ffmpeg/libavcodec/adpcmenc.c

742 lines
28 KiB
C
Raw Normal View History

/*
* Copyright (c) 2001-2003 The ffmpeg Project
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "get_bits.h"
#include "put_bits.h"
#include "bytestream.h"
#include "adpcm.h"
#include "adpcm_data.h"
2012-01-31 20:54:45 +00:00
#include "internal.h"
/**
* @file
* ADPCM encoders
* First version by Francois Revol (revol@free.fr)
* Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
* by Mike Melanson (melanson@pcisys.net)
*
* See ADPCM decoder reference documents for codec information.
*/
typedef struct TrellisPath {
int nibble;
int prev;
} TrellisPath;
typedef struct TrellisNode {
uint32_t ssd;
int path;
int sample1;
int sample2;
int step;
} TrellisNode;
typedef struct ADPCMEncodeContext {
ADPCMChannelStatus status[6];
TrellisPath *paths;
TrellisNode *node_buf;
TrellisNode **nodep_buf;
uint8_t *trellis_hash;
} ADPCMEncodeContext;
#define FREEZE_INTERVAL 128
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
{
ADPCMEncodeContext *s = avctx->priv_data;
uint8_t *extradata;
int i;
int ret = AVERROR(ENOMEM);
if (avctx->channels > 2) {
av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
return AVERROR(EINVAL);
}
if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
return AVERROR(EINVAL);
}
if (avctx->trellis) {
int frontier = 1 << avctx->trellis;
int max_paths = frontier * FREEZE_INTERVAL;
FF_ALLOC_OR_GOTO(avctx, s->paths,
max_paths * sizeof(*s->paths), error);
FF_ALLOC_OR_GOTO(avctx, s->node_buf,
2 * frontier * sizeof(*s->node_buf), error);
FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
2 * frontier * sizeof(*s->nodep_buf), error);
FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
65536 * sizeof(*s->trellis_hash), error);
}
2011-09-08 02:52:06 +00:00
avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
switch (avctx->codec->id) {
case AV_CODEC_ID_ADPCM_IMA_WAV:
/* each 16 bits sample gives one nibble
and we have 4 bytes per channel overhead */
avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
(4 * avctx->channels) + 1;
/* seems frame_size isn't taken into account...
have to buffer the samples :-( */
avctx->block_align = BLKSIZE;
break;
case AV_CODEC_ID_ADPCM_IMA_QT:
avctx->frame_size = 64;
avctx->block_align = 34 * avctx->channels;
break;
case AV_CODEC_ID_ADPCM_MS:
/* each 16 bits sample gives one nibble
and we have 7 bytes per channel overhead */
avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 /
avctx->channels + 2;
avctx->block_align = BLKSIZE;
if (!(avctx->extradata = av_malloc(32 + FF_INPUT_BUFFER_PADDING_SIZE)))
goto error;
avctx->extradata_size = 32;
extradata = avctx->extradata;
bytestream_put_le16(&extradata, avctx->frame_size);
bytestream_put_le16(&extradata, 7); /* wNumCoef */
for (i = 0; i < 7; i++) {
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
}
break;
case AV_CODEC_ID_ADPCM_YAMAHA:
avctx->frame_size = BLKSIZE * 2 / avctx->channels;
avctx->block_align = BLKSIZE;
break;
case AV_CODEC_ID_ADPCM_SWF:
if (avctx->sample_rate != 11025 &&
avctx->sample_rate != 22050 &&
avctx->sample_rate != 44100) {
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
"22050 or 44100\n");
ret = AVERROR(EINVAL);
goto error;
}
avctx->frame_size = 512 * (avctx->sample_rate / 11025);
break;
default:
ret = AVERROR(EINVAL);
goto error;
}
2012-01-31 20:54:45 +00:00
#if FF_API_OLD_ENCODE_AUDIO
if (!(avctx->coded_frame = avcodec_alloc_frame()))
goto error;
2012-01-31 20:54:45 +00:00
#endif
return 0;
error:
av_freep(&s->paths);
av_freep(&s->node_buf);
av_freep(&s->nodep_buf);
av_freep(&s->trellis_hash);
return ret;
}
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
{
ADPCMEncodeContext *s = avctx->priv_data;
2012-01-31 20:54:45 +00:00
#if FF_API_OLD_ENCODE_AUDIO
av_freep(&avctx->coded_frame);
2012-01-31 20:54:45 +00:00
#endif
av_freep(&s->paths);
av_freep(&s->node_buf);
av_freep(&s->nodep_buf);
av_freep(&s->trellis_hash);
return 0;
}
static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
int16_t sample)
{
int delta = sample - c->prev_sample;
int nibble = FFMIN(7, abs(delta) * 4 /
ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
ff_adpcm_yamaha_difflookup[nibble]) / 8);
c->prev_sample = av_clip_int16(c->prev_sample);
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
return nibble;
}
static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
