ffmpeg/libavfilter/af_dynaudnorm.c

888 lines
29 KiB
C
Raw Normal View History

/*
* Dynamic Audio Normalizer
* Copyright (c) 2015 LoRd_MuldeR <mulder2@gmx.de>. Some rights reserved.
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Dynamic Audio Normalizer
*/
#include <float.h>
#include "libavutil/avassert.h"
#include "libavutil/opt.h"
#define MIN_FILTER_SIZE 3
#define MAX_FILTER_SIZE 301
#define FF_BUFQUEUE_SIZE (MAX_FILTER_SIZE + 1)
#include "libavfilter/bufferqueue.h"
#include "audio.h"
#include "avfilter.h"
#include "filters.h"
#include "internal.h"
typedef struct local_gain {
double max_gain;
double threshold;
} local_gain;
typedef struct cqueue {
double *elements;
int size;
int max_size;
int nb_elements;
} cqueue;
typedef struct DynamicAudioNormalizerContext {
const AVClass *class;
struct FFBufQueue queue;
int frame_len;
int frame_len_msec;
int filter_size;
int dc_correction;
int channels_coupled;
int alt_boundary_mode;
double peak_value;
double max_amplification;
double target_rms;
double compress_factor;
double threshold;
double *prev_amplification_factor;
double *dc_correction_value;
double *compress_threshold;
double *weights;
int channels;
int eof;
int64_t pts;
cqueue **gain_history_original;
cqueue **gain_history_minimum;
cqueue **gain_history_smoothed;
cqueue **threshold_history;
cqueue *is_enabled;
} DynamicAudioNormalizerContext;
#define OFFSET(x) offsetof(DynamicAudioNormalizerContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption dynaudnorm_options[] = {
{ "framelen", "set the frame length in msec", OFFSET(frame_len_msec), AV_OPT_TYPE_INT, {.i64 = 500}, 10, 8000, FLAGS },
{ "f", "set the frame length in msec", OFFSET(frame_len_msec), AV_OPT_TYPE_INT, {.i64 = 500}, 10, 8000, FLAGS },
{ "gausssize", "set the filter size", OFFSET(filter_size), AV_OPT_TYPE_INT, {.i64 = 31}, 3, 301, FLAGS },
{ "g", "set the filter size", OFFSET(filter_size), AV_OPT_TYPE_INT, {.i64 = 31}, 3, 301, FLAGS },
{ "peak", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl = 0.95}, 0.0, 1.0, FLAGS },
{ "p", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl = 0.95}, 0.0, 1.0, FLAGS },
{ "maxgain", "set the max amplification", OFFSET(max_amplification), AV_OPT_TYPE_DOUBLE, {.dbl = 10.0}, 1.0, 100.0, FLAGS },
{ "m", "set the max amplification", OFFSET(max_amplification), AV_OPT_TYPE_DOUBLE, {.dbl = 10.0}, 1.0, 100.0, FLAGS },
{ "targetrms", "set the target RMS", OFFSET(target_rms), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
{ "r", "set the target RMS", OFFSET(target_rms), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
{ "coupling", "set channel coupling", OFFSET(channels_coupled), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
{ "n", "set channel coupling", OFFSET(channels_coupled), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
{ "correctdc", "set DC correction", OFFSET(dc_correction), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "c", "set DC correction", OFFSET(dc_correction), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "altboundary", "set alternative boundary mode", OFFSET(alt_boundary_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "b", "set alternative boundary mode", OFFSET(alt_boundary_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "compress", "set the compress factor", OFFSET(compress_factor), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 30.0, FLAGS },
{ "s", "set the compress factor", OFFSET(compress_factor), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 30.0, FLAGS },
{ "threshold", "set the threshold value", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
