ffmpeg/tools/python/convert_header.py

27 lines
1.0 KiB
Python
Raw Normal View History

# Copyright (c) 2019
#
# This file is part of FFmpeg.
#
# FFmpeg is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# FFmpeg is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with FFmpeg; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
# ==============================================================================
str = 'FFMPEGDNNNATIVE'
# increase major and reset minor when we have to re-convert the model file
major = 1
# increase minor when we don't have to re-convert the model file
dnn_backend_native_layer_mathunary: add atanh support It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') please uncomment the part you want to test x_sinh_1 = tf.sinh(x) x_out = tf.divide(x_sinh_1, 1.176) # sinh(1.0) x_cosh_1 = tf.cosh(x) x_out = tf.divide(x_cosh_1, 1.55) # cosh(1.0) x_tanh_1 = tf.tanh(x) x__out = tf.divide(x_tanh_1, 0.77) # tanh(1.0) x_asinh_1 = tf.asinh(x) x_out = tf.divide(x_asinh_1, 0.89) # asinh(1.0/1.1) x_acosh_1 = tf.add(x, 1.1) x_acosh_2 = tf.acosh(x_acosh_1) # accept (1, inf) x_out = tf.divide(x_acosh_2, 1.4) # acosh(2.1) x_atanh_1 = tf.divide(x, 1.1) x_atanh_2 = tf.atanh(x_atanh_1) # accept (-1, 1) x_out = tf.divide(x_atanh_2, 1.55) # atanhh(1.0/1.1) y = tf.identity(x_out, name='dnn_out') #please only preserve the x_out you want to test sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com>
2020-06-29 14:54:10 +00:00
minor = 18