ffmpeg/doc/platform.texi

348 lines
12 KiB
Plaintext
Raw Normal View History

\input texinfo @c -*- texinfo -*-
@settitle Platform Specific information
@titlepage
@center @titlefont{Platform Specific information}
@end titlepage
@top
@contents
@chapter Unix-like
Some parts of FFmpeg cannot be built with version 2.15 of the GNU
assembler which is still provided by a few AMD64 distributions. To
make sure your compiler really uses the required version of gas
after a binutils upgrade, run:
@example
$(gcc -print-prog-name=as) --version
@end example
If not, then you should install a different compiler that has no
hard-coded path to gas. In the worst case pass @code{--disable-asm}
to configure.
@section BSD
BSD make will not build FFmpeg, you need to install and use GNU Make
(@command{gmake}).
@section (Open)Solaris
GNU Make is required to build FFmpeg, so you have to invoke (@command{gmake}),
standard Solaris Make will not work. When building with a non-c99 front-end
(gcc, generic suncc) add either @code{--extra-libs=/usr/lib/values-xpg6.o}
or @code{--extra-libs=/usr/lib/64/values-xpg6.o} to the configure options
since the libc is not c99-compliant by default. The probes performed by
configure may raise an exception leading to the death of configure itself
due to a bug in the system shell. Simply invoke a different shell such as
bash directly to work around this:
@example
bash ./configure
@end example
@anchor{Darwin}
@section Darwin (Mac OS X, iPhone)
The toolchain provided with Xcode is sufficient to build the basic
unacelerated code.
Mac OS X on PowerPC or ARM (iPhone) requires a preprocessor from
@url{http://github.com/yuvi/gas-preprocessor} to build the optimized
assembler functions. Just download the Perl script and put it somewhere
in your PATH, FFmpeg's configure will pick it up automatically.
Mac OS X on amd64 and x86 requires @command{yasm} to build most of the
optimized assembler functions. @uref{http://www.finkproject.org/, Fink},
@uref{http://www.gentoo.org/proj/en/gentoo-alt/prefix/bootstrap-macos.xml, Gentoo Prefix},
@uref{http://mxcl.github.com/homebrew/, Homebrew}
or @uref{http://www.macports.org, MacPorts} can easily provide it.
@chapter DOS
Using a cross-compiler is preferred for various reasons.
@url{http://www.delorie.com/howto/djgpp/linux-x-djgpp.html}
@chapter OS/2
For information about compiling FFmpeg on OS/2 see
@url{http://www.edm2.com/index.php/FFmpeg}.
@chapter Windows
To get help and instructions for building FFmpeg under Windows, check out
the FFmpeg Windows Help Forum at
@url{http://ffmpeg.arrozcru.org/}.
@section Native Windows compilation using MinGW or MinGW-w64
FFmpeg can be built to run natively on Windows using the MinGW or MinGW-w64
toolchains. Install the latest versions of MSYS and MinGW or MinGW-w64 from
@url{http://www.mingw.org/} or @url{http://mingw-w64.sourceforge.net/}.
You can find detailed installation instructions in the download section and
the FAQ.
Notes:
@itemize
@item Building natively using MSYS can be sped up by disabling implicit rules
in the Makefile by calling @code{make -r} instead of plain @code{make}. This
speed up is close to non-existent for normal one-off builds and is only
noticeable when running make for a second time (for example during
@code{make install}).
@item In order to compile FFplay, you must have the MinGW development library
of @uref{http://www.libsdl.org/, SDL} and @code{pkg-config} installed.
@item By using @code{./configure --enable-shared} when configuring FFmpeg,
you can build the FFmpeg libraries (e.g. libavutil, libavcodec,
libavformat) as DLLs.
@end itemize
@section Microsoft Visual C++
FFmpeg can be built with MSVC using a C99-to-C89 conversion utility and
wrapper. At this time, only static builds are supported.