{ "t", "set the threshold value", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl = 0.0}, 0.0, 1.0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(dynaudnorm);
static av_cold int init(AVFilterContext *ctx)
{
DynamicAudioNormalizerContext *s = ctx->priv;
if (!(s->filter_size & 1)) {
av_log(ctx, AV_LOG_WARNING, "filter size %d is invalid. Changing to an odd value.\n", s->filter_size);
s->filter_size |= 1;
}
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_NONE
};
int ret = ff_set_common_all_channel_counts(ctx);
if (ret < 0)
return ret;
ret = ff_set_common_formats_from_list(ctx, sample_fmts);
if (ret < 0)
return ret;
return ff_set_common_all_samplerates(ctx);
}
static inline int frame_size(int sample_rate, int frame_len_msec)
{
const int frame_size = lrint((double)sample_rate * (frame_len_msec / 1000.0));
return frame_size + (frame_size % 2);
}
static cqueue *cqueue_create(int size, int max_size)
{
cqueue *q;
if (max_size < size)
return NULL;
q = av_malloc(sizeof(cqueue));
if (!q)
return NULL;
q->max_size = max_size;
q->size = size;
q->nb_elements = 0;
q->elements = av_malloc_array(max_size, sizeof(double));
if (!q->elements) {
av_free(q);
return NULL;
}
return q;
}
static void cqueue_free(cqueue *q)
{
if (q)
av_free(q->elements);
av_free(q);
}
static int cqueue_size(cqueue *q)
{
return q->nb_elements;
}
static int cqueue_empty(cqueue *q)
{
return q->nb_elements <= 0;
}
static int cqueue_enqueue(cqueue *q, double element)
{
av_assert2(q->nb_elements < q->max_size);
q->elements[q->nb_elements] = element;
q->nb_elements++;
return 0;
}
static double cqueue_peek(cqueue *q, int index)
{
av_assert2(index < q->nb_elements);
return q->elements[index];
}
static int cqueue_dequeue(cqueue *q, double *element)
{
av_assert2(!cqueue_empty(q));
*element = q->elements[0];
memmove(&q->elements[0], &q->elements[1], (q->nb_elements - 1) * sizeof(double));
q->nb_elements--;
return 0;
}
static int cqueue_pop(cqueue *q)
{
av_assert2(!cqueue_empty(q));
memmove(&q->elements[0], &q->elements[1], (q->nb_elements - 1) * sizeof(double));
q->nb_elements--;
return 0;
}
static void cqueue_resize(cqueue *q, int new_size)
{
av_assert2(q->max_size >= new_size);
av_assert2(MIN_FILTER_SIZE <= new_size);
if (new_size > q->nb_elements) {
const int side = (new_size - q->nb_elements) / 2;
memmove(q->elements + side, q->elements, sizeof(double) * q->nb_elements);
for (int i = 0; i < side; i++)
q->elements[i] = q->elements[side];
q->nb_elements = new_size - 1 - side;
} else {
int count = (q->size - new_size + 1) / 2;
while (count-- > 0)
cqueue_pop(q);
}
q->size = new_size;
}
static void init_gaussian_filter(DynamicAudioNormalizerContext *s)
{
double total_weight = 0.0;
const double sigma = (((s->filter_size / 2.0) - 1.0) / 3.0) + (1.0 / 3.0);
double adjust;
int i;
// Pre-compute constants
const int offset = s->filter_size / 2;
const double c1 = 1.0 / (sigma * sqrt(2.0 * M_PI));
const double c2 = 2.0 * sigma * sigma;
// Compute weights
for (i = 0; i < s->filter_size; i++) {
const int x = i - offset;
s->weights[i] = c1 * exp(-x * x / c2);
total_weight += s->weights[i];
}
// Adjust weights
adjust = 1.0 / total_weight;
for (i = 0; i < s->filter_size; i++) {
s->weights[i] *= adjust;
}
}
static av_cold void uninit(AVFilterContext *ctx)
{
DynamicAudioNormalizerContext *s = ctx->priv;
int c;
av_freep(&s->prev_amplification_factor);
av_freep(&s->dc_correction_value);
av_freep(&s->compress_threshold);
for (c = 0; c < s->channels; c++) {
if (s->gain_history_original)
cqueue_free(s->gain_history_original[c]);
if (s->gain_history_minimum)
cqueue_free(s->gain_history_minimum[c]);
if (s->gain_history_smoothed)
cqueue_free(s->gain_history_smoothed[c]);