int16_t sample)
{
int delta = sample - c->prev_sample;
int mask, step = ff_adpcm_step_table[c->step_index];
int diff = step >> 3;
int nibble = 0;
if (delta < 0) {
nibble = 8;
delta = -delta;
}
for (mask = 4; mask;) {
if (delta >= step) {
nibble |= mask;
delta -= step;
diff += step;
}
step >>= 1;
mask >>= 1;
}
if (nibble & 8)
c->prev_sample -= diff;
else
c->prev_sample += diff;
c->prev_sample = av_clip_int16(c->prev_sample);
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
return nibble;
}
static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
int16_t sample)
{
int predictor, nibble, bias;
predictor = (((c->sample1) * (c->coeff1)) +
(( c->sample2) * (c->coeff2))) / 64;
nibble = sample - predictor;
if (nibble >= 0)
bias = c->idelta / 2;
else
bias = -c->idelta / 2;
nibble = (nibble + bias) / c->idelta;
nibble = av_clip(nibble, -8, 7) & 0x0F;
2012-01-30 18:34:43 +00:00
predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
c->sample2 = c->sample1;
c->sample1 = av_clip_int16(predictor);
2012-01-30 18:34:43 +00:00
c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
if (c->idelta < 16)
c->idelta = 16;
return nibble;
}
static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
int16_t sample)
{
int nibble, delta;
if (!c->step) {
c->predictor = 0;
c->step = 127;
}
delta = sample - c->predictor;
nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
c->predictor = av_clip_int16(c->predictor);
c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
c->step = av_clip(c->step, 127, 24567);
return nibble;
}
static void adpcm_compress_trellis(AVCodecContext *avctx,
const int16_t *samples, uint8_t *dst,
ADPCMChannelStatus *c, int n)
{
//FIXME 6% faster if frontier is a compile-time constant
ADPCMEncodeContext *s = avctx->priv_data;
const int frontier = 1 << avctx->trellis;
const int stride = avctx->channels;
const int version = avctx->codec->id;
TrellisPath *paths = s->paths, *p;
TrellisNode *node_buf = s->node_buf;
TrellisNode **nodep_buf = s->nodep_buf;
TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
TrellisNode **nodes_next = nodep_buf + frontier;
int pathn = 0, froze = -1, i, j, k, generation = 0;
uint8_t *hash = s->trellis_hash;
memset(hash, 0xff, 65536 * sizeof(*hash));
memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
nodes[0] = node_buf + frontier;
nodes[0]->ssd = 0;
nodes[0]->path = 0;
nodes[0]->step = c->step_index;
nodes[0]->sample1 = c->sample1;
nodes[0]->sample2 = c->sample2;
if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
version == AV_CODEC_ID_ADPCM_IMA_QT ||
version == AV_CODEC_ID_ADPCM_SWF)
nodes[0]->sample1 = c->prev_sample;
if (version == AV_CODEC_ID_ADPCM_MS)
nodes[0]->step = c->idelta;
if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
if (c->step == 0) {
nodes[0]->step = 127;
nodes[0]->sample1 = 0;
} else {
nodes[0]->step = c->step;
nodes[0]->sample1 = c->predictor;
}
}
for (i = 0; i < n; i++) {
TrellisNode *t = node_buf + frontier*(i&1);
TrellisNode **u;
int sample = samples[i * stride];
int heap_pos = 0;
memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
for (j = 0; j < frontier && nodes[j]; j++) {
// higher j have higher ssd already, so they're likely
// to yield a suboptimal next sample too
const int range = (j < frontier / 2) ? 1 : 0;
const int step = nodes[j]->step;
int nidx;
if (version == AV_CODEC_ID_ADPCM_MS) {
const int predictor = ((nodes[j]->sample1 * c->coeff1) +
(nodes[j]->sample2 * c->coeff2)) / 64;
const int div = (sample - predictor) / step;
const int nmin = av_clip(div-range, -8, 6);
const int nmax = av_clip(div+range, -7, 7);
for (nidx = nmin; nidx <= nmax; nidx++) {
const int nibble = nidx & 0xf;
int dec_sample = predictor + nidx * step;
#define STORE_NODE(NAME, STEP_INDEX)\
int d;\
uint32_t ssd;\
int pos;\
TrellisNode *u;\
uint8_t *h;\
dec_sample = av_clip_int16(dec_sample);\
d = sample - dec_sample;\
ssd = nodes[j]->ssd + d*d;\
/* Check for wraparound, skip such samples completely. \
* Note, changing ssd to a 64 bit variable would be \
* simpler, avoiding this check, but it's slower on \
* x86 32 bit at the moment. */\
if (ssd < nodes[j]->ssd)\
goto next_##NAME;\
/* Collapse any two states with the same previous sample value. \
* One could also distinguish states by step and by 2nd to last
* sample, but the effects of that are negligible.