You will need the following prerequisites:
@itemize
@item @uref{https://github.com/rbultje/c99-to-c89/, C99-to-C89 Converter & Wrapper}
@item @uref{http://code.google.com/p/msinttypes/, msinttypes}
@item @uref{http://www.mingw.org/, MSYS}
@item @uref{http://yasm.tortall.net/, YASM}
@item @uref{http://gnuwin32.sourceforge.net/packages/bc.htm, bc for Windows} if
you want to run @uref{fate.html, FATE}.
@end itemize
To set up a proper MSVC environment in MSYS, you simply need to run
@code{msys.bat} from the Visual Studio command prompt.
Caveat: Run @code{which link} to see which link you are using. If it is located
at @code{/bin/link.exe}, then you have the wrong link in your @code{PATH}.
Either move/remove that copy, or make sure MSVC's link.exe is higher up in your
@code{PATH} than coreutils'.
Place @code{c99wrap.exe}, @code{c99conv.exe}, and @code{yasm.exe} somewhere
in your @code{PATH}.
Next, make sure @code{inttypes.h} and any other headers and libs you want to use
are located in a spot that MSVC can see. Do so by modifying the @code{LIB} and
@code{INCLUDE} environment variables to include the @strong{Windows} paths to
these directories. Alternatively, you can try and use the
@code{--extra-cflags}/@code{--extra-ldflags} configure options.
Finally, run:
@example
./configure --toolchain=msvc
make
make install
@end example
Notes:
@itemize
@item If you wish to build with zlib support, you will have to grab a compatible
zlib binary from somewhere, with an MSVC import lib, or if you wish to link
statically, you can follow the instructions below to build a compatible
@code{zlib.lib} with MSVC. Regardless of which method you use, you must still
follow step 3, or compilation will fail.
@enumerate
@item Grab the @uref{http://zlib.net/, zlib sources}.
@item Edit @code{win32/Makefile.msc} so that it uses -MT instead of -MD, since
this is how FFmpeg is built as well.
@item Edit @code{zconf.h} and remove its inclusion of @code{unistd.h}. This gets
erroneously included when building FFmpeg.
@item Run @code{nmake -f win32/Makefile.msc}.
@item Move @code{zlib.lib}, @code{zconf.h}, and @code{zlib.h} to somewhere MSVC
can see.
@end enumerate
@item FFmpeg has been tested with Visual Studio 2010 and 2012, Pro and Express.
Anything else is not officially supported.
@end itemize
@subsection Using shared libraries built with MinGW in Visual Studio
Currently, if you want to build shared libraries on Windows, you need to
use MinGW.
This is how to create DLL and LIB files that are compatible with MSVC++:
@enumerate
@item Add a call to @file{vcvars32.bat} (which sets up the environment
variables for the Visual C++ tools) as the first line of @file{msys.bat}.
The standard location for @file{vcvars32.bat} is
@file{C:\Program Files\Microsoft Visual Studio 8\VC\bin\vcvars32.bat},
and the standard location for @file{msys.bat} is @file{C:\msys\1.0\msys.bat}.
If this corresponds to your setup, add the following line as the first line
of @file{msys.bat}:
@example
call "C:\Program Files\Microsoft Visual Studio 8\VC\bin\vcvars32.bat"
@end example
Alternatively, you may start the @file{Visual Studio 2005 Command Prompt},
and run @file{c:\msys\1.0\msys.bat} from there.
@item Within the MSYS shell, run @code{lib.exe}. If you get a help message
from @file{Microsoft (R) Library Manager}, this means your environment
variables are set up correctly, the @file{Microsoft (R) Library Manager}
is on the path and will be used by FFmpeg to create
MSVC++-compatible import libraries.
@item Build FFmpeg with
@example
./configure --enable-shared
make
make install
@end example
Your install path (@file{/usr/local/} by default) should now have the
necessary DLL and LIB files under the @file{bin} directory.
@end enumerate
Alternatively, build the libraries with a cross compiler, according to
the instructions below in @ref{Cross compilation for Windows with Linux}.