if (s->threshold_history)
cqueue_free(s->threshold_history[c]);
}
av_freep(&s->gain_history_original);
av_freep(&s->gain_history_minimum);
av_freep(&s->gain_history_smoothed);
av_freep(&s->threshold_history);
cqueue_free(s->is_enabled);
s->is_enabled = NULL;
av_freep(&s->weights);
ff_bufqueue_discard_all(&s->queue);
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
DynamicAudioNormalizerContext *s = ctx->priv;
int c;
uninit(ctx);
s->channels = inlink->channels;
s->frame_len = frame_size(inlink->sample_rate, s->frame_len_msec);
av_log(ctx, AV_LOG_DEBUG, "frame len %d\n", s->frame_len);
s->prev_amplification_factor = av_malloc_array(inlink->channels, sizeof(*s->prev_amplification_factor));
s->dc_correction_value = av_calloc(inlink->channels, sizeof(*s->dc_correction_value));
s->compress_threshold = av_calloc(inlink->channels, sizeof(*s->compress_threshold));
s->gain_history_original = av_calloc(inlink->channels, sizeof(*s->gain_history_original));
s->gain_history_minimum = av_calloc(inlink->channels, sizeof(*s->gain_history_minimum));
s->gain_history_smoothed = av_calloc(inlink->channels, sizeof(*s->gain_history_smoothed));
s->threshold_history = av_calloc(inlink->channels, sizeof(*s->threshold_history));
s->weights = av_malloc_array(MAX_FILTER_SIZE, sizeof(*s->weights));
s->is_enabled = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
if (!s->prev_amplification_factor || !s->dc_correction_value ||
!s->compress_threshold ||
!s->gain_history_original || !s->gain_history_minimum ||
!s->gain_history_smoothed || !s->threshold_history ||
!s->is_enabled || !s->weights)
return AVERROR(ENOMEM);
for (c = 0; c < inlink->channels; c++) {
s->prev_amplification_factor[c] = 1.0;
s->gain_history_original[c] = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
s->gain_history_minimum[c] = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
s->gain_history_smoothed[c] = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
s->threshold_history[c] = cqueue_create(s->filter_size, MAX_FILTER_SIZE);
if (!s->gain_history_original[c] || !s->gain_history_minimum[c] ||
!s->gain_history_smoothed[c] || !s->threshold_history[c])
return AVERROR(ENOMEM);
}
init_gaussian_filter(s);
return 0;
}
static inline double fade(double prev, double next, int pos, int length)
{
const double step_size = 1.0 / length;
const double f0 = 1.0 - (step_size * (pos + 1.0));
const double f1 = 1.0 - f0;
return f0 * prev + f1 * next;
}
static inline double pow_2(const double value)
{
return value * value;
}
static inline double bound(const double threshold, const double val)
{
const double CONST = 0.8862269254527580136490837416705725913987747280611935; //sqrt(PI) / 2.0
return erf(CONST * (val / threshold)) * threshold;
}
static double find_peak_magnitude(AVFrame *frame, int channel)
{
double max = DBL_EPSILON;
int c, i;
if (channel == -1) {
for (c = 0; c < frame->channels; c++) {
double *data_ptr = (double *)frame->extended_data[c];
for (i = 0; i < frame->nb_samples; i++)
max = FFMAX(max, fabs(data_ptr[i]));
}
} else {
double *data_ptr = (double *)frame->extended_data[channel];
for (i = 0; i < frame->nb_samples; i++)
max = FFMAX(max, fabs(data_ptr[i]));
}
return max;
}
static double compute_frame_rms(AVFrame *frame, int channel)
{
double rms_value = 0.0;
int c, i;
if (channel == -1) {
for (c = 0; c < frame->channels; c++) {
const double *data_ptr = (double *)frame->extended_data[c];
for (i = 0; i < frame->nb_samples; i++) {
rms_value += pow_2(data_ptr[i]);
}
}
rms_value /= frame->nb_samples * frame->channels;
} else {
const double *data_ptr = (double *)frame->extended_data[channel];
for (i = 0; i < frame->nb_samples; i++) {