* Since nodes in the previous generation are iterated
* through a heap, they're roughly ordered from better to
* worse, but not strictly ordered. Therefore, an earlier
* node with the same sample value is better in most cases
* (and thus the current is skipped), but not strictly
* in all cases. Only skipping samples where ssd >=
* ssd of the earlier node with the same sample gives
* slightly worse quality, though, for some reason. */ \
h = &hash[(uint16_t) dec_sample];\
if (*h == generation)\
goto next_##NAME;\
if (heap_pos < frontier) {\
pos = heap_pos++;\
} else {\
/* Try to replace one of the leaf nodes with the new \
* one, but try a different slot each time. */\
pos = (frontier >> 1) +\
(heap_pos & ((frontier >> 1) - 1));\
if (ssd > nodes_next[pos]->ssd)\
goto next_##NAME;\
heap_pos++;\
}\
*h = generation;\
u = nodes_next[pos];\
if (!u) {\
assert(pathn < FREEZE_INTERVAL << avctx->trellis);\
u = t++;\
nodes_next[pos] = u;\
u->path = pathn++;\
}\
u->ssd = ssd;\
u->step = STEP_INDEX;\
u->sample2 = nodes[j]->sample1;\
u->sample1 = dec_sample;\
paths[u->path].nibble = nibble;\
paths[u->path].prev = nodes[j]->path;\
/* Sift the newly inserted node up in the heap to \
* restore the heap property. */\
while (pos > 0) {\
int parent = (pos - 1) >> 1;\
if (nodes_next[parent]->ssd <= ssd)\
break;\
FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
pos = parent;\
}\
next_##NAME:;
STORE_NODE(ms, FFMAX(16,
(ff_adpcm_AdaptationTable[nibble] * step) >> 8));
}
} else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
version == AV_CODEC_ID_ADPCM_IMA_QT ||
version == AV_CODEC_ID_ADPCM_SWF) {
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
const int predictor = nodes[j]->sample1;\
const int div = (sample - predictor) * 4 / STEP_TABLE;\
int nmin = av_clip(div - range, -7, 6);\
int nmax = av_clip(div + range, -6, 7);\
if (nmin <= 0)\
nmin--; /* distinguish -0 from +0 */\
if (nmax < 0)\
nmax--;\
for (nidx = nmin; nidx <= nmax; nidx++) {\
const int nibble = nidx < 0 ? 7 - nidx : nidx;\
int dec_sample = predictor +\
(STEP_TABLE *\
ff_adpcm_yamaha_difflookup[nibble]) / 8;\
STORE_NODE(NAME, STEP_INDEX);\
}
LOOP_NODES(ima, ff_adpcm_step_table[step],
av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
} else { //AV_CODEC_ID_ADPCM_YAMAHA
LOOP_NODES(yamaha, step,
av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
127, 24567));
#undef LOOP_NODES
#undef STORE_NODE
}
}
u = nodes;
nodes = nodes_next;
nodes_next = u;
generation++;
if (generation == 255) {
memset(hash, 0xff, 65536 * sizeof(*hash));
generation = 0;
}
// prevent overflow
if (nodes[0]->ssd > (1 << 28)) {
for (j = 1; j < frontier && nodes[j]; j++)
nodes[j]->ssd -= nodes[0]->ssd;
nodes[0]->ssd = 0;
}
// merge old paths to save memory
if (i == froze + FREEZE_INTERVAL) {
p = &paths[nodes[0]->path];
for (k = i; k > froze; k--) {
dst[k] = p->nibble;
p = &paths[p->prev];
}
froze = i;
pathn = 0;
// other nodes might use paths that don't coincide with the frozen one.
// checking which nodes do so is too slow, so just kill them all.
