, bps);
x += sign_modifier;
sign_modifier = 0;
output_buffer[output_count] = (x >> 1) ^ -(x & 1);
output_buffer[i] = (x >> 1) ^ -(x & 1);
/* now update the history */
if (x > 0xffff)
@ -166,7 +162,7 @@ static void bastardized_rice_decompress(ALACContext *alac,
((history * rice_history_mult) >> 9);
/* special case: there may be compressed blocks of 0 */
if ((history < 128) && (output_count+1 < output_size)) {
if ((history < 128) && (i + 1 < nb_samples)) {
int block_size;
k = 7 - av_log2(history) + ((history + 16) >> 6 /* / 64 */);
@ -175,13 +171,15 @@ static void bastardized_rice_decompress(ALACContext *alac,
block_size = decode_scalar(&alac->gb, k, 16);
if (block_size > 0) {
if(block_size >= output_size - output_count){
av_log(alac->avctx, AV_LOG_ERROR, "invalid zero block size of %d %d %d\n", block_size, output_size, output_count);
block_size= output_size - output_count - 1;
if (block_size >= nb_samples - i) {
av_log(alac->avctx, AV_LOG_ERROR,
"invalid zero block size of %d %d %d\n", block_size,
nb_samples, i);
block_size = nb_samples - i - 1;
}
memset(&output_buffer[output_count + 1], 0,
memset(&output_buffer[i + 1], 0,
block_size * sizeof(*output_buffer));
output_count += block_size;
i += block_size;
}
if (block_size <= 0xffff)
@ -197,93 +195,86 @@ static inline int sign_only(int v)
return v ? FFSIGN(v) : 0;
}
static void predictor_decompress_fir_adapt(int32_t *error_buffer,
int32_t *buffer_out,
int output_size,
int readsamplesize,
int16_t *predictor_coef_table,
int predictor_coef_num,
int predictor_quantitization)
static void lpc_prediction(int32_t *error_buffer, int32_t *buffer_out,
int nb_samples, int bps, int16_t *lpc_coefs,
int lpc_order, int lpc_quant)
{
int i;
/* first sample always copies */
*buffer_out = *error_buffer;
if (output_size <= 1)
if (nb_samples <= 1)
return;
if (!predictor_coef_num) {
if (!lpc_order) {
memcpy(&buffer_out[1], &error_buffer[1],
(output_size - 1) * sizeof(*buffer_out));
(nb_samples - 1) * sizeof(*buffer_out));
return;
}
if (predictor_coef_num == 31) {
if (lpc_order == 31) {
/* simple 1st-order prediction */
for (i = 1; i < output_size; i++) {
for (i = 1; i < nb_samples; i++) {
buffer_out[i] = sign_extend(buffer_out[i - 1] + error_buffer[i],
readsamplesize);
bps);
}
return;
}
/* read warm-up samples */
for (i = 0; i < predictor_coef_num; i++) {
for (i = 0; i < lpc_order; i++) {
buffer_out[i + 1] = sign_extend(buffer_out[i] + error_buffer[i + 1],
readsamplesize);
bps);
}
/* NOTE: 4 and 8 are very common cases that could be optimized. */
/* general case */
for (i = predictor_coef_num; i < output_size - 1; i++) {
for (i = lpc_order; i < nb_samples - 1; i++) {
int j;
int val = 0;
int error_val = error_buffer[i + 1];
int error_sign;
int d = buffer_out[i - predictor_coef_num];
int d = buffer_out[i - lpc_order];
for (j = 0; j < predictor_coef_num; j++) {
val += (buffer_out[i - j] - d) *
predictor_coef_table[j];
for (j = 0; j < lpc_order; j++) {
val += (buffer_out[i - j] - d) * lpc_coefs[j];
}
val = (val + (1 << (predictor_quantitization - 1))) >>
predictor_quantitization;
val = (val + (1 << (lpc_quant - 1))) >> lpc_quant;
val += d + error_val;
buffer_out[i + 1] = sign_extend(val, readsamplesize);
buffer_out[i + 1] = sign_extend(val, bps);
/* adapt LPC coefficients */
error_sign = sign_only(error_val);
if (error_sign) {
for (j = predictor_coef_num - 1; j >= 0 && error_val * error_sign > 0; j--) {
for (j = lpc_order - 1; j >= 0 && error_val * error_sign > 0; j--) {
int sign;
val = d - buffer_out[i - j];
sign = sign_only(val) * error_sign;
predictor_coef_table[j] -= sign;
lpc_coefs[j] -= sign;
val *= sign;
error_val -= ((val >> predictor_quantitization) *
(predictor_coef_num - j));
error_val -= (val >> lpc_quant) * (lpc_order - j);
}
}
}
}
static void decorrelate_stereo(int32_t *buffer[2],
int numsamples, uint8_t interlacing_shift,
uint8_t interlacing_leftweight)
int nb_samples, uint8_t decorr_shift,
uint8_t decorr_left_weight)
{
int i;
for (i = 0; i < numsamples; i++) {
for (i = 0; i < nb_samples; i++) {
int32_t a, b;
a = buffer[0][i];
b = buffer[1][i];
a -= (b * interlacing_leftweight) >> interlacing_shift;
a -= (b * decorr_left_weight) >> decorr_shift;
b += a;
buffer[0][i] = b;
@ -293,12 +284,12 @@ static void decorrelate_stereo(int32_t *buffer[2],
static void append_extra_bits(int32_t *buffer[2],
int32_t *extra_bits_buffer[2],
int extra_bits, int numchannels, int numsamples)
int extra_bits, int channels, int nb_samples)
{
int i, ch;
for (ch = 0; ch < numchannels; ch++)
for (i = 0; i < numsamples; i++)