To use those files with MSVC++, do the same as you would do with
the static libraries, as described above. But in Step 4,
you should only need to add the directory where the LIB files are installed
(i.e. @file{c:\msys\usr\local\bin}). This is not a typo, the LIB files are
installed in the @file{bin} directory. And instead of adding the static
libraries (@file{libxxx.a} files) you should add the MSVC import libraries
(@file{avcodec.lib}, @file{avformat.lib}, and
@file{avutil.lib}). Note that you should not use the GCC import
libraries (@file{libxxx.dll.a} files), as these will give you undefined
reference errors. There should be no need for @file{libmingwex.a},
@file{libgcc.a}, and @file{wsock32.lib}, nor any other external library
statically linked into the DLLs.
FFmpeg headers do not declare global data for Windows DLLs through the usual
dllexport/dllimport interface. Such data will be exported properly while
building, but to use them in your MSVC++ code you will have to edit the
appropriate headers and mark the data as dllimport. For example, in
libavutil/pixdesc.h you should have:
@example
extern __declspec(dllimport) const AVPixFmtDescriptor av_pix_fmt_descriptors[];
@end example
Note that using import libraries created by dlltool requires
the linker optimization option to be set to
"References: Keep Unreferenced Data (@code{/OPT:NOREF})", otherwise
the resulting binaries will fail during runtime. This isn't
required when using import libraries generated by lib.exe.
This issue is reported upstream at
@url{http://sourceware.org/bugzilla/show_bug.cgi?id=12633}.
To create import libraries that work with the @code{/OPT:REF} option
(which is enabled by default in Release mode), follow these steps:
@enumerate
@item Open @emph{Visual Studio 2005 Command Prompt}.
Alternatively, in a normal command line prompt, call @file{vcvars32.bat}
which sets up the environment variables for the Visual C++ tools
(the standard location for this file is
@file{C:\Program Files\Microsoft Visual Studio 8\VC\bin\vcvars32.bat}).
@item Enter the @file{bin} directory where the created LIB and DLL files
are stored.
@item Generate new import libraries with @command{lib.exe}:
@example
lib /machine:i386 /def:..\lib\foo-version.def /out:foo.lib
@end example
Replace @code{foo-version} and @code{foo} with the respective library names.
@end enumerate
@anchor{Cross compilation for Windows with Linux}
@section Cross compilation for Windows with Linux
You must use the MinGW cross compilation tools available at
@url{http://www.mingw.org/}.
Then configure FFmpeg with the following options:
@example
./configure --target-os=mingw32 --cross-prefix=i386-mingw32msvc-
@end example
(you can change the cross-prefix according to the prefix chosen for the
MinGW tools).
Then you can easily test FFmpeg with @uref{http://www.winehq.com/, Wine}.
@section Compilation under Cygwin
Please use Cygwin 1.7.x as the obsolete 1.5.x Cygwin versions lack
llrint() in its C library.
Install your Cygwin with all the "Base" packages, plus the
following "Devel" ones:
@example
binutils, gcc4-core, make, git, mingw-runtime, texi2html
@end example
In order to run FATE you will also need the following "Utils" packages:
@example
bc, diffutils
@end example
If you want to build FFmpeg with additional libraries, download Cygwin
"Devel" packages for Ogg and Vorbis from any Cygwin packages repository:
@example
libogg-devel, libvorbis-devel
@end example
These library packages are only available from
@uref{http://sourceware.org/cygwinports/, Cygwin Ports}:
@example
yasm, libSDL-devel, libfaac-devel, libaacplus-devel, libgsm-devel, libmp3lame-devel,
libschroedinger1.0-devel, speex-devel, libtheora-devel, libxvidcore-devel
@end example
The recommendation for x264 is to build it from source, as it evolves too
quickly for Cygwin Ports to be up to date.
@section Crosscompilation for Windows under Cygwin
With Cygwin you can create Windows binaries that do not need the cygwin1.dll.
Just install your Cygwin as explained before, plus these additional
"Devel" packages:
@example
gcc-mingw-core, mingw-runtime, mingw-zlib
@end example
and add some special flags to your configure invocation.
For a static build run
@example
./configure --target-os=mingw32 --extra-cflags=-mno-cygwin --extra-libs=-mno-cygwin
@end example
and for a build with shared libraries
@example
./configure --target-os=mingw32 --enable-shared --disable-static --extra-cflags=-mno-cygwin --extra-libs=-mno-cygwin
@end example
@bye