// this also slightly improves quality, but I don't know why.
memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
}
}
p = &paths[nodes[0]->path];
for (i = n - 1; i > froze; i--) {
dst[i] = p->nibble;
p = &paths[p->prev];
}
c->predictor = nodes[0]->sample1;
c->sample1 = nodes[0]->sample1;
c->sample2 = nodes[0]->sample2;
c->step_index = nodes[0]->step;
c->step = nodes[0]->step;
c->idelta = nodes[0]->step;
}
2012-01-31 20:54:45 +00:00
static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
2012-01-31 20:54:45 +00:00
int n, i, st, pkt_size, ret;
const int16_t *samples;
uint8_t *dst;
ADPCMEncodeContext *c = avctx->priv_data;
uint8_t *buf;
2012-01-31 20:54:45 +00:00
samples = (const int16_t *)frame->data[0];
st = avctx->channels == 2;
2012-01-31 20:54:45 +00:00
if (avctx->codec_id == AV_CODEC_ID_ADPCM_SWF)
2012-01-31 20:54:45 +00:00
pkt_size = (2 + avctx->channels * (22 + 4 * (frame->nb_samples - 1)) + 7) / 8;
else
pkt_size = avctx->block_align;
if ((ret = ff_alloc_packet(avpkt, pkt_size))) {
av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
return ret;
}
dst = avpkt->data;
switch(avctx->codec->id) {
case AV_CODEC_ID_ADPCM_IMA_WAV:
2012-01-31 20:54:45 +00:00
n = frame->nb_samples / 8;
c->status[0].prev_sample = samples[0];
/* c->status[0].step_index = 0;
XXX: not sure how to init the state machine */
bytestream_put_le16(&dst, c->status[0].prev_sample);
2012-01-30 18:34:43 +00:00
*dst++ = c->status[0].step_index;
*dst++ = 0; /* unknown */
samples++;
if (avctx->channels == 2) {
c->status[1].prev_sample = samples[0];
/* c->status[1].step_index = 0; */
bytestream_put_le16(&dst, c->status[1].prev_sample);
2012-01-30 18:34:43 +00:00
*dst++ = c->status[1].step_index;
*dst++ = 0;
samples++;
}
/* stereo: 4 bytes (8 samples) for left,
4 bytes for right, 4 bytes left, ... */
if (avctx->trellis > 0) {
FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 8, error);
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n * 8);
if (avctx->channels == 2)
adpcm_compress_trellis(avctx, samples + 1, buf + n * 8,
&c->status[1], n * 8);
for (i = 0; i < n; i++) {
*dst++ = buf[8 * i + 0] | (buf[8 * i + 1] << 4);
*dst++ = buf[8 * i + 2] | (buf[8 * i + 3] << 4);
*dst++ = buf[8 * i + 4] | (buf[8 * i + 5] << 4);
*dst++ = buf[8 * i + 6] | (buf[8 * i + 7] << 4);
if (avctx->channels == 2) {
uint8_t *buf1 = buf + n * 8;
*dst++ = buf1[8 * i + 0] | (buf1[8 * i + 1] << 4);
*dst++ = buf1[8 * i + 2] | (buf1[8 * i + 3] << 4);
*dst++ = buf1[8 * i + 4] | (buf1[8 * i + 5] << 4);
*dst++ = buf1[8 * i + 6] | (buf1[8 * i + 7] << 4);
}
}
av_free(buf);
} else {
for (; n > 0; n--) {
*dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
*dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels ]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
*dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
*dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
*dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
/* right channel */
if (avctx->channels == 2) {
*dst = adpcm_ima_compress_sample(&c->status[1], samples[1 ]);
*dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[3 ]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[1], samples[5 ]);
*dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[7 ]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[1], samples[9 ]);
*dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
*dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
}
samples += 8 * avctx->channels;
}
}
break;
case AV_CODEC_ID_ADPCM_IMA_QT:
{
int ch, i;
PutBitContext pb;
2012-01-31 20:54:45 +00:00
init_put_bits(&pb, dst, pkt_size * 8);
for (ch = 0; ch < avctx->channels; ch++) {
put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
put_bits(&pb, 7, c->status[ch].step_index);
if (avctx->trellis > 0) {
uint8_t buf[64];
adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
for (i = 0; i < 64; i++)
put_bits(&pb, 4, buf[i ^ 1]);
} else {
for (i = 0; i < 64; i += 2) {
int t1, t2;
t1 = adpcm_ima_qt_compress_sample(&c->status[ch],
samples[avctx->channels * (i + 0) + ch]);