rms_value += pow_2(data_ptr[i]);
}
rms_value /= frame->nb_samples;
}
return FFMAX(sqrt(rms_value), DBL_EPSILON);
}
static local_gain get_max_local_gain(DynamicAudioNormalizerContext *s, AVFrame *frame,
int channel)
{
const double peak_magnitude = find_peak_magnitude(frame, channel);
const double maximum_gain = s->peak_value / peak_magnitude;
const double rms_gain = s->target_rms > DBL_EPSILON ? (s->target_rms / compute_frame_rms(frame, channel)) : DBL_MAX;
local_gain gain;
gain.threshold = peak_magnitude > s->threshold;
gain.max_gain = bound(s->max_amplification, FFMIN(maximum_gain, rms_gain));
return gain;
}
static double minimum_filter(cqueue *q)
{
double min = DBL_MAX;
int i;
for (i = 0; i < cqueue_size(q); i++) {
min = FFMIN(min, cqueue_peek(q, i));
}
return min;
}
static double gaussian_filter(DynamicAudioNormalizerContext *s, cqueue *q, cqueue *tq)
{
double result = 0.0, tsum = 0.0;
int i;
for (i = 0; i < cqueue_size(q); i++) {
tsum += cqueue_peek(tq, i) * s->weights[i];
result += cqueue_peek(q, i) * s->weights[i] * cqueue_peek(tq, i);
}
if (tsum == 0.0)
result = 1.0;
return result;
}
static void update_gain_history(DynamicAudioNormalizerContext *s, int channel,
local_gain gain)
{
if (cqueue_empty(s->gain_history_original[channel])) {
const int pre_fill_size = s->filter_size / 2;
const double initial_value = s->alt_boundary_mode ? gain.max_gain : FFMIN(1.0, gain.max_gain);
s->prev_amplification_factor[channel] = initial_value;
while (cqueue_size(s->gain_history_original[channel]) < pre_fill_size) {
cqueue_enqueue(s->gain_history_original[channel], initial_value);
cqueue_enqueue(s->threshold_history[channel], gain.threshold);
}
}
cqueue_enqueue(s->gain_history_original[channel], gain.max_gain);
while (cqueue_size(s->gain_history_original[channel]) >= s->filter_size) {
double minimum;
if (cqueue_empty(s->gain_history_minimum[channel])) {
const int pre_fill_size = s->filter_size / 2;
double initial_value = s->alt_boundary_mode ? cqueue_peek(s->gain_history_original[channel], 0) : 1.0;
int input = pre_fill_size;
while (cqueue_size(s->gain_history_minimum[channel]) < pre_fill_size) {
input++;
initial_value = FFMIN(initial_value, cqueue_peek(s->gain_history_original[channel], input));
cqueue_enqueue(s->gain_history_minimum[channel], initial_value);
}
}
minimum = minimum_filter(s->gain_history_original[channel]);
cqueue_enqueue(s->gain_history_minimum[channel], minimum);
cqueue_enqueue(s->threshold_history[channel], gain.threshold);
cqueue_pop(s->gain_history_original[channel]);
}
while (cqueue_size(s->gain_history_minimum[channel]) >= s->filter_size) {
double smoothed, limit;
smoothed = gaussian_filter(s, s->gain_history_minimum[channel], s->threshold_history[channel]);
limit = cqueue_peek(s->gain_history_original[channel], 0);
smoothed = FFMIN(smoothed, limit);
cqueue_enqueue(s->gain_history_smoothed[channel], smoothed);
cqueue_pop(s->gain_history_minimum[channel]);
cqueue_pop(s->threshold_history[channel]);
}
}
static inline double update_value(double new, double old, double aggressiveness)
{
av_assert0((aggressiveness >= 0.0) && (aggressiveness <= 1.0));
return aggressiveness * new + (1.0 - aggressiveness) * old;
}
static void perform_dc_correction(DynamicAudioNormalizerContext *s, AVFrame *frame)
{
const double diff = 1.0 / frame->nb_samples;
int is_first_frame = cqueue_empty(s->gain_history_original[0]);
int c, i;
for (c = 0; c < s->channels; c++) {
double *dst_ptr = (double *)frame->extended_data[c];
double current_average_value = 0.0;
double prev_value;
for (i = 0; i < frame->nb_samples; i++)
current_average_value += dst_ptr[i] * diff;