for (ch = 0; ch < channels; ch++)
for (i = 0; i < nb_samples; i++)
buffer[ch][i] = (buffer[ch][i] << extra_bits) | extra_bits_buffer[ch][i];
}
@ -306,11 +297,11 @@ static int decode_element(AVCodecContext *avctx, void *data, int ch_index,
int channels)
{
ALACContext *alac = avctx->priv_data;
int hassize;
unsigned int readsamplesize;
int has_size;
unsigned int bps;
int is_compressed;
uint8_t interlacing_shift;
uint8_t interlacing_leftweight;
uint8_t decorr_shift;
uint8_t decorr_left_weight;
uint32_t output_samples;
int i, ch, ret;
@ -318,19 +309,19 @@ static int decode_element(AVCodecContext *avctx, void *data, int ch_index,
skip_bits(&alac->gb, 12); /* unused header bits */
/* the number of output samples is stored in the frame */
hassize = get_bits1(&alac->gb);
has_size = get_bits1(&alac->gb);
alac->extra_bits = get_bits(&alac->gb, 2) << 3;
readsamplesize = alac->sample_size - alac->extra_bits + channels - 1;
if (readsamplesize > 32) {
av_log(avctx, AV_LOG_ERROR, "bps is unsupported: %d\n", readsamplesize);
bps = alac->sample_size - alac->extra_bits + channels - 1;
if (bps > 32) {
av_log(avctx, AV_LOG_ERROR, "bps is unsupported: %d\n", bps);
return AVERROR_PATCHWELCOME;
}
/* whether the frame is compressed */
is_compressed = !get_bits1(&alac->gb);
if (hassize)
if (has_size)
output_samples = get_bits_long(&alac->gb, 32);
else
output_samples = alac->max_samples_per_frame;
@ -358,25 +349,24 @@ static int decode_element(AVCodecContext *avctx, void *data, int ch_index,
alac->nb_samples = output_samples;
if (is_compressed) {
int16_t predictor_coef_table[2][32];
int predictor_coef_num[2];
int16_t lpc_coefs[2][32];
int lpc_order[2];
int prediction_type[2];
int prediction_quantitization[2];
int ricemodifier[2];
int lpc_quant[2];
int rice_history_mult[2];
interlacing_shift = get_bits(&alac->gb, 8);
interlacing_leftweight = get_bits(&alac->gb, 8);
decorr_shift = get_bits(&alac->gb, 8);
decorr_left_weight = get_bits(&alac->gb, 8);
for (ch = 0; ch < channels; ch++) {
prediction_type[ch] = get_bits(&alac->gb, 4);
prediction_quantitization[ch] = get_bits(&alac->gb, 4);
ricemodifier[ch] = get_bits(&alac->gb, 3);
predictor_coef_num[ch] = get_bits(&alac->gb, 5);
prediction_type[ch] = get_bits(&alac->gb, 4);
lpc_quant[ch] = get_bits(&alac->gb, 4);
rice_history_mult[ch] = get_bits(&alac->gb, 3);
lpc_order[ch] = get_bits(&alac->gb, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num[ch]; i++)
predictor_coef_table[ch][i] = get_sbits(&alac->gb, 16);
for (i = 0; i < lpc_order[ch]; i++)
lpc_coefs[ch][i] = get_sbits(&alac->gb, 16);
}
if (alac->extra_bits) {
@ -386,11 +376,9 @@ static int decode_element(AVCodecContext *avctx, void *data, int ch_index,
}
}
for (ch = 0; ch < channels; ch++) {
bastardized_rice_decompress(alac,
alac->predict_error_buffer[ch],
alac->nb_samples,
readsamplesize,
ricemodifier[ch] * alac->rice_history_mult / 4);
rice_decompress(alac, alac->predict_error_buffer[ch],
alac->nb_samples, bps,
rice_history_mult[ch] * alac->rice_history_mult / 4);
/* adaptive FIR filter */
if (prediction_type[ch] == 15) {
@ -401,20 +389,16 @@ static int decode_element(AVCodecContext *avctx, void *data, int ch_index,
* However, this prediction type is not currently used by the
* reference encoder.
*/
predictor_decompress_fir_adapt(alac->predict_error_buffer[ch],
alac->predict_error_buffer[ch],
alac->nb_samples, readsamplesize,
NULL, 31, 0);
lpc_prediction(alac->predict_error_buffer[ch],
alac->predict_error_buffer[ch],
alac->nb_samples, bps, NULL, 31, 0);
} else if (prediction_type[ch] > 0) {
av_log(avctx, AV_LOG_WARNING, "unknown prediction type: %i\n",
prediction_type[ch]);
}
predictor_decompress_fir_adapt(alac->predict_error_buffer[ch],
alac->output_samples_buffer[ch],
alac->nb_samples, readsamplesize,
predictor_coef_table[ch],
predictor_coef_num[ch],
prediction_quantitization[ch]);
lpc_prediction(alac->predict_error_buffer[ch],
alac->output_samples_buffer[ch], alac->nb_samples,
bps, lpc_coefs[ch], lpc_order[ch], lpc_quant[ch]);
}
} else {
/* not compressed, easy case */
@ -424,13 +408,13 @@ static int decode_element(AVCodecContext *avctx, void *data, int ch_index,
}
}
alac->extra_bits = 0;
interlacing_shift = 0;
interlacing_leftweight = 0;
decorr_shift = 0;
decorr_left_weight = 0;
}
if (channels == 2 && interlacing_leftweight) {
if (channels == 2 && decorr_left_weight) {
decorrelate_stereo(alac->output_samples_buffer, alac->nb_samples,
interlacing_shift, interlacing_leftweight);
decorr_shift, decorr_left_weight);
}
if (alac->extra_bits) {