t2 = adpcm_ima_qt_compress_sample(&c->status[ch],
samples[avctx->channels * (i + 1) + ch]);
put_bits(&pb, 4, t2);
put_bits(&pb, 4, t1);
}
}
}
flush_put_bits(&pb);
break;
}
case AV_CODEC_ID_ADPCM_SWF:
{
int i;
PutBitContext pb;
2012-01-31 20:54:45 +00:00
init_put_bits(&pb, dst, pkt_size * 8);
2012-01-31 20:54:45 +00:00
n = frame->nb_samples - 1;
// store AdpcmCodeSize
put_bits(&pb, 2, 2); // set 4-bit flash adpcm format
// init the encoder state
for (i = 0; i < avctx->channels; i++) {
// clip step so it fits 6 bits
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63);
put_sbits(&pb, 16, samples[i]);
put_bits(&pb, 6, c->status[i].step_index);
c->status[i].prev_sample = samples[i];
}
if (avctx->trellis > 0) {
FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
adpcm_compress_trellis(avctx, samples + avctx->channels, buf,
&c->status[0], n);
if (avctx->channels == 2)
adpcm_compress_trellis(avctx, samples + avctx->channels + 1,
buf + n, &c->status[1], n);
for (i = 0; i < n; i++) {
put_bits(&pb, 4, buf[i]);
if (avctx->channels == 2)
put_bits(&pb, 4, buf[n + i]);
}
av_free(buf);
} else {
2012-01-31 20:54:45 +00:00
for (i = 1; i < frame->nb_samples; i++) {
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
samples[avctx->channels * i]));
if (avctx->channels == 2)
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
samples[2 * i + 1]));
}
}
flush_put_bits(&pb);
break;
}
case AV_CODEC_ID_ADPCM_MS:
for (i = 0; i < avctx->channels; i++) {
int predictor = 0;
*dst++ = predictor;
c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
}
for (i = 0; i < avctx->channels; i++) {
if (c->status[i].idelta < 16)
c->status[i].idelta = 16;
bytestream_put_le16(&dst, c->status[i].idelta);
}
for (i = 0; i < avctx->channels; i++)
c->status[i].sample2= *samples++;
for (i = 0; i < avctx->channels; i++) {
c->status[i].sample1 = *samples++;
bytestream_put_le16(&dst, c->status[i].sample1);
}
for (i = 0; i < avctx->channels; i++)
bytestream_put_le16(&dst, c->status[i].sample2);
if (avctx->trellis > 0) {
int n = avctx->block_align - 7 * avctx->channels;
FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
if (avctx->channels == 1) {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
for (i = 0; i < n; i += 2)
*dst++ = (buf[i] << 4) | buf[i + 1];
} else {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
adpcm_compress_trellis(avctx, samples + 1, buf + n, &c->status[1], n);
for (i = 0; i < n; i++)
*dst++ = (buf[i] << 4) | buf[n + i];
}
av_free(buf);
} else {
for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
int nibble;
nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
*dst++ = nibble;
}
}
break;
case AV_CODEC_ID_ADPCM_YAMAHA:
2012-01-31 20:54:45 +00:00
n = frame->nb_samples / 2;
if (avctx->trellis > 0) {
FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 2, error);
n *= 2;
if (avctx->channels == 1) {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
for (i = 0; i < n; i += 2)
*dst++ = buf[i] | (buf[i + 1] << 4);
} else {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
adpcm_compress_trellis(avctx, samples + 1, buf + n, &c->status[1], n);
for (i = 0; i < n; i++)
*dst++ = buf[i] | (buf[n + i] << 4);
}
av_free(buf);
} else
for (n *= avctx->channels; n > 0; n--) {
int nibble;
nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
*dst++ = nibble;
}
break;
default:
return AVERROR(EINVAL);
}
2012-01-31 20:54:45 +00:00
avpkt->size = pkt_size;
*got_packet_ptr = 1;
return 0;
error:
return AVERROR(ENOMEM);
}
static const enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
};
#define ADPCM_ENCODER(id_, name_, long_name_) \
AVCodec ff_ ## name_ ## _encoder = { \
.name = #name_, \
.type = AVMEDIA_TYPE_AUDIO, \
.id = id_, \
.priv_data_size = sizeof(ADPCMEncodeContext), \
.init = adpcm_encode_init, \
2012-01-31 20:54:45 +00:00
.encode2 = adpcm_encode_frame, \
.close = adpcm_encode_close, \
.sample_fmts = sample_fmts, \
.long_name = NULL_IF_CONFIG_SMALL(long_name_), \
}
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");