prev_value = is_first_frame ? current_average_value : s->dc_correction_value[c];
s->dc_correction_value[c] = is_first_frame ? current_average_value : update_value(current_average_value, s->dc_correction_value[c], 0.1);
for (i = 0; i < frame->nb_samples; i++) {
dst_ptr[i] -= fade(prev_value, s->dc_correction_value[c], i, frame->nb_samples);
}
}
}
static double setup_compress_thresh(double threshold)
{
if ((threshold > DBL_EPSILON) && (threshold < (1.0 - DBL_EPSILON))) {
double current_threshold = threshold;
double step_size = 1.0;
while (step_size > DBL_EPSILON) {
while ((llrint((current_threshold + step_size) * (UINT64_C(1) << 63)) >
llrint(current_threshold * (UINT64_C(1) << 63))) &&
(bound(current_threshold + step_size, 1.0) <= threshold)) {
current_threshold += step_size;
}
step_size /= 2.0;
}
return current_threshold;
} else {
return threshold;
}
}
static double compute_frame_std_dev(DynamicAudioNormalizerContext *s,
AVFrame *frame, int channel)
{
double variance = 0.0;
int i, c;
if (channel == -1) {
for (c = 0; c < s->channels; c++) {
const double *data_ptr = (double *)frame->extended_data[c];
for (i = 0; i < frame->nb_samples; i++) {
variance += pow_2(data_ptr[i]); // Assume that MEAN is *zero*
}
}
variance /= (s->channels * frame->nb_samples) - 1;
} else {
const double *data_ptr = (double *)frame->extended_data[channel];
for (i = 0; i < frame->nb_samples; i++) {
variance += pow_2(data_ptr[i]); // Assume that MEAN is *zero*
}
variance /= frame->nb_samples - 1;
}
return FFMAX(sqrt(variance), DBL_EPSILON);
}
static void perform_compression(DynamicAudioNormalizerContext *s, AVFrame *frame)
{
int is_first_frame = cqueue_empty(s->gain_history_original[0]);
int c, i;
if (s->channels_coupled) {
const double standard_deviation = compute_frame_std_dev(s, frame, -1);
const double current_threshold = FFMIN(1.0, s->compress_factor * standard_deviation);
const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[0];
double prev_actual_thresh, curr_actual_thresh;
s->compress_threshold[0] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[0], (1.0/3.0));
prev_actual_thresh = setup_compress_thresh(prev_value);
curr_actual_thresh = setup_compress_thresh(s->compress_threshold[0]);
for (c = 0; c < s->channels; c++) {
double *const dst_ptr = (double *)frame->extended_data[c];
for (i = 0; i < frame->nb_samples; i++) {
const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, frame->nb_samples);
dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]);
}
}
} else {
for (c = 0; c < s->channels; c++) {
const double standard_deviation = compute_frame_std_dev(s, frame, c);
const double current_threshold = setup_compress_thresh(FFMIN(1.0, s->compress_factor * standard_deviation));
const double prev_value = is_first_frame ? current_threshold : s->compress_threshold[c];
double prev_actual_thresh, curr_actual_thresh;
double *dst_ptr;
s->compress_threshold[c] = is_first_frame ? current_threshold : update_value(current_threshold, s->compress_threshold[c], 1.0/3.0);
prev_actual_thresh = setup_compress_thresh(prev_value);
curr_actual_thresh = setup_compress_thresh(s->compress_threshold[c]);
dst_ptr = (double *)frame->extended_data[c];
for (i = 0; i < frame->nb_samples; i++) {
const double localThresh = fade(prev_actual_thresh, curr_actual_thresh, i, frame->nb_samples);
dst_ptr[i] = copysign(bound(localThresh, fabs(dst_ptr[i])), dst_ptr[i]);
}
}
}
}
static void analyze_frame(DynamicAudioNormalizerContext *s, AVFrame *frame)
{
if (s->dc_correction) {
perform_dc_correction(s, frame);
}
if (s->compress_factor > DBL_EPSILON) {
perform_compression(s, frame);
}
if (s->channels_coupled) {
const local_gain gain = get_max_local_gain(s, frame, -1);
int c;
for (c = 0; c < s->channels; c++)
update_gain_history(s, c, gain);
} else {
int c;
for (c = 0; c < s->channels; c++)
update_gain_history(s, c, get_max_local_gain(s, frame, c));
}
}
static void amplify_frame(DynamicAudioNormalizerContext *s, AVFrame *in,
AVFrame *frame, int enabled)
{
int c, i;
for (c = 0; c < s->channels; c++) {
const double *src_ptr = (const double *)in->extended_data[c];
double *dst_ptr = (double *)frame->extended_data[c];
double current_amplification_factor;
cqueue_dequeue(s->gain_history_smoothed[c], &current_amplification_factor);
for (i = 0; i < frame->nb_samples && enabled; i++) {
const double amplification_factor = fade(s->prev_amplification_factor[c],
current_amplification_factor, i,
frame->nb_samples);
dst_ptr[i] = src_ptr[i] * amplification_factor;
}
s->prev_amplification_factor[c] = current_amplification_factor;
}
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
DynamicAudioNormalizerContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
int ret = 1;
while (((s->queue.available >= s->filter_size) ||
(s->eof && s->queue.available)) &&
!cqueue_empty(s->gain_history_smoothed[0])) {
AVFrame *in = ff_bufqueue_get(&s->queue);
AVFrame *out;
double is_enabled;
cqueue_dequeue(s->is_enabled, &is_enabled);
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_audio_buffer(outlink, in->nb_samples);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
amplify_frame(s, in, out, is_enabled > 0.);
s->pts = out->pts + av_rescale_q(out->nb_samples, av_make_q(1, outlink->sample_rate),
outlink->time_base);
if (out != in)
av_frame_free(&in);
ret = ff_filter_frame(outlink, out);
}
analyze_frame(s, in);
if (!s->eof) {
ff_bufqueue_add(ctx, &s->queue, in);
cqueue_enqueue(s->is_enabled, !ctx->is_disabled);
} else {
av_frame_free(&in);
}
return ret;
}
static int flush_buffer(DynamicAudioNormalizerContext *s, AVFilterLink *inlink,
AVFilterLink *outlink)
{
AVFrame *out = ff_get_audio_buffer(outlink, s->frame_len);
int c, i;
if (!out)
return AVERROR(ENOMEM);
for (c = 0; c < s->channels; c++) {
double *dst_ptr = (double *)out->extended_data[c];
for (i = 0; i < out->nb_samples; i++) {
dst_ptr[i] = s->alt_boundary_mode ? DBL_EPSILON : ((s->target_rms > DBL_EPSILON) ? FFMIN(s->peak_value, s->target_rms) : s->peak_value);
if (s->dc_correction) {
dst_ptr[i] *= ((i % 2) == 1) ? -1 : 1;
dst_ptr[i] += s->dc_correction_value[c];
}
}
}
return filter_frame(inlink, out);
}
static int flush(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
DynamicAudioNormalizerContext *s = ctx->priv;
int ret = 0;
if (!cqueue_empty(s->gain_history_smoothed[0])) {
ret = flush_buffer(s, inlink, outlink);
} else if (s->queue.available) {
AVFrame *out = ff_bufqueue_get(&s->queue);
s->pts = out->pts + av_rescale_q(out->nb_samples, av_make_q(1, outlink->sample_rate),
outlink->time_base);
ret = ff_filter_frame(outlink, out);
}
return ret;
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
DynamicAudioNormalizerContext *s = ctx->priv;
AVFrame *in = NULL;
int ret = 0, status;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (!s->eof) {
ret = ff_inlink_consume_samples(inlink, s->frame_len, s->frame_len, &in);
if (ret < 0)
return ret;
if (ret > 0) {
ret = filter_frame(inlink, in);
if (ret <= 0)
return ret;
}
if (ff_inlink_check_available_samples(inlink, s->frame_len) > 0) {
ff_filter_set_ready(ctx, 10);
return 0;
}
}
if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF)
s->eof = 1;
}
if (s->eof && s->queue.available)
return flush(outlink);
if (s->eof && !s->queue.available) {
ff_outlink_set_status(outlink, AVERROR_EOF, s->pts);
return 0;
}
if (!s->eof)
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
DynamicAudioNormalizerContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
int prev_filter_size = s->filter_size;
int ret;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
s->filter_size |= 1;
if (prev_filter_size != s->filter_size) {
init_gaussian_filter(s);
for (int c = 0; c < s->channels; c++) {
cqueue_resize(s->gain_history_original[c], s->filter_size);
cqueue_resize(s->gain_history_minimum[c], s->filter_size);
cqueue_resize(s->threshold_history[c], s->filter_size);
}
}
s->frame_len = frame_size(inlink->sample_rate, s->frame_len_msec);
return 0;
}
static const AVFilterPad avfilter_af_dynaudnorm_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_input,
},
};
static const AVFilterPad avfilter_af_dynaudnorm_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
},
};
const AVFilter ff_af_dynaudnorm = {
.name = "dynaudnorm",
.description = NULL_IF_CONFIG_SMALL("Dynamic Audio Normalizer."),
.priv_size = sizeof(DynamicAudioNormalizerContext),
.init = init,
.uninit = uninit,
.activate = activate,
2021-08-12 11:05:31 +00:00
FILTER_INPUTS(avfilter_af_dynaudnorm_inputs),
FILTER_OUTPUTS(avfilter_af_dynaudnorm_outputs),
avfilter: Replace query_formats callback with union of list and callback If one looks at the many query_formats callbacks in existence, one will immediately recognize that there is one type of default callback for video and a slightly different default callback for audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);" for video with a filter-specific pix_fmts list. For audio, it is the same with a filter-specific sample_fmts list together with ff_set_common_all_samplerates() and ff_set_common_all_channel_counts(). This commit allows to remove the boilerplate query_formats callbacks by replacing said callback with a union consisting the old callback and pointers for pixel and sample format arrays. For the not uncommon case in which these lists only contain a single entry (besides the sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also added to the union to store them directly in the AVFilter, thereby avoiding a relocation. The state of said union will be contained in a new, dedicated AVFilter field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t in order to create a hole for this new field; this is no problem, as the maximum of all the nb_inputs is four; for nb_outputs it is only two). The state's default value coincides with the earlier default of query_formats being unset, namely that the filter accepts all formats (and also sample rates and channel counts/layouts for audio) provided that these properties agree coincide for all inputs and outputs. By using different union members for audio and video filters the type-unsafety of using the same functions for audio and video lists will furthermore be more confined to formats.c than before. When the new fields are used, they will also avoid allocations: Currently something nearly equivalent to ff_default_query_formats() is called after every successful call to a query_formats callback; yet in the common case that the newly allocated AVFilterFormats are not used at all (namely if there are no free links) these newly allocated AVFilterFormats are freed again without ever being used. Filters no longer using the callback will not exhibit this any more. Reviewed-by: Paul B Mahol <onemda@gmail.com> Reviewed-by: Nicolas George <george@nsup.org> Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-09-27 10:07:35 +00:00
FILTER_QUERY_FUNC(query_formats),
.priv_class = &dynaudnorm_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
.process_command = process_command,
};